Jephian Lin
    • Create new note
    • Create a note from template
      • Sharing URL Link copied
      • /edit
      • View mode
        • Edit mode
        • View mode
        • Book mode
        • Slide mode
        Edit mode View mode Book mode Slide mode
      • Customize slides
      • Note Permission
      • Read
        • Only me
        • Signed-in users
        • Everyone
        Only me Signed-in users Everyone
      • Write
        • Only me
        • Signed-in users
        • Everyone
        Only me Signed-in users Everyone
      • Engagement control Commenting, Suggest edit, Emoji Reply
    • Invite by email
      Invitee

      This note has no invitees

    • Publish Note

      Share your work with the world Congratulations! 🎉 Your note is out in the world Publish Note

      Your note will be visible on your profile and discoverable by anyone.
      Your note is now live.
      This note is visible on your profile and discoverable online.
      Everyone on the web can find and read all notes of this public team.
      See published notes
      Unpublish note
      Please check the box to agree to the Community Guidelines.
      View profile
    • Commenting
      Permission
      Disabled Forbidden Owners Signed-in users Everyone
    • Enable
    • Permission
      • Forbidden
      • Owners
      • Signed-in users
      • Everyone
    • Suggest edit
      Permission
      Disabled Forbidden Owners Signed-in users Everyone
    • Enable
    • Permission
      • Forbidden
      • Owners
      • Signed-in users
    • Emoji Reply
    • Enable
    • Versions and GitHub Sync
    • Note settings
    • Note Insights
    • Engagement control
    • Transfer ownership
    • Delete this note
    • Save as template
    • Insert from template
    • Import from
      • Dropbox
      • Google Drive
      • Gist
      • Clipboard
    • Export to
      • Dropbox
      • Google Drive
      • Gist
    • Download
      • Markdown
      • HTML
      • Raw HTML
Menu Note settings Versions and GitHub Sync Note Insights Sharing URL Create Help
Create Create new note Create a note from template
Menu
Options
Engagement control Transfer ownership Delete this note
Import from
Dropbox Google Drive Gist Clipboard
Export to
Dropbox Google Drive Gist
Download
Markdown HTML Raw HTML
Back
Sharing URL Link copied
/edit
View mode
  • Edit mode
  • View mode
  • Book mode
  • Slide mode
Edit mode View mode Book mode Slide mode
Customize slides
Note Permission
Read
Only me
  • Only me
  • Signed-in users
  • Everyone
Only me Signed-in users Everyone
Write
Only me
  • Only me
  • Signed-in users
  • Everyone
Only me Signed-in users Everyone
Engagement control Commenting, Suggest edit, Emoji Reply
  • Invite by email
    Invitee

    This note has no invitees

  • Publish Note

    Share your work with the world Congratulations! 🎉 Your note is out in the world Publish Note

    Your note will be visible on your profile and discoverable by anyone.
    Your note is now live.
    This note is visible on your profile and discoverable online.
    Everyone on the web can find and read all notes of this public team.
    See published notes
    Unpublish note
    Please check the box to agree to the Community Guidelines.
    View profile
    Engagement control
    Commenting
    Permission
    Disabled Forbidden Owners Signed-in users Everyone
    Enable
    Permission
    • Forbidden
    • Owners
    • Signed-in users
    • Everyone
    Suggest edit
    Permission
    Disabled Forbidden Owners Signed-in users Everyone
    Enable
    Permission
    • Forbidden
    • Owners
    • Signed-in users
    Emoji Reply
    Enable
    Import from Dropbox Google Drive Gist Clipboard
       owned this note    owned this note      
    Published Linked with GitHub
    Subscribed
    • Any changes
      Be notified of any changes
    • Mention me
      Be notified of mention me
    • Unsubscribe
    Subscribe
    # 同構 ![Creative Commons License](https://i.creativecommons.org/l/by/4.0/88x31.png) This work by Jephian Lin is licensed under a [Creative Commons Attribution 4.0 International License](http://creativecommons.org/licenses/by/4.0/). {%hackmd 5xqeIJ7VRCGBfLtfMi0_IQ %} ```python from linspace import random_nvspace ``` ## Main idea Let $V$ and $U$ be two vector space. An **isomorphism** from $V$ to $U$ is a bijective linear function from $V$ to $U$. If there is an isomorphism from $V$ to $U$, then $V$ is **isomorphic** to $U$. Suppose $f$ is an isomorphism from $V$ to $U$. Since $f$ a bijective function, the inverse $f^{-1}$ of $f$ exists. One may show that $f^{-1}$ is also linear, so $V$ is isomorphic to $U$ if and only if $U$ is isomorphic to $V$. Suppose $f$ is an isomorphism from $V$ to $U$. If $\alpha$ is a basis of $V$, then $f(\alpha)$ is a basis of $U$, so $\dim(V) = \dim(U)$. On the other hand, suppose $\dim(V) = \dim(U)$. If $\alpha$ is a basis of $V$ and $\beta$ is a basis of $U$, then there is an isomorphism sending $\alpha$ to $\beta$, so $V$ and $U$ is isomorphic. In summary, two finite-dimensional vector spaces are isomorphic if and only if they have the same dimension. Therefore, all finite-dimensional vector spaces can be partitioned by isomorphism, and the partition is the same as the partition by the dimension. ## Side stories - classification of isomorphic vector spaces - equivalence relation ## Experiments ##### Exercise 1 執行以下程式碼。 判斷該向量空間的維度、並寫出一組基底。 ```python ### code set_random_seed(0) print_ans = False d = choice(range(21)) V = random_nvspace(d) print(V) if print_ans: print("dim =", V.dim) ``` :::warning - [x] 題目給的資訊要貼過來排好 - [x] seed(0) --> `seed(0)` - [x] $dim = 3$ --> 其維度為 $3$, ::: Ans: 當 `seed(0)` 時,題目給的向量空間為: The vector space of all 3 x 3 skew-symmetric matrices. 因此其維度為 $3$, 基底為: $$\alpha = \left\{\left( \begin{array}{c} 1 \\ 0 \\ 0 \\ \end{array} \right), \left( \begin{array}{c} 0 \\ 1 \\ 0 \\ \end{array} \right), \left( \begin{array}{c} 0 \\ 0 \\ 1 \\ \end{array} \right)\right\}. $$ ## Exercises ##### Exercise 2 令 $V = \operatorname{span}\{(1,1,1)\}^\perp$。 證明 $V$ 和 $\mathbb{R}^2$ 同構。 :::warning 請用定義證明 ::: **Ans:** 若 $V$ 和 $\mathbb{R}^2$ 之間存在 isomorphism,則 $V$ 和 $\mathbb{R}^2$ 之間為 isomophic。 我們知道 $$\begin{aligned} V &= \{(x, y, z) : x + y + z = 0\} \\ &= \{(x, y, -x -y) : x, y\in\mathbb{R}\}. \end{aligned} $$ 考慮函數 $f: V \rightarrow \mathbb{R}^2$ 定義為 $f(x,y, -x-y) = (x,y)$。 **Claim:** $f$ 線性。 我們需要證明對於 ${\bf v}, {\bf v}' \in V$, $k \in \mathbb{R}$ 以下等式成立: 1. $f({\bf v}) + f({\bf v}') = f({\bf v} + {\bf v}')$ 2. $f(k{\bf v}) = kf({\bf v})$ 方便起見,我們統一定義 $x, y, x', y' \in \mathbb{R}$ 使得 ${\bf v} = (x, y, -x-y), {\bf v}' = (x', y', -x'-y')$。 1. $$ \begin{aligned} f(\bv) + f(\bv') &= (x,y) + (x', y') \\ &=(x+x', y+y')\\ &=f(\bv + \bv') \end{aligned} $$ 2. $$ \begin{aligned} f(k\bv) &= (kx,ky)\\ &=k(x, y)\\ &=kf(\bv) \end{aligned} $$ 因此 $f$ 線性。 **Claim:** $f$ 是嵌射。 Suppose there are two different vectors $\bv_1, \bv_2 \in V$,$\bv_1 = (x_1, y_1, -x_1-y_1)$, $\bv_2 = (x_2, y_2, -x_2-y_2)$, $(x_1 \neq x_2$, $y_1 \neq y_2)$. Then $f(\bv_1) = (x_1, y_1)$,$f(\bv_2) = (x_2, y_2)$ should be two different vectors in $\mathbb{R}^2$ as well. Therefore, $f: V \rightarrow \mathbb{R}^2$ is injective. **Claim:** $f$ 是映射。 設 $\bx = (x,y) \in \mathbb{R}^2$. 則我們可以製造 $p = (x, y, -x-y)$ 使得 $f(p) = \bx$。 所以 $f$ 是映射. <!-- 若$V$,$\mathbb{R}^2$:space 且dim($\mathbb{R}^2$)=dim(V)=$n$ 令$\alpha = \{ {\bf v}_1, \ldots, {\bf v}_n \}$=basis of $V$ $\beta = \{ {\bf u}_1, \ldots, {\bf u}_n \}$=basis of $\mathbb{R}^2$ 定義$g$:$\alpha\rightarrow\beta$ $\mathbb{R}^2$的dim=2 $\mathbb{R}^2$的基底為$$\alpha = \left\{\left( \begin{array}{c} 1 \\ 0 \\ \end{array} \right), \left( \begin{array}{c} 0 \\ 1 \\ \end{array} \right)\right\}$$ $V$的dim=2 dim($\mathbb{R}^2$)=dim(V)=2 則$V$和$\mathbb{R}^2$同構 --> ##### Exercise 3 證明 $\mathcal{P}_d$ 和 $\mathbb{R}^{d+1}$ 同構。 :::warning - [x] $e_1$ --> $\be_1$ 等等 - [x] Suppose that $\mathcal{P}_d$ is isomorphic to $\mathbb{R}^{d+1}$ and that $f : \mathcal{P}_d \rightarrow \mathbb{R}^{d+1}$ is an isomorphism from $\mathcal{P}_d$ to $\mathbb{R}^{d+1}$. --> Let $f : \mathcal{P}_d \rightarrow $\mathbb{R}^{d+1}$ be a function defined as $$ f(c_1 + c_2x + \ldots + c_{d+1}x^d) = c_1e_1 + c_2e_2 + \ldots + c_{d+1}e_{d+1} = \begin{bmatrix} c_1 \\ \vdots \\ c_{d+1} \end{bmatrix}. $$ We will show $f$ is an isomorphism. - [x] Claim 1 裡大型數學式用 `aligned` 排整齊 ::: **Ans:** Let $\alpha = \{1, x, \ldots, x^d\}$ and $\beta = \{\be_1, \be_2, \ldots, \be_{d+1}\}$ be bases for $\mathcal{P}_d$ and $\mathbb{R}^{d+1}$. Let $f : \mathcal{P}_d \rightarrow \mathbb{R}^{d+1}$ be a function defined as $$ f(c_1 + c_2x + \ldots + c_{d+1}x^d) = c_1\be_1 + c_2\be_2 + \ldots + c_{d+1}\be_{d+1} = \begin{bmatrix} c_1 \\ \vdots \\ c_{d+1} \end{bmatrix}. $$ We will show $f$ is an isomorphism. **1. Claim:** $f: U\rightarrow V$ is linear fuction. That is, $$\begin{aligned} f({\bf u}_1 + {\bf u}_2) &= f({\bf u}_1) + f({\bf u}_2) \\ f(k{\bf u}) &= kf({\bf u}) \\ \end{aligned} $$ for any vectors ${\bf u}, {\bf u}_1, {\bf u}_2\in U$ and scalar $k\in\mathbb{R}$. Let ${\bf u}_1 = \{c_1 + c_2x + \ldots + c_{d+1}x^d\}$, ${\bf u}_2 = \{k_1 + k_2x + \ldots + k_{d+1}x^d\}$. Then $$\begin{aligned} & \mathrel{\phantom{=}}f(c_1 + c_2x + \ldots + c_{d+1}x^{d} + k_1 + k_2x + \ldots + k_{d+1}x^{d}) \\ &= f((c_1+k_1) + (c_2+k_2)x + \ldots + (c_{d+1}+k_{d+1})x^{d}) \\ &= \begin{pmatrix} c_1 + k_1\\ c_2 + k_2\\ \vdots \\ c_{d+1} + k_{d+1} \end{pmatrix} = \begin{pmatrix} c_1 \\ c_2 \\ \vdots \\ c_{d+1} \\ \end{pmatrix} + \begin{pmatrix} k_1 \\ k_2 \\ \vdots \\ k_{d+1} \\ \end{pmatrix} \\ &= f(c_1 + c_2x + \ldots + c_{d+1}x^{d}) + f(k_1 + k_2x + \ldots + k_{d+1}x^{d}). \end{aligned} $$ On the other hand, $$\begin{aligned} f(k{\bf u}) &= f(k(c_1 + c_2x + \ldots + c_{d+1}x^{d})) \\ &= f(kc_1 + kc_2x + \ldots + kc_{d+1}x^{d}) \\ &= {\begin{pmatrix} kc_1 \\ kc_2 \\ \vdots \\ kc_{d+1} \end{pmatrix}} = k\begin{pmatrix} c_1 \\ c_2 \\ \vdots \\ c_{d+1} \\ \end{pmatrix} \\ &= kf({\bf u}). \end{aligned} $$ **2. Claim:** $f$ is surjective. Let $\by = (c_1,\ldots, c_{d+1}) \in \mathbb{R}^{d+1}$. Then pick $p = c_1 + c_2x + \cdots + c_{d+1}x^d$. Thus, we have $f(p) = \by$. Therefore, $f$ is surjective. <!-- Equivalently, $\operatorname{range}(f) = V$ or $\operatorname{rank}(f) = \dim(V)$. $\operatorname{range}(f) = \mathbb{R}^{d+1}$, $\operatorname{rank}(f) = \dim(\operatorname{range}(f)) = d+1 = \dim(\mathbb{R}^{d+1})$ --> **3. Claim:** $f$ is injective. Equivalently, $\operatorname{ker}(f) = \{{\bf 0}\}$. Let $p = c_1 + c_2x + \ldots + c_{d+1}x^d$. Suppose $f(p) = \bzero$. Since $f(p) = (c_1,\ldots, c_{d+1})$, $f(p) = \bzero$ implies $p = 0$. Therefore, $\ker(f) = \{0\}$ and $f$ is injective. <!-- $f(u) = \{{\bf 0}\}$, if and only if ${\begin{pmatrix} c_1 \\ c_2 \\ \vdots \\ c_{d+1} \\ \end{pmatrix}}$ = ${\begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ \end{pmatrix}}$, if and only if $c_1 = 0, c_2 = 0, \ldots, c_{d+1} = 0$, if and only if ${\bf u} = \{\bf{0}\}$, so $\operatorname{ker}(f) = \{{\bf 0}\}$. --> Hence, $f$ is surjective, injective and linear function. So $f$ is an isomorphism, and $\mathcal{P}_d$ and $\mathbb{R}^{d+1}$ are isomorphic. ##### Exercise 4 證明 $\mathcal{M}_{m,n}$ 和 $\mathbb{R}^{mn}$ 同構。 :::warning - [x] $f({\bf M}) = (c_1, c_2, \ldots, c_{mn}) = c_1r_1 + c_2r_2 + \ldots + c_{mn}r_{mn}$ <-- $r$ 要粗體,後面還一次 - [x] 2-1 大型數式排版 ::: $Ans$ 設 $\alpha = \begin{Bmatrix} {\bf m}_{11}, &\ldots, & {\bf m}_{1j}, &\ldots, & {\bf m}_{1n},\\ \vdots &\ddots & \ddots &\ddots & \vdots\\ {\bf m}_{i1}, &\ddots, & {\bf m}_{ij}, &\ddots, & {\bf m}_{in},\\ \vdots &\ddots & \ddots &\ddots & \vdots\\ {\bf m}_{m1}, &\ldots, & {\bf m}_{mj}, &\ldots, & {\bf m}_{mn} \end{Bmatrix}$ 為 $\mathcal{M}_{m,n}$ 之一組基底,其中 ${\bf m}_{mn}$ 代表一 $m \times n$ 矩陣中除第 $(i,j)$ 項為 $1$ 外其餘皆為 $0$ , 與 $\beta = \{{\bf r}_1, {\bf r}_2, \ldots, {\bf r}_{mn}\}$ 為 $\mathbb{R}^{mn}$ 之標準基底。 則不難發現我們可以找到一函數 $f: \mathcal{M}_{m,n} \mapsto \mathbb{R}^{mn}$ 使 $f({\bf M})$ 之第 $(i-1) \cdot n + j$ 個分量為一給定 ${\bf M} \in \mathcal{M}_{m,n}$ 的第 $(i,j)$ 項之值,即當 ${\bf M} = c_1 \cdot {\bf m}_{11} + \ldots + c_n \cdot {\bf m}_{1n} + c_{n+1} \cdot {\bf m}_{21} + \ldots + c_{mn} \cdot {\bf m}_{mn}$ 時 $f({\bf M}) = (c_1, c_2, \ldots, c_{mn}) = c_1{\bf r}_1 + c_2{\bf r}_2 + \ldots + c_{mn}{\bf r}_{mn}$ 。\ \ 1\. 證明其為對射函數 由於我們也可以很容易得找到 $f^{-1}$ ,即當 ${\bf v} \in \mathbb{R}^{mn} = c_1{\bf r}_1 + c_2{\bf r}_2 + \ldots + c_{mn}{\bf r}_{mn}$ 時 $f^{-1}({\bf v}) = c_1 \cdot {\bf m}_{11} + \ldots + c_n \cdot {\bf m}_{1n} + c_{n+1} \cdot {\bf m}_{21} + \ldots + c_{mn} \cdot {\bf m}_{mn}$ 。 因此 **$f$ 為一對射函數**。 2\. 證明其為線性函數 2-1. 對於所有 ${\bf M}, {\bf M}^{\prime} \in \mathcal{M}_{m,n}$ 都滿足 $f({\bf M} + {\bf M}^{\prime}) = f({\bf M}) + f({\bf M}^{\prime})$ 由於 $\alpha$ 為 $\mathcal{M}_{m,n}$ 之一組基底,我們可以將 ${\bf M}, {\bf M}^{\prime}$ 表示成: \begin{align} {\bf M} = c_1 \cdot {\bf m}_{11} + \ldots + c_n \cdot {\bf m}_{1n} + c_{n+1} \cdot {\bf m}_{21} + \ldots + c_{mn} \cdot {\bf m}_{mn},\\ {\bf M}^{\prime} = c^{\prime}_1 \cdot {\bf m}_{11} + \ldots + c^{\prime}_n \cdot {\bf m}_{1n} + c^{\prime}_{n+1} \cdot {\bf m}_{21} + \ldots + c^{\prime}_{mn} \cdot {\bf m}_{mn}. \end{align} 則 $$\begin{aligned} f({\bf M} + {\bf M}^{\prime}) &= (c_1 + c^{\prime}_1, c_2+ c^{\prime}_2, \ldots, c_{mn}+c^{\prime}_{mn}) \\ &= (c_1, c_2, \ldots, c_{mn}) + (c^{\prime}_1, c^{\prime}_2, \ldots, c^{\prime}_{mn})\\ &=f({\bf M})+f({\bf M}^{\prime}). \end{aligned} $$ 2-2. 對於所有 ${\bf M} \in \mathcal{M}_{m,n}, k \in \mathbb{R}$ 都滿足 $kf({\bf M}) = f(k{\bf M})$ 由於 $\alpha$ 為 $\mathcal{M}_{m,n}$ 之一組基底,我們可以將 ${\bf M}$ 表示成: $${\bf M} = c_1 \cdot {\bf m}_{11} + \ldots + c_n \cdot {\bf m}_{1n} + c_{n+1} \cdot {\bf m}_{21} + \ldots + c_{mn} \cdot {\bf m}_{mn}. $$ 則 \begin{aligned} kf({\bf M}) &= k(c_1, c_2, \ldots, c_{mn}) \\ &= (kc_1, kc_2, \ldots, kc_{mn}) \\ &= f(k{\bf M})。 \end{aligned} 因此 **$f$ 為一線性函數**。 由於 $f: \mathcal{M}_{m,n} \mapsto \mathbb{R}^{mn}$ 為一對射線性函數,因此 $\mathcal{M}_{m,n}$ 和 $\mathbb{R}^{mn}$ 同構。 ##### Exercise 5 令 $V$ 和 $U$ 為兩有限維度的向量空間。 依照以下步驟證明兩敘述等價: 1. $V$ 和 $U$ 同構。 2. $V$ 和 $U$ 的維度相同。 ##### Exercise 5(a) 證明若 $f: V\rightarrow U$ 是一個對射且 $\alpha$ 是 $V$ 的一組基底﹐ 則 $f(\alpha)$ 是 $U$ 的一組基底。 因此 $\dim(V) = \dim(U)$。 :::warning 這題要證明 $f(\alpha)$ 是獨立的而且 $\vspan(f(\alpha)) = U$。 ::: **Ans:** 我們要證明 $f(\alpha)$ 是 $U$ 的一組基底。 **Claim:** $f(\alpha)$ 線性獨立。 因為 $f$ 是嵌射,所以當 $\alpha$ 獨立時 $f(\alpha)$ 也是獨立。 (參考 [302-5a](https://hackmd.io/qwIw35kFT1OyWO2yJGjLfg)。) **Claim:** $f(\alpha)$ 可以生成出 $U$。 因為 $f$ 是映射,且 $\vspan(\alpha) = V$,所以 $\vspan(f(\alpha)) = U$。 (參考 [302-5b](https://hackmd.io/qwIw35kFT1OyWO2yJGjLfg)。) <!-- 當基底的向量數量不變,$\dim()$就不會變。 又$f()$為一,所有基底的向量經過$f()$皆不會重複,意即range(V) = rank(U) 因此$dim(U) = dim(V)$。 --> ##### Exercise 5(b) 證明若 $\dim(V) = \dim(U)$、 $\alpha = \{ {\bf v}_1, \ldots, {\bf v}_n \}$ 為 $V$ 的一組基底、 $\beta = \{ {\bf u}_1, \ldots, {\bf u}_n \}$ 為 $U$ 的一組基底﹐ 則存在一個線性函數符合 $$\begin{array}{rcl} f : V & \rightarrow & U \\ {\bf v}_1 & \mapsto & {\bf u}_1 \\ & \vdots & \\ {\bf v}_n & \mapsto & {\bf u}_n \\ \end{array} $$ 且 $f$ 是對射。 :::warning 這題要把 $f$ 定義出來,並證明它是 bijection。 ::: $Ans$ 我們可以定義 $f: V\rightarrow U$ 使得 $$f(c_1\bv_1 + \cdots + c_n\bv_n) = c_1\bu_1 + \cdots + c_n\bu_n. $$ 根據 [302-6](https://hackmd.io/qwIw35kFT1OyWO2yJGjLfg),$f$ 是一個定義完善的線性函數。 **Claim:** $f$ 是嵌射。 假設 $f(c_1\bv_1 + \cdots + c_n\bv_n) = c_1\bu_1 + \cdots + c_n\bu_n = \bzero$。 因為 $\beta$ 是 線性獨立,所以 $c_1 = \cdots = c_n = 0$。 因此 $c_1\bv_1 + \cdots + c_n\bv_n = \bzero$,而 $f$ 是嵌射。 **Claim:** $f$ 是映射。 由於 $c_i$ 可以是任意的數,觀察 $f$ 可發現 $\range(f)$ 裡的元素都是 $\beta$ 的線性組合。 因為 $\beta$ 可以生成整個 $U$,所以 $\range(f) = U$。 <!-- 因$\alpha$、$\beta$ 為兩基底,因此並不包含任何重複的向量,且我們知$\dim(V) = \dim(U)$。 設一線性函數$f() = ax + b$,當$a≠0$,$f()$就會是一個bijection funcion,且$f({\bf v}_n) = 0$ if and only if${\bf v}_n$ = 0。 因此必存在$f()$使得${\bf v}_n$可以對應到${\bf u}_n$。 --> ##### Exercise 6 證明向量空間的同構是一個等價關係。 :::warning 這題我直接改過了。 ::: Ans: To prove that isomorphism is an equivalence relation, we need to verify that it is reflexive, symmetric, and transitive respectively. First of all, let the set $X$ contain all vector spaces. **Reflexivity:** Let $V$ be a vector space. Define the identity function $f:V\rightarrow V$ as $f(\bx) = \bx$. Then $f$ is an isomorphism and $V$ is isomorphic to $V$ itself. <!-- Let $V$ be a vector space in $X$ having basis vectors ${\bf v_1}$, ${\bf v_2}$, ${\bf v_3}$, and there is a bijective linear function $f({\bf v}) = I{\bf v}$. Then $f({\bf v_1}) = {\bf v_1}$, $({\bf v_2}) = {\bf v_2}$, $f({\bf v_3}) = {\bf v_3}$, $f$ is a identity transformation, and $V$ is isomorphic to $V$. --> Therefore, each vector space in $X$ is isomorphic to itself, and isomorphism is reflexive. **Symmetry:** Let $X$ and $Y$ be two vector spaces such that $X$ is isomorphic to $Y$. By definition, there is an isomorphism $f: X \rightarrow Y$. Since $f$ is an isomorphism and is bijective, $f^{-1}:Y\rightarrow X$ exists and is bijective. One may check that $f^{-1}$ is also linear, so $f^{-1}$ is an isomorphism and $Y$ is isomorhic to $X$. <!-- Let $V$ and $U$ be two vector spaces in $X$. An isomorphism from $V$ to $U$ is a bijective linear function from $V$ to $U$, so $U$ is also isomorphic to $V$. Suppose $V$ has basis vectors ${\bf v_1}$, ${\bf v_2}$, ${\bf v_3}$, $U$ has basis vectors ${\bf u_1}$, ${\bf u_2}$, ${\bf u_3}$. Let $A$ be a invertible matrix and $f({\bf v_1}) = A{\bf v_1} = {\bf u_1}$, $f({\bf v_2}) = A{\bf v_2} = {\bf u_2}$, $f({\bf v_3}) = A{\bf v_3} = {\bf u_3}$. Then $f^{-1}({\bf u_1}) = A^{-1}{\bf u_1} = {\bf v_1}$, $f^{-1}({\bf u_2}) = A^{-1}{\bf u_2} = {\bf v_2}$, $f^{-1}({\bf u_3}) = A^{-1}{\bf u_3} = {\bf v_3}$, $V$ is isomorphic to $U$ if and only if $U$ is isomorphic to $V$. --> Therefore, isomorphism is symmetric. **Transitivity:** Suppose $V$ is isomorphic to $U$ and $U$ is isomorphic to $W$. Then there are isomorphisms $f: V\rightarrow U$ and $g: U\rightarrow W$. Thus, $g\circ f: V\rightarrow W$ is also an isomorphism, and $V$ is isomorphic to $W$. <!-- Suppose there are three vector spaces in $X$, $V$ with basis vectors ${\bf v_1}$, ${\bf v_2}$, ${\bf v_3}$, $U$ with basis vectors ${\bf u_1}$, ${\bf u_2}$, ${\bf u_3}$, $W$ with basis vectors ${\bf w_1}$, ${\bf w_2}$, ${\bf w_3}$. Let $f_1({\bf v}) = A{\bf v} = {\bf u}$, $f_2({\bf u}) = B{\bf u} = {\bf w}$ be two bijective linear function and $A$, $B$ are invertible matrices. Suppose $f_1$ transforms the $i$th basis vector of $V$ to $i$th basis vector of $U$, and $f_2$ transforms the $i$th basis vector of $U$ to $i$th basis vector of $W$. Undoubtedly $V$ is isomorphic to $U$ and $U$ is isomorphic to $W$. We find that $f_1(f_2({\bf v_1})) = f_1({\bf u_1}) = {\bf w_1}$, $f_1(f_2({\bf v_2})) = f_1({\bf u_2}) = {\bf w_2}$, $f_1(f_2({\bf v_3})) = f_1({\bf u_3}) = {\bf w_3}$. Then $V$ is also isomorphic to $W$. --> Therefore, if $V$ is isomorphic to $U$ and $U$ is isomorphic to $W$ then $V$ is isomorphic to $W$. It's proved that isomorphism is transitive. **Conclusion:** Since isomorphism is reflexive, symmetric, and transitive, we can conclude that it is an equivalence relation. Q.E.D :::info 目前分數 5.5 :::

    Import from clipboard

    Paste your markdown or webpage here...

    Advanced permission required

    Your current role can only read. Ask the system administrator to acquire write and comment permission.

    This team is disabled

    Sorry, this team is disabled. You can't edit this note.

    This note is locked

    Sorry, only owner can edit this note.

    Reach the limit

    Sorry, you've reached the max length this note can be.
    Please reduce the content or divide it to more notes, thank you!

    Import from Gist

    Import from Snippet

    or

    Export to Snippet

    Are you sure?

    Do you really want to delete this note?
    All users will lose their connection.

    Create a note from template

    Create a note from template

    Oops...
    This template has been removed or transferred.
    Upgrade
    All
    • All
    • Team
    No template.

    Create a template

    Upgrade

    Delete template

    Do you really want to delete this template?
    Turn this template into a regular note and keep its content, versions, and comments.

    This page need refresh

    You have an incompatible client version.
    Refresh to update.
    New version available!
    See releases notes here
    Refresh to enjoy new features.
    Your user state has changed.
    Refresh to load new user state.

    Sign in

    Forgot password

    or

    By clicking below, you agree to our terms of service.

    Sign in via Facebook Sign in via Twitter Sign in via GitHub Sign in via Dropbox Sign in with Wallet
    Wallet ( )
    Connect another wallet

    New to HackMD? Sign up

    Help

    • English
    • 中文
    • Français
    • Deutsch
    • 日本語
    • Español
    • Català
    • Ελληνικά
    • Português
    • italiano
    • Türkçe
    • Русский
    • Nederlands
    • hrvatski jezik
    • język polski
    • Українська
    • हिन्दी
    • svenska
    • Esperanto
    • dansk

    Documents

    Help & Tutorial

    How to use Book mode

    Slide Example

    API Docs

    Edit in VSCode

    Install browser extension

    Contacts

    Feedback

    Discord

    Send us email

    Resources

    Releases

    Pricing

    Blog

    Policy

    Terms

    Privacy

    Cheatsheet

    Syntax Example Reference
    # Header Header 基本排版
    - Unordered List
    • Unordered List
    1. Ordered List
    1. Ordered List
    - [ ] Todo List
    • Todo List
    > Blockquote
    Blockquote
    **Bold font** Bold font
    *Italics font* Italics font
    ~~Strikethrough~~ Strikethrough
    19^th^ 19th
    H~2~O H2O
    ++Inserted text++ Inserted text
    ==Marked text== Marked text
    [link text](https:// "title") Link
    ![image alt](https:// "title") Image
    `Code` Code 在筆記中貼入程式碼
    ```javascript
    var i = 0;
    ```
    var i = 0;
    :smile: :smile: Emoji list
    {%youtube youtube_id %} Externals
    $L^aT_eX$ LaTeX
    :::info
    This is a alert area.
    :::

    This is a alert area.

    Versions and GitHub Sync
    Get Full History Access

    • Edit version name
    • Delete

    revision author avatar     named on  

    More Less

    Note content is identical to the latest version.
    Compare
      Choose a version
      No search result
      Version not found
    Sign in to link this note to GitHub
    Learn more
    This note is not linked with GitHub
     

    Feedback

    Submission failed, please try again

    Thanks for your support.

    On a scale of 0-10, how likely is it that you would recommend HackMD to your friends, family or business associates?

    Please give us some advice and help us improve HackMD.

     

    Thanks for your feedback

    Remove version name

    Do you want to remove this version name and description?

    Transfer ownership

    Transfer to
      Warning: is a public team. If you transfer note to this team, everyone on the web can find and read this note.

        Link with GitHub

        Please authorize HackMD on GitHub
        • Please sign in to GitHub and install the HackMD app on your GitHub repo.
        • HackMD links with GitHub through a GitHub App. You can choose which repo to install our App.
        Learn more  Sign in to GitHub

        Push the note to GitHub Push to GitHub Pull a file from GitHub

          Authorize again
         

        Choose which file to push to

        Select repo
        Refresh Authorize more repos
        Select branch
        Select file
        Select branch
        Choose version(s) to push
        • Save a new version and push
        • Choose from existing versions
        Include title and tags
        Available push count

        Pull from GitHub

         
        File from GitHub
        File from HackMD

        GitHub Link Settings

        File linked

        Linked by
        File path
        Last synced branch
        Available push count

        Danger Zone

        Unlink
        You will no longer receive notification when GitHub file changes after unlink.

        Syncing

        Push failed

        Push successfully