--- tags: 機器學習基石上:數學篇 --- Ch3 Types of Learning === ## Content [TOC] ## [Slides & Videos](https://www.csie.ntu.edu.tw/~htlin/mooc/) ## [Learning with Different Output Space](https://www.coursera.org/learn/ntumlone-mathematicalfoundations/lecture/8Ykqy/learning-with-different-output-space) ### 較進階的問題 #### Structured Learning <!-- ![](https://johnnyasd12.gitbooks.io/machine-learning-ntu/content/assets/structuredLearning.jpg) --> ![](https://i.imgur.com/3VziAgd.png) ## [Learning with Different Data Label](https://www.coursera.org/learn/ntumlone-mathematicalfoundations/lecture/xCoo9/learning-with-different-data-label) #### Clustering 應用 - articles => topics - consumer profiles => consumer groups #### 其他 Clustering 問題 <!-- ![](https://johnnyasd12.gitbooks.io/machine-learning-ntu/content/assets/unsupervised01.jpg) --> ![](https://i.imgur.com/SRrm2yb.png) - 密度分析 - 異常資料偵測 ### Semi-Supervised Learning <!-- ![](https://johnnyasd12.gitbooks.io/machine-learning-ntu/content/assets/semiSupervised.jpg) --> ![](https://i.imgur.com/V8t1E9A.png) ### Reinforcement Learning <!-- ![](https://johnnyasd12.gitbooks.io/machine-learning-ntu/content/assets/reinforceLearning.jpg) --> ![](https://i.imgur.com/QERtcYW.png) ## [Learning with Different Protocol](https://www.coursera.org/learn/ntumlone-mathematicalfoundations/lecture/qWVk1/learning-with-different-protocol) - Batch - 一次進一整批資料,學好 $g$,$g$就不動了 - Online Learning - PLA 的變形可以用在 Online Learning - Reinforcement Learning - Active Learning - 讓機器有問問題的能力(ex: 機器現在有這個x它不認識, 問y是多少) ## [Learning with Different Input Space](https://www.coursera.org/learn/ntumlone-mathematicalfoundations/lecture/T1w6q/learning-with-different-input-space) ### Concrete Features v.s. Raw Features ![](https://i.imgur.com/BF1ygMf.png) - **concrete** features:很具體的 feature,可能跟我們想要做的事情(要輸出的東西) 有關 - 實際上 concrete feature 代表一些滿複雜的、已經處理過的資訊 - 通常都帶有一些人類的智慧對這個問題的描述,我們常稱之為 domain knowledge ![](https://i.imgur.com/hq2K1ci.png) - **raw** features:通常比 concrete features 還要來得抽象一些,越抽象就表示對機器來說這個問題越困難 - 把 raw feature 轉換成 concrete feature 的過程,可能是人幫機器做,也可能是機器自動做 - 而人幫機器做又稱 feature engineering #### 特別困難的問題 ex: 從抽象的features中抽取出有意義的features input feature: - 使用者ID - 歌曲ID predict: - 使用者給歌曲的分數