# No-cloning theorem - A quantum computer cannot do - There exists no phisical procedure to copy an <ins>arbitrary</ins> quantum state. - proof: 1. Assume that there are two state $|\psi\rangle,|\phi\rangle$, and they can be copied by a unitary $U$ $$|\psi\rangle|s\rangle\xrightarrow[]{U}U|\psi\rangle|s\rangle=|\psi\rangle|\psi\rangle \\ |\phi\rangle|s\rangle\xrightarrow[]{U}U|\phi\rangle|s\rangle=|\phi\rangle|\phi\rangle$$ 2. take the inner product $$(\langle\psi|\langle\psi|)(|\phi\rangle|\phi\rangle)=\langle\psi|\langle s|U^\dagger)(U|\phi\rangle|s\rangle)=\langle\psi|\phi\rangle\langle s|s\rangle=\langle\psi|\phi\rangle\\ \therefore \langle\psi|\phi\rangle^2=\langle\psi|\phi\rangle$$ 3. there are only two possibilities: 1. $\langle\psi|\phi\rangle = 1\Rightarrow |\psi\rangle=|\phi\rangle$ 2. $\langle\psi|\phi\rangle = 0\Rightarrow |\psi\rangle\perp|\phi\rangle$ 4. *We cannot copy <ins>arbitrary</ins> states.*