# Quantum teleportation ### Protocol 1. The Bell state shared by $A$ and $B$ is available - $A:1/\sqrt{2}(|0_A0_B\rangle+|1_A1_B\rangle)$ - $B:1/\sqrt{2}(|0_A0_B\rangle+|1_A1_B\rangle)$ 2. $A$ interacts her qubit with the (unknown) state $|\psi\rangle$ - assume that $|\psi\rangle = \alpha|0\rangle+\beta|1\rangle$ - $\begin{aligned}A:&(\alpha|0\rangle+\beta|1\rangle)(1/\sqrt{2}(|0_A0_B\rangle+|1_A1_B\rangle))\\ \xrightarrow[]{C_1NOT_A}&1/\sqrt{2}[\alpha|0\rangle (|0_A0_B\rangle+|1_A1_B\rangle)+\beta|1\rangle(|0_A1_B\rangle+|1_A0_B\rangle)]\\ \xrightarrow[]{H_1}&1/2[\alpha(|0\rangle+|1\rangle)(|0_A0_B\rangle+|1_A1_B\rangle)+\beta(|0\rangle-|1\rangle)(|0_A1_B\rangle+|1_A0_B\rangle)]\\ =&|00_A\rangle[1/2(\alpha|0_B\rangle+\beta|1_B\rangle)]\\ +&|01_A\rangle[1/2(\alpha|1_B\rangle+\beta|0_B\rangle)]\\ +&|10_A\rangle[1/2(\alpha|0_B\rangle-\beta|1_B\rangle)]\\ +&|11_A\rangle[1/2(\alpha|1_B\rangle-\beta|0_B\rangle)]\\\end{aligned}$ 3. $A$ measures the qubits in her procession 4. $A$ sends the information of measurement outcome via a classical channel 5. Depending on $A$'s message, $B$ applies operations to his qubit and recover $|\psi\rangle$ | $A$'s outcome | $B$'s state | $B$'s operation | | :---: | :---: | :---: | | \|$00_A\rangle$ | $\alpha$\|$0\rangle+\beta$\|$1\rangle$ | | | \|$01_A\rangle$ | $\alpha$\|$1\rangle+\beta$\|$0\rangle$ | $X$ | | \|$10_A\rangle$ | $\alpha$\|$0\rangle-\beta$\|$1\rangle$ | $Z$| | \|$11_A\rangle$ | $\alpha$\|$1\rangle-\beta$\|$0\rangle$ | $X,Z$| ### Discussion - Does it allow fast-than-light communication? - **No**, $A$ needs to send the outcome information via classical channel (limited by the spped of light). - Does the protocol violate the no-cloning theorem? - **No**, at the end of the protocol, only the $B$'s qubit is in the state $|\psi\rangle$ No information of $|\psi\rangle$ is left on $A$'s qubit (only the four basis states.) - <ins>Importance</ins> of quantum teleportation: 1. fundamental property of quantum mechanics 2. used e.g. in QEC 3. measuremnt-based quantum computing 4. distribution of quantum information in quantum networks