Group Theory
===
- [代數導論筆記](https://hackmd.io/@0xff07/ByT4ldAS8)
基本觀念
---
- [群的簡介](https://hackmd.io/@0xff07/rJfQ-fKSU)
- [群的例子](https://hackmd.io/@0xff07/ByrKGkDvL)
- [體的簡介](https://hackmd.io/@0xff07/Bk6zc3nHL)
- [Homomorphism](https://hackmd.io/@0xff07/Hy7htQ5H8)
Subgroup
---
- [Subgroup](https://hackmd.io/@0xff07/ryQE2n3SI)
- [Group Action Intro (Part 1)](https://hackmd.io/@0xff07/rkkxnZ0rL)
- [Group Action Intro (Part 2)](https://hackmd.io/@0xff07/ByfPTNUPL)
- [Cyclic Subgroup](https://hackmd.io/@0xff07/S1MKa0pBL)
- [Coset](https://hackmd.io/@0xff07/HyeeRMDLI)
- [Lagrange Theorem](https://hackmd.io/@0xff07/B14A94UvI)
- [Subgroup Generated by Set](https://hackmd.io/@0xff07/rknDN10LI)
Quotient Group
---
- [Quotient Group](https://hackmd.io/@0xff07/ry7sXOdII)
- [The First Isomorphism Theorem](https://hackmd.io/@0xff07/ByOFhmzwI)
- [Diamond Isomorphism](https://hackmd.io/@0xff07/BksR6-1DU)
- [Lattice Isomorphism (Part 1)](https://hackmd.io/@0xff07/By_fxkbDL)
- [The Third Isomorphism](https://hackmd.io/@0xff07/r1JRNWZvL)
Group Action
---
- [Group Action & Quotient Group](https://hackmd.io/@0xff07/HJVRVrNwI)
- [Conjugation](https://hackmd.io/@0xff07/S1tO61UvI)
- [Conjugate Class of Sn](https://hackmd.io/@0xff07/rJQ8vkwDL)
Sylow Theorem
---
- [Sylow Theorem (定義與敘述)](https://hackmd.io/@0xff07/Sy6ItpYDU)
- [Sylow Theorem (證明 Part 1)](https://hackmd.io/@0xff07/SyhF5LnPU)
- [Sylow Theorem (證明 Part 2)](https://hackmd.io/@0xff07/SJ6SnLhPU)
- [Sylow Theorem (相關推論)](https://hackmd.io/@0xff07/Syuh7w3DU)
- [Sylow Theorem (例子)](https://hackmd.io/@0xff07/r1_Sb4luU)
Direct and Semidirect Product
---
- [Automorphism](https://hackmd.io/@0xff07/HywCueAvU)
- [Direct Product (Part 1)](https://hackmd.io/@0xff07/B16ig3WuI)
- [Direct Product (Part 2)](https://hackmd.io/@0xff07/Skb52BV_L)
- [Semidirect Product (Part 1)](https://hackmd.io/@0xff07/rkKJEpWuU)
- [Semidirect Product (Part 2)](https://hackmd.io/@0xff07/S1zPEsBuI)
{"metaMigratedAt":"2023-06-15T05:20:56.104Z","metaMigratedFrom":"YAML","title":"107-1 代數導論一 (群)","breaks":true,"contributors":"[{\"id\":\"7787164b-790f-48d8-8d75-16daa9b2a6a9\",\"add\":2697,\"del\":705},{\"id\":\"8f02bc47-badc-4746-9935-e1060d299a0c\",\"add\":1,\"del\":2}]"}