# Quantum gates ### Classical - *Universality:* There exist minimal sets of gates that suffice to implement any classical Boolean circuits. E.g. **AND** and **NOT**. - *Irreversible computing:* The two-bit gates are essentially irresverible and non-invertable: e.g. $a\oplus b$ of **XOR** gate - loss the information - because two input bits just flow into one output bit - *Reversible computing:* the number of inputs and outputs are equal - The three bits **Toffeli-gate** is a universal reversible logic gate: any reversible classical circuit can be built from Toffeli-gate only. ### Quantum - In quantum information processing, all unitary transformations are allowed, represents valid quantum operations. - time evolution $U(t) = \text{exp}(-\frac{it}{h}H)$ - Example: - single qubit rotation: $H\propto\sigma, \sigma\in\{X,Y,Z\}$ - e.g. $H_j=E\cdot X_j$ on the $j$-th qubit $H:$ hamiltonian $E:$ energy $X:$ $X$-rotation - $R_{X_j}(\alpha)=\text{exp}(-\frac{i\alpha}{2}X_j)$ $\alpha$ is controlled by the strength $E$ and the time $t$ $\frac{2E\cdot t}{h}\propto \alpha$ - $R_{X_j}$ can be simplified: use identity for operators $A$, for which $A^2 = \mathbb{I}$ $\begin{aligned} e^{i\alpha A} &= \sum_{n=0}^{\infty}\frac{1}{n!}(i\alpha)^n A^n \\ &= (1-\frac{\alpha^2}{2}+...)\mathbb{I}+i(\alpha-\frac{1}{6}\alpha^3+...)A \\ &= \cos{(\alpha)}\cdot\mathbb{I}+i\sin{(\alpha)}\cdot A \end{aligned}$ - Since $\sigma^2=\mathbb{I}$ $R_{\sigma}(\alpha)=\text{exp}(-\frac{i\alpha}{2}\sigma)= \cos{(\alpha)}\cdot\mathbb{I}-i\sin{(\alpha)}\cdot \sigma$ ### Single-qubit gate: - classical: only **NOT** gate - quantum: many more (infinitely) - e.g. rotation operations > Pauli gates can be generated from rotations, up to overall phase > $R_{\sigma}(\pi)=(-i)\cdot\sigma$ - **Hadamard gate** - $$ H=\frac{1}{\sqrt{2}}\begin{pmatrix}1&1 \\1 & -1\end{pmatrix} $$ - **phase gate** - $$ S=\begin{pmatrix}1&0 \\0 & i\end{pmatrix} $$ - **T-gate** - $$ T=\begin{pmatrix}1&0 \\0 & e^{i\pi/4}\end{pmatrix} $$ > no **correlations / entanglement** can be created by a single qubit gate > we need two-qubit gate. ### Two-qubit gate: - **CNOT** - $$ CNOT = \begin{pmatrix} 1 & 0 & 0 & 0\\0 & 1 & 0 & 0\\0&0&0&1\\0&0&1&0\end{pmatrix} $$ - **controlled-U** - $U$ applies $\Leftrightarrow$ the first qubit is $|1\rangle$ - creation of entanglement: $C_1NOT_2\cdot H_1|\psi_{12}\rangle$ - Definition of entangled state: all pure states cannot be written as a product state, are entangled $\frac{1}{\sqrt{2}}(|00\rangle+|11\rangle) \neq(\alpha_1|0\rangle+\beta_1|1\rangle)(\alpha_2|0\rangle+\beta_2|1\rangle)$