\(\newcommand{\trans}{^\top} \newcommand{\adj}{^{\rm adj}} \newcommand{\cof}{^{\rm cof}} \newcommand{\inp}[2]{\left\langle#1,#2\right\rangle} \newcommand{\dunion}{\mathbin{\dot\cup}} \newcommand{\bzero}{\mathbf{0}} \newcommand{\bone}{\mathbf{1}} \newcommand{\ba}{\mathbf{a}} \newcommand{\bb}{\mathbf{b}} \newcommand{\bc}{\mathbf{c}} \newcommand{\bd}{\mathbf{d}} \newcommand{\be}{\mathbf{e}} \newcommand{\bh}{\mathbf{h}} \newcommand{\bp}{\mathbf{p}} \newcommand{\bq}{\mathbf{q}} \newcommand{\br}{\mathbf{r}} \newcommand{\bx}{\mathbf{x}} \newcommand{\by}{\mathbf{y}} \newcommand{\bz}{\mathbf{z}} \newcommand{\bu}{\mathbf{u}} \newcommand{\bv}{\mathbf{v}} \newcommand{\bw}{\mathbf{w}} \newcommand{\tr}{\operatorname{tr}} \newcommand{\nul}{\operatorname{null}} \newcommand{\rank}{\operatorname{rank}} %\newcommand{\ker}{\operatorname{ker}} \newcommand{\range}{\operatorname{range}} \newcommand{\Col}{\operatorname{Col}} \newcommand{\Row}{\operatorname{Row}} \newcommand{\spec}{\operatorname{spec}} \newcommand{\vspan}{\operatorname{span}} \newcommand{\Vol}{\operatorname{Vol}} \newcommand{\sgn}{\operatorname{sgn}} \newcommand{\idmap}{\operatorname{id}} \newcommand{\am}{\operatorname{am}} \newcommand{\gm}{\operatorname{gm}} \newcommand{\mult}{\operatorname{mult}} \newcommand{\iner}{\operatorname{iner}}\)
:::info
到 :::
),並將你筆記網頁的網址寄到 jephianlin
[at]
gmail
[dot]
com
HackMD 使用 Markdown 語法,中間可以用 \(\LaTeX\) 嵌入數學符號,相關資訊如下:
\[ 數學式子 \]
,請改用 $$ 數學式子 $$
。Let \(A\) and \(B\) be two \(m\times n\) matrices such that
\[\bx\trans A\by = \bx\trans B\by\]
for any column vectors \(\bx\in\mathbb{R}^m\) and \(\by\in\mathbb{R}^n\).
Show that \(A = B\).
因為 \(\bx\) 和 \(\by\) 有無窮多個,不如就挑幾個代入看看吧。
比如說當 \(\bx = (1,0,\ldots, 0)\trans\in\mathbb{R}^m\) 且 \(\by = (1,0,\ldots, 0)\trans\in\mathbb{R}^n\) 時,我們就得到
\[\bx\trans A\by = \bx\trans B\by\]
分別是 \(A\) 和 \(B\) 的第 \(1,1\)-項,而它們相等。
用同樣的手法就可以證明兩個矩陣矩逐項相等。
令 \(A = \begin{bmatrix} a_{i,j} \end{bmatrix}\) 且 \(B = \begin{bmatrix} b_{i,j} \end{bmatrix}\)。
令 \(\bx_1,\ldots,\bx_m\) 分別為單位矩陣 \(I_m\) 的各行向量;
而 \(\by_1,\ldots,\by_n\) 分別為單位矩陣 \(I_n\) 的各行向量。
可以得到
\[a_{i,j} = \bx_i\trans A\by_j = \bx_i\trans B\by_j = b_{i,j}.\]
這表示 \(A\) 和 \(B\) 逐項相等。
or
or
By clicking below, you agree to our terms of service.
New to HackMD? Sign up
Syntax | Example | Reference | |
---|---|---|---|
# Header | Header | 基本排版 | |
- Unordered List |
|
||
1. Ordered List |
|
||
- [ ] Todo List |
|
||
> Blockquote | Blockquote |
||
**Bold font** | Bold font | ||
*Italics font* | Italics font | ||
~~Strikethrough~~ | |||
19^th^ | 19th | ||
H~2~O | H2O | ||
++Inserted text++ | Inserted text | ||
==Marked text== | Marked text | ||
[link text](https:// "title") | Link | ||
 | Image | ||
`Code` | Code |
在筆記中貼入程式碼 | |
```javascript var i = 0; ``` |
|
||
:smile: | ![]() |
Emoji list | |
{%youtube youtube_id %} | Externals | ||
$L^aT_eX$ | LaTeX | ||
:::info This is a alert area. ::: |
This is a alert area. |
On a scale of 0-10, how likely is it that you would recommend HackMD to your friends, family or business associates?
Please give us some advice and help us improve HackMD.
Do you want to remove this version name and description?
Syncing