Ya-Wen Jeng

@vivi432

Joined on Sep 19, 2018

  • https://linktr.ee/zkmopro mopro-linktree 0. Prerequisites Xcode or Android Studio Rust and CMake :::info Documentation: https://zkmopro.org/docs/prerequisites :::
     Like  Bookmark
  • Introdoction UniRep is a private and non-repudiable data system. Users can receive attestations from attesters, and voluntarily prove facts about their data without revealing the data itself. Using the UniRep protocol, we can establish an anonymous social media platform where user interactions are governed by upvotes and downvotes. This system encourages greater accountability among users when posting and commenting. Speaker Vivian github: https://github.com/vivianjeng telegram: @vivianjeng
     Like  Bookmark
  • Comparing proving time (in seconds) in browser: https://mopro-webprover.pages.dev/ and native app Methodology TODO: N=1 or Average of 3 tries? Browser? Real device? Full proof vs witness + prove separate? Which configuration/commit? arkzkey, dylib etc
     Like  Bookmark
  • 前言 Cloudflare pages 可以根據 github commit 建立每個 Pull Request 的 staging 網頁 截圖 2024-01-06 下午4.42.38 有這樣的 staging deployment 可以有利於 PR review 及 debug。 我們也可以用 Cloudflare 提供的 pages/workers 建立 serverless framework 處理 API,省去架設伺服器的困難及成本。 並用 D1 database 儲存資料,避免 serverless 狀態被清除。
     Like  Bookmark
  • Learning UniRep Official links Github: https://github.com/unirep Documentation: https://developer.unirep.io/ Explorer: https://explorer.unirep.io/ Demo app: https://demo.unirep.io/ Boilerplate: npx create-unirep-app Videos
     Like  Bookmark
  • Build your own application with UniRep is easy. Here are the guides for you to follow: Getting started with create-unirep-app Getting started with typescript/javascript Need idea? Get some inspiration for what you can you build:What I can build with UniRep? Applications built by UniRep core contributors Questions?
     Like 1 Bookmark
  • who are we? Vivian (from EF) Doris (from EF) Nicole (PM) EF: Ethereum Foundation https://ethereum.org/en/ https://ethereum.foundation/
     Like  Bookmark
  • Open source Unirep protocol social media 參與者 hung: 合約 後端 ryan: harvest 合約 後端 rln semaphore paul: 後端 semaphore foodchain: 前端 合約 semaphore unirep sung: 交易所後端 合約 arthur: 前端 合約
     Like  Bookmark
  • Github https://github.com/unirep/create-unirep-app CLI npx create-unirep-app yarn build yarn start post event Post(uint256 indexed epochKey, uint256 content);
     Like 1 Bookmark
  • PSE team project introduction [toc] 1. MACI :computer: Github :green_book: Medium :blue_book: 中文Medium 論共謀中文
     Like 2 Bookmark
  • Effect operator $E_m$ discribes outcome of measurements without only neccesary restrictions $$E_m\geq 0\ \Leftrightarrow\ p_m\geq 0\\sum_m E_m=1\ \Leftrightarrow\ \sum_mp_m=1$$ Effect operator $E_m$: care about outcome $p_m$ Measurement operator $M_m$: care about state $|\psi_m\rangle$ Effect operator $E_m$ $\Leftrightarrow$ Positivity $\langle\psi|E_m|\psi\rangle\geq 0,\ \forall\ |\psi\rangle $ $\Leftrightarrow$ Sumrule $\sum_m E_m=\mathbb{1}$
     Like  Bookmark
  • probability should stay probability $\Rightarrow\mathcal{E}$ is a stochastic map. Positivity Preservation (PP): $\mathcal{E}(\rho)\geq 0$ Trace Preservation (TP): $\text{tr }\mathcal{E}(\rho)=1$ 🧐 These are general restrictions for quantum evolutions? ❌ Difficult in principle: because of entanglement ❌ Difficult in practice: PP is more complicated than complete positivity
     Like  Bookmark
  • Probability outcomes measuring distinguishable states $\leftrightarrow$ Information Average information gain on state $\rho_A$ for measurement in its eigenbasis $$S(\rho_A)=-\sum_k\lambda_k\log_2(\lambda_k)$$ Majorization $$\text{least ordered } (\frac{1}{d},...,\frac{1}{d})\prec (1,0,...0) \text{ most ordered }$$ definition
     Like  Bookmark
  • A glance of both side of the coin at the same time by integrating the coin (classical: at least two glance of both side)  relies on quantum superposition and entanglement asks a partial question about a system Input $x$: $x\in{0,1}$
     Like  Bookmark
  • Classical Universality: There exist minimal sets of gates that suffice to implement any classical Boolean circuits. E.g. AND and NOT. Irreversible computing: The two-bit gates are essentially irresverible and non-invertable: e.g. $a\oplus b$ of XOR gate loss the information because two input bits just flow into one output bit Reversible computing: the number of inputs and outputs are equal
     Like  Bookmark
  • Multi-qubit Deutsch Algorithm Problem: For $N=2^n$, we are given an $N$-bit string input: $x\in{0,1}^N$ such that either: all $x_i$ have the same value: constant $N/2$ of the $x_i$ are 0 and $N/2$ of the $x_i$ are 1: balanced goal: find out whether $x$ is constant or balanced
     Like  Bookmark
  • A quantum computer cannot do There exists no phisical procedure to copy an arbitrary quantum state. proof: Assume that there are two state $|\psi\rangle,|\phi\rangle$, and they can be copied by a unitary $U$ $$|\psi\rangle|s\rangle\xrightarrow[]{U}U|\psi\rangle|s\rangle=|\psi\rangle|\psi\rangle \ |\phi\rangle|s\rangle\xrightarrow[]{U}U|\phi\rangle|s\rangle=|\phi\rangle|\phi\rangle$$ take the inner product $$(\langle\psi|\langle\psi|)(|\phi\rangle|\phi\rangle)=\langle\psi|\langle s|U^\dagger)(U|\phi\rangle|s\rangle)=\langle\psi|\phi\rangle\langle s|s\rangle=\langle\psi|\phi\rangle\ \therefore \langle\psi|\phi\rangle^2=\langle\psi|\phi\rangle$$
     Like  Bookmark
  • Entanglement $|00\rangle\xrightarrow[]{C_1NOT_2, H_1} \frac{1}{\sqrt{2}}(|00\rangle+|11\rangle)=|\Phi^+\rangle$ $|01\rangle\xrightarrow[]{C_1NOT_2, H_1} \frac{1}{\sqrt{2}}(|01\rangle+|10\rangle)=|\Psi^+\rangle$ $|10\rangle\xrightarrow[]{C_1NOT_2, H_1} \frac{1}{\sqrt{2}}(|00\rangle-|11\rangle)=|\Phi^-\rangle$ $|11\rangle\xrightarrow[]{C_1NOT_2, H_1} \frac{1}{\sqrt{2}}(|01\rangle-|10\rangle)=|\Psi^-\rangle$ Bell state are equivalent up to local unitary operations $|\Psi^+\rangle=X_1|\Phi^+\rangle=X_2|\Phi^+\rangle$
     Like  Bookmark
  • Protocol The Bell state shared by $A$ and $B$ is available $A:1/\sqrt{2}(|0_A0_B\rangle+|1_A1_B\rangle)$ $B:1/\sqrt{2}(|0_A0_B\rangle+|1_A1_B\rangle)$ $A$ interacts her qubit with the (unknown) state $|\psi\rangle$ assume that $|\psi\rangle = \alpha|0\rangle+\beta|1\rangle$
     Like  Bookmark
  • Linear map Hermicity-preserving map (HP) Completely-positive maps (CP) Trace non-increasing (TNI) maps $$\text{tr}A\mathcal{M}{Ab}(\rho_A)\leq\text{tr}_A \rho_A$$ $\mathcal{E}A$$=\sum_b$$\mathcal{M}{Ab}$ is a quantum channel with trace-preserving (TP) instead of trace non-increasing (TNI). 🧐 Do measurement superoperators ${\mathcal{M}_b}$ describe any measurement?
     Like  Bookmark