# <font color=red>POVM</font>
- <font color=red>Effect operator $E_m$</font> discribes **outcome** of measurements <font color=blue>without *only neccesary restrictions* $$E_m\geq 0\ \Leftrightarrow\ p_m\geq 0\\\sum_m E_m=1\ \Leftrightarrow\ \sum_mp_m=1$$</font>
- <font color=red>Effect operator $E_m$</font>: care about outcome $p_m$
- <font color=blue>Measurement operator $M_m$</font>: care about state $|\psi_m\rangle$
### <font color=red>Effect operator $E_m$</font>
- $\Leftrightarrow$ Positivity $\langle\psi|E_m|\psi\rangle\geq 0,\ \forall\ |\psi\rangle $
- $\Leftrightarrow$ Sumrule $\sum_m E_m=\mathbb{1}$
### <font color=blue>Measurement operator $M_{Ab}$</font>
- operators on <font color=blue>$A$</font>:$$M_{Ab}=\langle b_B|U_{AB}|0_B\rangle$$
- post-measurement states on <font color=blue>$A$</font>: $$\rho_{Ab}=\frac{1}{p_b}M_{Ab}\rho_AM_{Ab}^\dagger$$
- The measurement probability $$p_b=\text{tr}_A(M_{Ab}\rho_AM_{Ab}^\dagger)=\text{tr}_A(M_{Ab}^\dagger M_{Ab}\rho_A)$$
where $$E_{Ab}=M_{Ab}^\dagger M_{Ab}$$
> ⭐️⭐️⭐️ A set of $\{E_{Ab}\}$ is called a **<font color=red>POVM</font>** for system $A$ if $$E_{Ab}\geq 0\\ \sum_b E_{Ab}=\mathbb{1}_A$$
> ⭐️⭐️⭐️ A set of measurement operators $\{M_{Ab}\}$ is called a **<font color=red>POVM-measurement</font>** if $$\sum_b M_{Ab}^\dagger M_{Ab} = \mathbb{1}_A$$
- $E_{Ab}$ and $M_{Ab}$ are <font color=red>not uniquely</font> corresponding. $$M_{Ab}=V_{Ab}\sqrt{E_{Ab}}$$
- 🧐 *Does a POVM-measurement $\{M_{Ab}\}$ discribe a <font color=red>posterior states</font> of general measurement?*
- ❌ A POVM-measurement is constrained to *preserve purity*.
- It cannot describe <font color=red>decoherence</font> of pure state to mixed post-measurement state.
- 🧐 *Does every POVM-measurement $\{M_{Ab}\}$ derive from a <font color=red>pure, complete</font>-measurement model $(U_{AB},|0_B\rangle)$?*
- ⭕️ $$M_{Ab}=\langle b_B|U_{AB}|0_B\rangle \Leftrightarrow U_{AB}=\sum_b M_{Ab}|b_B\rangle\langle 0_B|+...$$
- Nonuniqueness comes from
- <font color=green>$\langle b_B|$</font> $U_{AB}|c_B\rangle$
- $M_{Ab}=$<font color=green>$V_{Ab}$</font>$\sqrt{E_{Ab}}$
- Example:
1. $$U_{AB}=|0_A\rangle\langle 0_A|\otimes e^{-itX_B}+|1_A\rangle\langle 1_A|\otimes e^{itX_B}$$
- POVM-measurement operator: <font color=green>non-projective</font>
$$M_{A0}=\langle 0_B|U_{AB}|0_B\rangle=\sqrt{\lambda_0}\mathbb{I}_A\neq (M_{A0})^2$$
- POVE effects: <font color=red>non-informative</font> $$E_{A0}=\lambda_0\mathbb{I}_A\leftarrow\text{ independent of }\rho_A$$
2. $$U_{AB}=|0_A\rangle\langle 0_A|\otimes \mathbb{I}_B+|1_A\rangle\langle 1_A|\otimes e^{itY_B}$$
- POVM-measurement operator: <font color=green>non-projective</font>
$$M_{A0}=|0_A\rangle\langle 0_A|+\sqrt{\mu_0}|1_A\rangle\langle 1_A|\neq (M_{A0})^2$$
- POVE effects: <font color=red>informative</font> $$E_{A0}=|0_A\rangle\langle 0_A|+\mu_0|1_A\rangle\langle 1_A|\\p_{A0}=\langle 0_A|\rho_A|0_A\rangle+\mu_0\langle 1_A|\rho_A|1_A\rangle\\
\text{probability depends of }\rho_A\Rightarrow\text{ informative}$$
> ⭐️⭐️⭐️ Optimized POVM has better <font color=red>certainty</font> than projective measurement!
> i.e. more probability to measure with certainty (100%)
- **<font color=green>Pretty good measurement (PGM)</font>**
- Ensemble $\{p_i\rho_i\}$ with full-rank marginal state $\rho=\sum_i p_i\rho_i$ (all eigenvalues $\geq0$ ) has a *canonical* POVM called square-root measurement, or <font color=green>Pretty good measurement</font> $$E_i=\frac{1}{\sqrt{\rho}}p_i\rho_i\frac{1}{\sqrt{\rho}}$$
> ⭐️⭐️⭐️ Pretty good measurement: <font color=red>Optimized</font> probability of detecting *<font color=blue>unknown</font>* state
> POVM: detecting *<font color=blue>known</font>* state
- 🧐 *Can evolution in presence of coupling/correlation to an observed environment be reversed? i.e.* <font color=blue>$\mathcal{D}$</font><font color=red>$\mathcal{E}$</font>$(\rho)\stackrel{?}{=}\rho,\ \forall\ \rho$
- ❌ **No information without disturbance.**