--- tags: 機器學習基石上:數學篇 --- Ch3 Types of Learning === ## Content [TOC] ## [Slides & Videos](https://www.csie.ntu.edu.tw/~htlin/mooc/) ## [Learning with Different Output Space](https://www.coursera.org/learn/ntumlone-mathematicalfoundations/lecture/8Ykqy/learning-with-different-output-space) ### 較進階的問題 #### Structured Learning <!--  -->  ## [Learning with Different Data Label](https://www.coursera.org/learn/ntumlone-mathematicalfoundations/lecture/xCoo9/learning-with-different-data-label) #### Clustering 應用 - articles => topics - consumer profiles => consumer groups #### 其他 Clustering 問題 <!--  -->  - 密度分析 - 異常資料偵測 ### Semi-Supervised Learning <!--  -->  ### Reinforcement Learning <!--  -->  ## [Learning with Different Protocol](https://www.coursera.org/learn/ntumlone-mathematicalfoundations/lecture/qWVk1/learning-with-different-protocol) - Batch - 一次進一整批資料,學好 $g$,$g$就不動了 - Online Learning - PLA 的變形可以用在 Online Learning - Reinforcement Learning - Active Learning - 讓機器有問問題的能力(ex: 機器現在有這個x它不認識, 問y是多少) ## [Learning with Different Input Space](https://www.coursera.org/learn/ntumlone-mathematicalfoundations/lecture/T1w6q/learning-with-different-input-space) ### Concrete Features v.s. Raw Features  - **concrete** features:很具體的 feature,可能跟我們想要做的事情(要輸出的東西) 有關 - 實際上 concrete feature 代表一些滿複雜的、已經處理過的資訊 - 通常都帶有一些人類的智慧對這個問題的描述,我們常稱之為 domain knowledge  - **raw** features:通常比 concrete features 還要來得抽象一些,越抽象就表示對機器來說這個問題越困難 - 把 raw feature 轉換成 concrete feature 的過程,可能是人幫機器做,也可能是機器自動做 - 而人幫機器做又稱 feature engineering #### 特別困難的問題 ex: 從抽象的features中抽取出有意義的features input feature: - 使用者ID - 歌曲ID predict: - 使用者給歌曲的分數
×
Sign in
Email
Password
Forgot password
or
By clicking below, you agree to our
terms of service
.
Sign in via Facebook
Sign in via Twitter
Sign in via GitHub
Sign in via Dropbox
Sign in with Wallet
Wallet (
)
Connect another wallet
New to HackMD?
Sign up