owned this note
owned this note
Published
Linked with GitHub
# 同構

This work by Jephian Lin is licensed under a [Creative Commons Attribution 4.0 International License](http://creativecommons.org/licenses/by/4.0/).
{%hackmd 5xqeIJ7VRCGBfLtfMi0_IQ %}
```python
from linspace import random_nvspace
```
## Main idea
Let $V$ and $U$ be two vector space.
An **isomorphism** from $V$ to $U$ is a bijective linear function from $V$ to $U$.
If there is an isomorphism from $V$ to $U$, then $V$ is **isomorphic** to $U$.
Suppose $f$ is an isomorphism from $V$ to $U$.
Since $f$ a bijective function, the inverse $f^{-1}$ of $f$ exists.
One may show that $f^{-1}$ is also linear, so $V$ is isomorphic to $U$ if and only if $U$ is isomorphic to $V$.
Suppose $f$ is an isomorphism from $V$ to $U$.
If $\alpha$ is a basis of $V$, then $f(\alpha)$ is a basis of $U$, so $\dim(V) = \dim(U)$.
On the other hand, suppose $\dim(V) = \dim(U)$.
If $\alpha$ is a basis of $V$ and $\beta$ is a basis of $U$, then there is an isomorphism sending $\alpha$ to $\beta$, so $V$ and $U$ is isomorphic.
In summary, two finite-dimensional vector spaces are isomorphic if and only if they have the same dimension.
Therefore, all finite-dimensional vector spaces can be partitioned by isomorphism, and the partition is the same as the partition by the dimension.
## Side stories
- classification of isomorphic vector spaces
- equivalence relation
## Experiments
##### Exercise 1
執行以下程式碼。
判斷該向量空間的維度、並寫出一組基底。
```python
### code
set_random_seed(0)
print_ans = False
d = choice(range(21))
V = random_nvspace(d)
print(V)
if print_ans:
print("dim =", V.dim)
```
:::warning
- [x] 題目給的資訊要貼過來排好
- [x] seed(0) --> `seed(0)`
- [x] $dim = 3$ --> 其維度為 $3$,
:::
Ans:
當 `seed(0)` 時,題目給的向量空間為:
The vector space of all 3 x 3 skew-symmetric matrices.
因此其維度為 $3$,
基底為:
$$\alpha = \left\{\left(
\begin{array}{c}
1 \\
0 \\
0 \\
\end{array}
\right),
\left(
\begin{array}{c}
0 \\
1 \\
0 \\
\end{array}
\right),
\left(
\begin{array}{c}
0 \\
0 \\
1 \\
\end{array}
\right)\right\}.
$$
## Exercises
##### Exercise 2
令 $V = \operatorname{span}\{(1,1,1)\}^\perp$。
證明 $V$ 和 $\mathbb{R}^2$ 同構。
:::warning
請用定義證明
:::
**Ans:**
若 $V$ 和 $\mathbb{R}^2$ 之間存在 isomorphism,則 $V$ 和 $\mathbb{R}^2$ 之間為 isomophic。
我們知道
$$\begin{aligned}
V &= \{(x, y, z) : x + y + z = 0\} \\
&= \{(x, y, -x -y) : x, y\in\mathbb{R}\}.
\end{aligned}
$$
考慮函數 $f: V \rightarrow \mathbb{R}^2$ 定義為 $f(x,y, -x-y) = (x,y)$。
**Claim:** $f$ 線性。
我們需要證明對於 ${\bf v}, {\bf v}' \in V$, $k \in \mathbb{R}$ 以下等式成立:
1. $f({\bf v}) + f({\bf v}') = f({\bf v} + {\bf v}')$
2. $f(k{\bf v}) = kf({\bf v})$
方便起見,我們統一定義 $x, y, x', y' \in \mathbb{R}$ 使得 ${\bf v} = (x, y, -x-y), {\bf v}' = (x', y', -x'-y')$。
1.
$$
\begin{aligned}
f(\bv) + f(\bv') &= (x,y) + (x', y') \\
&=(x+x', y+y')\\
&=f(\bv + \bv')
\end{aligned}
$$
2.
$$
\begin{aligned}
f(k\bv) &= (kx,ky)\\
&=k(x, y)\\
&=kf(\bv)
\end{aligned}
$$
因此 $f$ 線性。
**Claim:** $f$ 是嵌射。
Suppose there are two different vectors $\bv_1, \bv_2 \in V$,$\bv_1 = (x_1, y_1, -x_1-y_1)$, $\bv_2 = (x_2, y_2, -x_2-y_2)$, $(x_1 \neq x_2$, $y_1 \neq y_2)$.
Then $f(\bv_1) = (x_1, y_1)$,$f(\bv_2) = (x_2, y_2)$ should be two different vectors in $\mathbb{R}^2$ as well.
Therefore, $f: V \rightarrow \mathbb{R}^2$ is injective.
**Claim:** $f$ 是映射。
設 $\bx = (x,y) \in \mathbb{R}^2$.
則我們可以製造 $p = (x, y, -x-y)$
使得 $f(p) = \bx$。
所以 $f$ 是映射.
<!--
若$V$,$\mathbb{R}^2$:space
且dim($\mathbb{R}^2$)=dim(V)=$n$
令$\alpha = \{ {\bf v}_1, \ldots, {\bf v}_n \}$=basis of $V$
$\beta = \{ {\bf u}_1, \ldots, {\bf u}_n \}$=basis of $\mathbb{R}^2$
定義$g$:$\alpha\rightarrow\beta$
$\mathbb{R}^2$的dim=2
$\mathbb{R}^2$的基底為$$\alpha = \left\{\left(
\begin{array}{c}
1 \\
0 \\
\end{array}
\right),
\left(
\begin{array}{c}
0 \\
1 \\
\end{array}
\right)\right\}$$
$V$的dim=2
dim($\mathbb{R}^2$)=dim(V)=2
則$V$和$\mathbb{R}^2$同構
-->
##### Exercise 3
證明 $\mathcal{P}_d$ 和 $\mathbb{R}^{d+1}$ 同構。
:::warning
- [x] $e_1$ --> $\be_1$ 等等
- [x] Suppose that $\mathcal{P}_d$ is isomorphic to $\mathbb{R}^{d+1}$ and that $f : \mathcal{P}_d \rightarrow \mathbb{R}^{d+1}$ is an isomorphism from $\mathcal{P}_d$ to $\mathbb{R}^{d+1}$. --> Let $f : \mathcal{P}_d \rightarrow $\mathbb{R}^{d+1}$ be a function defined as
$$
f(c_1 + c_2x + \ldots + c_{d+1}x^d) =
c_1e_1 + c_2e_2 + \ldots + c_{d+1}e_{d+1} =
\begin{bmatrix} c_1 \\ \vdots \\ c_{d+1} \end{bmatrix}.
$$
We will show $f$ is an isomorphism.
- [x] Claim 1 裡大型數學式用 `aligned` 排整齊
:::
**Ans:**
Let $\alpha = \{1, x, \ldots, x^d\}$ and $\beta = \{\be_1, \be_2, \ldots, \be_{d+1}\}$ be bases for $\mathcal{P}_d$ and $\mathbb{R}^{d+1}$.
Let $f : \mathcal{P}_d \rightarrow \mathbb{R}^{d+1}$ be a function defined as
$$
f(c_1 + c_2x + \ldots + c_{d+1}x^d) =
c_1\be_1 + c_2\be_2 + \ldots + c_{d+1}\be_{d+1} =
\begin{bmatrix} c_1 \\ \vdots \\ c_{d+1} \end{bmatrix}.
$$
We will show $f$ is an isomorphism.
**1. Claim:**
$f: U\rightarrow V$ is linear fuction.
That is,
$$\begin{aligned}
f({\bf u}_1 + {\bf u}_2) &= f({\bf u}_1) + f({\bf u}_2) \\
f(k{\bf u}) &= kf({\bf u}) \\
\end{aligned}
$$
for any vectors ${\bf u}, {\bf u}_1, {\bf u}_2\in U$ and scalar $k\in\mathbb{R}$.
Let ${\bf u}_1 = \{c_1 + c_2x + \ldots + c_{d+1}x^d\}$, ${\bf u}_2 = \{k_1 + k_2x + \ldots + k_{d+1}x^d\}$.
Then
$$\begin{aligned}
& \mathrel{\phantom{=}}f(c_1 + c_2x + \ldots + c_{d+1}x^{d} + k_1 + k_2x + \ldots + k_{d+1}x^{d}) \\
&= f((c_1+k_1) + (c_2+k_2)x + \ldots + (c_{d+1}+k_{d+1})x^{d}) \\
&= \begin{pmatrix}
c_1 + k_1\\
c_2 + k_2\\
\vdots \\
c_{d+1} + k_{d+1}
\end{pmatrix}
= \begin{pmatrix}
c_1 \\ c_2 \\ \vdots \\ c_{d+1} \\
\end{pmatrix} +
\begin{pmatrix}
k_1 \\ k_2 \\ \vdots \\ k_{d+1} \\
\end{pmatrix} \\
&= f(c_1 + c_2x + \ldots + c_{d+1}x^{d}) + f(k_1 + k_2x + \ldots + k_{d+1}x^{d}).
\end{aligned}
$$
On the other hand,
$$\begin{aligned}
f(k{\bf u})
&= f(k(c_1 + c_2x + \ldots + c_{d+1}x^{d})) \\
&= f(kc_1 + kc_2x + \ldots + kc_{d+1}x^{d}) \\
&= {\begin{pmatrix}
kc_1 \\
kc_2 \\
\vdots \\
kc_{d+1}
\end{pmatrix}} = k\begin{pmatrix}
c_1 \\ c_2 \\ \vdots \\ c_{d+1} \\
\end{pmatrix} \\
&= kf({\bf u}).
\end{aligned}
$$
**2. Claim:** $f$ is surjective.
Let $\by = (c_1,\ldots, c_{d+1}) \in \mathbb{R}^{d+1}$.
Then pick $p = c_1 + c_2x + \cdots + c_{d+1}x^d$.
Thus, we have $f(p) = \by$.
Therefore, $f$ is surjective.
<!--
Equivalently, $\operatorname{range}(f) = V$ or $\operatorname{rank}(f) = \dim(V)$.
$\operatorname{range}(f) = \mathbb{R}^{d+1}$, $\operatorname{rank}(f) = \dim(\operatorname{range}(f)) = d+1 = \dim(\mathbb{R}^{d+1})$
-->
**3. Claim:** $f$ is injective.
Equivalently, $\operatorname{ker}(f) = \{{\bf 0}\}$.
Let $p = c_1 + c_2x + \ldots + c_{d+1}x^d$.
Suppose $f(p) = \bzero$.
Since $f(p) = (c_1,\ldots, c_{d+1})$,
$f(p) = \bzero$ implies $p = 0$.
Therefore, $\ker(f) = \{0\}$ and $f$ is injective.
<!--
$f(u) = \{{\bf 0}\}$, if and only if ${\begin{pmatrix}
c_1 \\ c_2 \\ \vdots \\ c_{d+1} \\
\end{pmatrix}}$ = ${\begin{pmatrix}
0 \\ 0 \\ \vdots \\ 0 \\
\end{pmatrix}}$,
if and only if $c_1 = 0, c_2 = 0, \ldots, c_{d+1} = 0$,
if and only if ${\bf u} = \{\bf{0}\}$,
so $\operatorname{ker}(f) = \{{\bf 0}\}$.
-->
Hence, $f$ is surjective, injective and linear function.
So $f$ is an isomorphism,
and $\mathcal{P}_d$ and $\mathbb{R}^{d+1}$ are isomorphic.
##### Exercise 4
證明 $\mathcal{M}_{m,n}$ 和 $\mathbb{R}^{mn}$ 同構。
:::warning
- [x] $f({\bf M}) = (c_1, c_2, \ldots, c_{mn}) = c_1r_1 + c_2r_2 + \ldots + c_{mn}r_{mn}$ <-- $r$ 要粗體,後面還一次
- [x] 2-1 大型數式排版
:::
$Ans$
設 $\alpha = \begin{Bmatrix}
{\bf m}_{11}, &\ldots, & {\bf m}_{1j}, &\ldots, & {\bf m}_{1n},\\
\vdots &\ddots & \ddots &\ddots & \vdots\\
{\bf m}_{i1}, &\ddots, & {\bf m}_{ij}, &\ddots, & {\bf m}_{in},\\
\vdots &\ddots & \ddots &\ddots & \vdots\\
{\bf m}_{m1}, &\ldots, & {\bf m}_{mj}, &\ldots, & {\bf m}_{mn}
\end{Bmatrix}$ 為 $\mathcal{M}_{m,n}$ 之一組基底,其中 ${\bf m}_{mn}$ 代表一 $m \times n$ 矩陣中除第 $(i,j)$ 項為 $1$ 外其餘皆為 $0$ ,
與 $\beta = \{{\bf r}_1, {\bf r}_2, \ldots, {\bf r}_{mn}\}$ 為 $\mathbb{R}^{mn}$ 之標準基底。
則不難發現我們可以找到一函數 $f: \mathcal{M}_{m,n} \mapsto \mathbb{R}^{mn}$ 使 $f({\bf M})$ 之第 $(i-1) \cdot n + j$ 個分量為一給定 ${\bf M} \in \mathcal{M}_{m,n}$ 的第 $(i,j)$ 項之值,即當 ${\bf M} = c_1 \cdot {\bf m}_{11} + \ldots + c_n \cdot {\bf m}_{1n} + c_{n+1} \cdot {\bf m}_{21} + \ldots + c_{mn} \cdot {\bf m}_{mn}$ 時 $f({\bf M}) = (c_1, c_2, \ldots, c_{mn}) = c_1{\bf r}_1 + c_2{\bf r}_2 + \ldots + c_{mn}{\bf r}_{mn}$ 。\
\
1\. 證明其為對射函數
由於我們也可以很容易得找到 $f^{-1}$ ,即當 ${\bf v} \in \mathbb{R}^{mn} = c_1{\bf r}_1 + c_2{\bf r}_2 + \ldots + c_{mn}{\bf r}_{mn}$ 時 $f^{-1}({\bf v}) = c_1 \cdot {\bf m}_{11} + \ldots + c_n \cdot {\bf m}_{1n} + c_{n+1} \cdot {\bf m}_{21} + \ldots + c_{mn} \cdot {\bf m}_{mn}$ 。
因此 **$f$ 為一對射函數**。
2\. 證明其為線性函數
2-1. 對於所有 ${\bf M}, {\bf M}^{\prime} \in \mathcal{M}_{m,n}$ 都滿足 $f({\bf M} + {\bf M}^{\prime}) = f({\bf M}) + f({\bf M}^{\prime})$
由於 $\alpha$ 為 $\mathcal{M}_{m,n}$ 之一組基底,我們可以將 ${\bf M}, {\bf M}^{\prime}$ 表示成:
\begin{align}
{\bf M} = c_1 \cdot {\bf m}_{11} + \ldots + c_n \cdot {\bf m}_{1n} + c_{n+1} \cdot {\bf m}_{21} + \ldots + c_{mn} \cdot {\bf m}_{mn},\\
{\bf M}^{\prime} = c^{\prime}_1 \cdot {\bf m}_{11} + \ldots + c^{\prime}_n \cdot {\bf m}_{1n} + c^{\prime}_{n+1} \cdot {\bf m}_{21} + \ldots + c^{\prime}_{mn} \cdot {\bf m}_{mn}.
\end{align}
則
$$\begin{aligned}
f({\bf M} + {\bf M}^{\prime}) &= (c_1 + c^{\prime}_1, c_2+ c^{\prime}_2, \ldots, c_{mn}+c^{\prime}_{mn}) \\
&= (c_1, c_2, \ldots, c_{mn}) + (c^{\prime}_1, c^{\prime}_2, \ldots, c^{\prime}_{mn})\\
&=f({\bf M})+f({\bf M}^{\prime}).
\end{aligned}
$$
2-2. 對於所有 ${\bf M} \in \mathcal{M}_{m,n}, k \in \mathbb{R}$ 都滿足 $kf({\bf M}) = f(k{\bf M})$
由於 $\alpha$ 為 $\mathcal{M}_{m,n}$ 之一組基底,我們可以將 ${\bf M}$ 表示成:
$${\bf M} = c_1 \cdot {\bf m}_{11} + \ldots + c_n \cdot {\bf m}_{1n} + c_{n+1} \cdot {\bf m}_{21} + \ldots + c_{mn} \cdot {\bf m}_{mn}.
$$
則
\begin{aligned}
kf({\bf M}) &= k(c_1, c_2, \ldots, c_{mn}) \\
&= (kc_1, kc_2, \ldots, kc_{mn}) \\
&= f(k{\bf M})。
\end{aligned}
因此 **$f$ 為一線性函數**。
由於 $f: \mathcal{M}_{m,n} \mapsto \mathbb{R}^{mn}$ 為一對射線性函數,因此 $\mathcal{M}_{m,n}$ 和 $\mathbb{R}^{mn}$ 同構。
##### Exercise 5
令 $V$ 和 $U$ 為兩有限維度的向量空間。
依照以下步驟證明兩敘述等價:
1. $V$ 和 $U$ 同構。
2. $V$ 和 $U$ 的維度相同。
##### Exercise 5(a)
證明若 $f: V\rightarrow U$ 是一個對射且
$\alpha$ 是 $V$ 的一組基底﹐
則 $f(\alpha)$ 是 $U$ 的一組基底。
因此 $\dim(V) = \dim(U)$。
:::warning
這題要證明 $f(\alpha)$ 是獨立的而且 $\vspan(f(\alpha)) = U$。
:::
**Ans:**
我們要證明 $f(\alpha)$ 是 $U$ 的一組基底。
**Claim:** $f(\alpha)$ 線性獨立。
因為 $f$ 是嵌射,所以當 $\alpha$ 獨立時 $f(\alpha)$ 也是獨立。
(參考 [302-5a](https://hackmd.io/qwIw35kFT1OyWO2yJGjLfg)。)
**Claim:** $f(\alpha)$ 可以生成出 $U$。
因為 $f$ 是映射,且 $\vspan(\alpha) = V$,所以 $\vspan(f(\alpha)) = U$。
(參考 [302-5b](https://hackmd.io/qwIw35kFT1OyWO2yJGjLfg)。)
<!--
當基底的向量數量不變,$\dim()$就不會變。
又$f()$為一,所有基底的向量經過$f()$皆不會重複,意即range(V) = rank(U)
因此$dim(U) = dim(V)$。
-->
##### Exercise 5(b)
證明若 $\dim(V) = \dim(U)$、
$\alpha = \{ {\bf v}_1, \ldots, {\bf v}_n \}$ 為 $V$ 的一組基底、
$\beta = \{ {\bf u}_1, \ldots, {\bf u}_n \}$ 為 $U$ 的一組基底﹐
則存在一個線性函數符合
$$\begin{array}{rcl}
f : V & \rightarrow & U \\
{\bf v}_1 & \mapsto & {\bf u}_1 \\
& \vdots & \\
{\bf v}_n & \mapsto & {\bf u}_n \\
\end{array}
$$
且 $f$ 是對射。
:::warning
這題要把 $f$ 定義出來,並證明它是 bijection。
:::
$Ans$
我們可以定義 $f: V\rightarrow U$ 使得
$$f(c_1\bv_1 + \cdots + c_n\bv_n) = c_1\bu_1 + \cdots + c_n\bu_n.
$$
根據 [302-6](https://hackmd.io/qwIw35kFT1OyWO2yJGjLfg),$f$ 是一個定義完善的線性函數。
**Claim:** $f$ 是嵌射。
假設 $f(c_1\bv_1 + \cdots + c_n\bv_n) = c_1\bu_1 + \cdots + c_n\bu_n = \bzero$。
因為 $\beta$ 是 線性獨立,所以 $c_1 = \cdots = c_n = 0$。
因此 $c_1\bv_1 + \cdots + c_n\bv_n = \bzero$,而 $f$ 是嵌射。
**Claim:** $f$ 是映射。
由於 $c_i$ 可以是任意的數,觀察 $f$ 可發現 $\range(f)$ 裡的元素都是 $\beta$ 的線性組合。
因為 $\beta$ 可以生成整個 $U$,所以 $\range(f) = U$。
<!--
因$\alpha$、$\beta$ 為兩基底,因此並不包含任何重複的向量,且我們知$\dim(V) = \dim(U)$。
設一線性函數$f() = ax + b$,當$a≠0$,$f()$就會是一個bijection funcion,且$f({\bf v}_n) = 0$ if and only if${\bf v}_n$ = 0。
因此必存在$f()$使得${\bf v}_n$可以對應到${\bf u}_n$。
-->
##### Exercise 6
證明向量空間的同構是一個等價關係。
:::warning
這題我直接改過了。
:::
Ans:
To prove that isomorphism is an equivalence relation, we need to verify that it is reflexive, symmetric, and transitive respectively.
First of all, let the set $X$ contain all vector spaces.
**Reflexivity:**
Let $V$ be a vector space.
Define the identity function $f:V\rightarrow V$ as $f(\bx) = \bx$.
Then $f$ is an isomorphism and $V$ is isomorphic to $V$ itself.
<!--
Let $V$ be a vector space in $X$ having basis vectors ${\bf v_1}$, ${\bf v_2}$, ${\bf v_3}$, and there is a bijective linear function $f({\bf v}) = I{\bf v}$.
Then $f({\bf v_1}) = {\bf v_1}$, $({\bf v_2}) = {\bf v_2}$, $f({\bf v_3}) = {\bf v_3}$, $f$ is a identity transformation, and $V$ is isomorphic to $V$.
-->
Therefore, each vector space in $X$ is isomorphic to itself, and isomorphism is reflexive.
**Symmetry:**
Let $X$ and $Y$ be two vector spaces such that $X$ is isomorphic to $Y$.
By definition, there is an isomorphism $f: X \rightarrow Y$.
Since $f$ is an isomorphism and is bijective, $f^{-1}:Y\rightarrow X$ exists and is bijective.
One may check that $f^{-1}$ is also linear, so $f^{-1}$ is an isomorphism and $Y$ is isomorhic to $X$.
<!--
Let $V$ and $U$ be two vector spaces in $X$.
An isomorphism from $V$ to $U$ is a bijective linear function from $V$ to $U$, so $U$ is also isomorphic to $V$.
Suppose $V$ has basis vectors ${\bf v_1}$, ${\bf v_2}$, ${\bf v_3}$, $U$ has basis vectors ${\bf u_1}$, ${\bf u_2}$, ${\bf u_3}$.
Let $A$ be a invertible matrix and $f({\bf v_1}) = A{\bf v_1} = {\bf u_1}$, $f({\bf v_2}) = A{\bf v_2} = {\bf u_2}$, $f({\bf v_3}) = A{\bf v_3} = {\bf u_3}$.
Then $f^{-1}({\bf u_1}) = A^{-1}{\bf u_1} = {\bf v_1}$, $f^{-1}({\bf u_2}) = A^{-1}{\bf u_2} = {\bf v_2}$, $f^{-1}({\bf u_3}) = A^{-1}{\bf u_3} = {\bf v_3}$, $V$ is isomorphic to $U$ if and only if $U$ is isomorphic to $V$. -->
Therefore, isomorphism is symmetric.
**Transitivity:**
Suppose $V$ is isomorphic to $U$ and $U$ is isomorphic to $W$.
Then there are isomorphisms $f: V\rightarrow U$ and $g: U\rightarrow W$.
Thus, $g\circ f: V\rightarrow W$ is also an isomorphism, and $V$ is isomorphic to $W$.
<!--
Suppose there are three vector spaces in $X$, $V$ with basis vectors ${\bf v_1}$, ${\bf v_2}$, ${\bf v_3}$, $U$ with basis vectors ${\bf u_1}$, ${\bf u_2}$, ${\bf u_3}$, $W$ with basis vectors ${\bf w_1}$, ${\bf w_2}$, ${\bf w_3}$.
Let $f_1({\bf v}) = A{\bf v} = {\bf u}$, $f_2({\bf u}) = B{\bf u} = {\bf w}$ be two bijective linear function and $A$, $B$ are invertible matrices.
Suppose $f_1$ transforms the $i$th basis vector of $V$ to $i$th basis vector of $U$, and $f_2$ transforms the $i$th basis vector of $U$ to $i$th basis vector of $W$. Undoubtedly $V$ is isomorphic to $U$ and $U$ is isomorphic to $W$.
We find that $f_1(f_2({\bf v_1})) = f_1({\bf u_1}) = {\bf w_1}$, $f_1(f_2({\bf v_2})) = f_1({\bf u_2}) = {\bf w_2}$, $f_1(f_2({\bf v_3})) = f_1({\bf u_3}) = {\bf w_3}$. Then $V$ is also isomorphic to $W$.
-->
Therefore, if $V$ is isomorphic to $U$ and $U$ is isomorphic to $W$ then $V$ is isomorphic to $W$. It's proved that isomorphism is transitive.
**Conclusion:**
Since isomorphism is reflexive, symmetric, and transitive, we can conclude that it is an equivalence relation. Q.E.D
:::info
目前分數 5.5
:::