機器學習基石&技法 - 林軒田

機器學習基石 - 林軒田

Ch1 The Learning Problem

Ch2 Learning to Answer Yes/No

Ch3 Types of Learning

Ch4 Feasibility of Learning

Ch5 Training vs Testing

Ch6 Theory of Generalization

Ch7 VC Dimension

Ch8 Noise and Error

機器學習基石上 - 延伸閱讀

Ch9 Linear Regression

Ch10 Logistic Regression

Ch11 Linear Models for Binary Classification

Ch12 Nonlinear Transformation

Ch13 Hazard of Overfitting

Ch14 Regularization

Ch15 Validation

Ch16 Three Learning Principles

機器學習基石下 - 延伸閱讀

機器學習技法 - 林軒田

Slides & Videos

Ch1 Linear SVM

Ch2 Dual Support Vector Machine

Ch3 Kernel Support Vector Machine

Ch4 Soft-Margin Support Vector Machine

Ch5 Kernel Logistic Regression

Ch6 Support Vector Regression

Ch7 Blending and Bagging

Ch8 Adaptive Boosting

Ch9 Decision Tree

Ch10 Random Forest

Ch11 Gradient Boosted Decision Tree

Ch12 Neural Network

Ch13 Deep Learning

Ch14 Radial Basis Function Network

Ch15 Matrix Factorization

Ch16 Finale

其他

Slides & Videos