# <font color=blue>Measurement</font> <font color=red>Quantum Instruments</font>
1. Linear map
2. Hermicity-preserving map (HP)
3. Completely-positive maps (CP)
4. Trace <font color=red>non-increasing</font> (TNI) maps
$$\text{tr}_A\mathcal{M}_{Ab}(\rho_A)\leq\text{tr}_A \rho_A$$
> <font color=red>$\mathcal{E}_A$</font>$=\sum_b$<font color=blue>$\mathcal{M}_{Ab}$</font> is a quantum <font color=red>channel</font> with trace-preserving (TP) instead of trace non-increasing (TNI).
- 🧐 *Do measurement superoperators $\{\mathcal{M}_b\}$ describe any measurement?*
- ⭕️ Only two neccesary assumptions
1. Outcome $b$ known:
valid *state-update* in presence of **entanglement** $\Leftrightarrow$
$$\mathcal{M}_{Ab}=\sum_{c\in b}M_{Abc}\bullet M_{Abc}^\dagger \text{(CP)}\\
\sum_{c\in b}M_{Abc}^\dagger M_{Abc}\leq \mathbb{1}_A\text{ (TNI)}$$
2. Outcomes discarded:
Valid *evolution* in presence of entanglement $\Leftrightarrow$
$$\sum_b\mathcal{M}_{b}=\sum_b\sum_{c\in b}M_{Abc}\bullet M_{Abc}^\dagger=\mathcal{E} \text{ (CP)}\\
\sum_b\sum_{c\in b}M_{Abc}^\dagger M_{Abc}=\mathbb{1}_A\text{ (TP)}$$
- This is <font color=red>not true</font> for
- **<font color=red>POVM</font>** with $\sum_bM_{Ab}^\dagger M_{Ab}=\mathbb{1}_A$
- already assumes **state-update to preserve purity**
- **<font color=red>projective measurement</font>**
- further assumes that **state-updates produce distinguishable states** (orthogonal)
- **<font color=red>Partially discarding outcomes:</font>** Discarding information about *distinctions between outcomes $c\in b$* which form subsets $(b)$ of different sizes <font color=red>coarse-graining</font>
- 丟棄$c$與$b$的差異=使兩者相同方式計算
- Example: Qubits with ONB $\{|1_B\rangle,|2_B\rangle,|3_B\rangle\}$
- Coarse-graining $\{1\}$ from $\{2,3\}$
- Discard distinctions from $\{2,3\}$
- relabeled $$\{|bc_B\rangle\}=\{|11_B\rangle\}_{b=1},\{|21_B\rangle,|22_B\rangle\}_{b=2}$$
- measurement superoperator
- $$\mathcal{M}_{Ab}=\sum_{c\in b}M_{Abc}\bullet M_{Abc}^\dagger\\M_{Abc}=\langle bc_B|U_{ABC}|0_B\rangle$$
- post-measurement state $$\rho_{Ab}=\frac{1}{p_b}\mathcal{M}_{Ab}(\rho_{A})=\frac{1}{p_b}\sum_{c\in b}M_{Abc}\rho_{A} M_{Abc}^\dagger$$
- probability $$p_b=\text{tr}_A\mathcal{M}_{Ab}(\rho_{A})=\text{tr}_A\sum_{c\in b}M_{Abc}\rho_{A} M_{Abc}^\dagger$$
- $\mathcal{M}_{Ab}=$<font color=red>$\sum_{c\in b}$</font>$M_{Abc}\bullet M_{Abc}^\dagger$
<font color=red>This cannot describe by any POVM-measurements $\mathcal{M}_{Ab}=M_{Ab}\bullet M_{Ab}^\dagger$</font>
- *incomplete measurement model with composite environment*
- 3 systems $A,B,C$
- $B,C$ initially pure (possibly entangled)
- Local complete projective measurement $\{\mathbb{1}_A\otimes|b_Bc_C\rangle\langle b_Bc_C|\}$
- commute $b$ with $A$
- discard $c$
$$p_b=\text{tr}_A\sum_c \text{tr}_{BC}\{\bullet\}\\
\rho_{Ab}=\frac{1}{p_b}\sum_c \text{tr}_{BC}\{\bullet\}$$
> ⭐️⭐️⭐️ **<font color=red>This model is better than POVM</font>**
> Example
> *Maximally depolarizing channel*:
> $U_{ABC}=\mathbb{S}_{AB}\otimes\mathbb{1}_C$, $\mathbb{S}$ is a swap operator.
> Probabilities for outcome c and outcome b are statistically **independent**
> Post-POVM-measurement state depends only on control bit c, **not b or $\rho$**
## Axioms quantum theory (open system version)
1. <font color=green>Preparation state</font>
$$\rho\geq 0, \text{ tr}\rho=1$$
2. <font color=blue>Evolution</font> CP-TP maps
$$\mathcal{E}\rho=\sum_b M_b\rho M_b^\dagger\\
\sum_b M_b^\dagger M_b=\mathbb{1}$$
3. <font color=red>Measurement instrument</font> CP, TNI maps
$$p_b\rho_b=\sum_{c\in b} M_{bc}\rho M_{bc}^\dagger\stackrel{POVM}{=}M_b\rho M_b^\dagger\\
\sum_b\sum_{c\in b} M_{bc}\rho M_{bc}^\dagger=\mathbb{1}\stackrel{POVM}{=}\sum_bM_b\rho M_b^\dagger$$
<font color=purple>Measurement effects</font>
$$p_b=\text{tr}(E_b\rho_b)\\
E_b=\sum_{c\in b}M_{bc}^\dagger M_{bc}\stackrel{POVM}{=}M_{bc}^\dagger M_{bc}\\\sum_b E_b=\mathbb{1}$$
> ⭐️⭐️⭐️ POVM measurements are not *general*
> Because it **assumes max. information conservation** (assume pure states) in evolution process
> $\rightarrow$ <font color=red>Incomplete information requires more general *state-updates*</font>
> ⭐️⭐️⭐️ POVM measurements are *fundamental*
> Every measurement can be simulated by POVM measurement $\{M_{Abc}\}$ by *discarding information* $(\sum_{c\in b})$
> $\rightarrow$ <font color=green>Incomplete information allows effect description for *probability functions*</font>
- 🧐 *Are there non-unitary evolution $\mathcal{E}$ that are physically inversible? i.e. whose mathematical inverse on all states is also a CP-TP map?*
- ❌ Reversibility of *non-unitary* evolution would violate *no information withour measurement disturbance.*