Jephian Lin
    • Create new note
    • Create a note from template
      • Sharing URL Link copied
      • /edit
      • View mode
        • Edit mode
        • View mode
        • Book mode
        • Slide mode
        Edit mode View mode Book mode Slide mode
      • Customize slides
      • Note Permission
      • Read
        • Only me
        • Signed-in users
        • Everyone
        Only me Signed-in users Everyone
      • Write
        • Only me
        • Signed-in users
        • Everyone
        Only me Signed-in users Everyone
      • Engagement control Commenting, Suggest edit, Emoji Reply
    • Invite by email
      Invitee

      This note has no invitees

    • Publish Note

      Share your work with the world Congratulations! 🎉 Your note is out in the world Publish Note

      Your note will be visible on your profile and discoverable by anyone.
      Your note is now live.
      This note is visible on your profile and discoverable online.
      Everyone on the web can find and read all notes of this public team.
      See published notes
      Unpublish note
      Please check the box to agree to the Community Guidelines.
      View profile
    • Commenting
      Permission
      Disabled Forbidden Owners Signed-in users Everyone
    • Enable
    • Permission
      • Forbidden
      • Owners
      • Signed-in users
      • Everyone
    • Suggest edit
      Permission
      Disabled Forbidden Owners Signed-in users Everyone
    • Enable
    • Permission
      • Forbidden
      • Owners
      • Signed-in users
    • Emoji Reply
    • Enable
    • Versions and GitHub Sync
    • Note settings
    • Note Insights
    • Engagement control
    • Transfer ownership
    • Delete this note
    • Save as template
    • Insert from template
    • Import from
      • Dropbox
      • Google Drive
      • Gist
      • Clipboard
    • Export to
      • Dropbox
      • Google Drive
      • Gist
    • Download
      • Markdown
      • HTML
      • Raw HTML
Menu Note settings Versions and GitHub Sync Note Insights Sharing URL Create Help
Create Create new note Create a note from template
Menu
Options
Engagement control Transfer ownership Delete this note
Import from
Dropbox Google Drive Gist Clipboard
Export to
Dropbox Google Drive Gist
Download
Markdown HTML Raw HTML
Back
Sharing URL Link copied
/edit
View mode
  • Edit mode
  • View mode
  • Book mode
  • Slide mode
Edit mode View mode Book mode Slide mode
Customize slides
Note Permission
Read
Only me
  • Only me
  • Signed-in users
  • Everyone
Only me Signed-in users Everyone
Write
Only me
  • Only me
  • Signed-in users
  • Everyone
Only me Signed-in users Everyone
Engagement control Commenting, Suggest edit, Emoji Reply
  • Invite by email
    Invitee

    This note has no invitees

  • Publish Note

    Share your work with the world Congratulations! 🎉 Your note is out in the world Publish Note

    Your note will be visible on your profile and discoverable by anyone.
    Your note is now live.
    This note is visible on your profile and discoverable online.
    Everyone on the web can find and read all notes of this public team.
    See published notes
    Unpublish note
    Please check the box to agree to the Community Guidelines.
    View profile
    Engagement control
    Commenting
    Permission
    Disabled Forbidden Owners Signed-in users Everyone
    Enable
    Permission
    • Forbidden
    • Owners
    • Signed-in users
    • Everyone
    Suggest edit
    Permission
    Disabled Forbidden Owners Signed-in users Everyone
    Enable
    Permission
    • Forbidden
    • Owners
    • Signed-in users
    Emoji Reply
    Enable
    Import from Dropbox Google Drive Gist Clipboard
       owned this note    owned this note      
    Published Linked with GitHub
    Subscribed
    • Any changes
      Be notified of any changes
    • Mention me
      Be notified of mention me
    • Unsubscribe
    Subscribe
    # 線性函數 ![Creative Commons License](https://i.creativecommons.org/l/by/4.0/88x31.png) This work by Jephian Lin is licensed under a [Creative Commons Attribution 4.0 International License](http://creativecommons.org/licenses/by/4.0/). {%hackmd 5xqeIJ7VRCGBfLtfMi0_IQ %} ```python from lingeo import random_good_matrix, kernel_matrix ``` ## Main idea Let $U$ and $V$ be two vector spaces. A function $f: U\rightarrow V$ is **linear** if $$\begin{aligned} f({\bf u}_1 + {\bf u}_2) &= f({\bf u}_1) + f({\bf u}_2) \\ f(k{\bf u}) &= kf({\bf u}) \\ \end{aligned} $$ for any vectors ${\bf u}, {\bf u}_1, {\bf u}_2\in U$ and scalar $k\in\mathbb{R}$. Let $f : U \rightarrow V$ be a linear function. The **kernel** of $f$ is $\operatorname{ker}(f) = \{{\bf u}\in U: f({\bf u}) = {\bf 0}\}$. Recall that $\operatorname{range}(f) = \{ f({\bf u}) : {\bf u}\in U \}$. Indeed, $\operatorname{ker}(f)$ is a subspace of $U$ and $\operatorname{range}(f)$ is a subspace of $V$. Thus, we define the **rank** of $f$ as $\operatorname{rank}(f) = \dim(\operatorname{range}(f))$ and the **nullity** of $f$ as $\operatorname{null}(f) = \dim(\operatorname{ker}(f))$. From the definition, $f$ is surjective if and only if $\operatorname{range}(f) = V$, or, equivalently, $\operatorname{rank}(f) = \dim(V)$. On the other hand, it is also known that $f$ is injective if and only if $\operatorname{ker}(f) = \{{\bf 0}\}$, or, equivalently, $\operatorname{null}(f) = 0$. Thanks to the structure of a linear function, the function values of a basis of $U$ is enough to determine the function. Let $\beta = \{{\bf u}_1, \ldots, {\bf u}_n\}$ be a basis of $U$ and $f : U\rightarrow V$ a linear function. If $f({\bf u}_1) = {\bf v}_1$, $\ldots$, $f({\bf u}_n) = {\bf v}_n$, then $$f(c_1{\bf u}_1 + \cdots + c_n{\bf u}_n) = c_1{\bf v}_1 + \cdots + c_n{\bf v}_n $$ is uniquely determined, since every vector ${\bf u}$ can be written as a linear combinatoin $c_1{\bf u}_1 + \cdots + c_m{\bf u}_m$ of $\beta$ for some $c_1,\ldots, c_n\in\mathbb{R}$. ## Side stories - basis of the range ## Experiments ##### Exercise 1 執行以下程式碼。 假設已知 $f$ 為一從 $\mathbb{R}^3$ 到 $\mathbb{R}^4$ 的線性函數。 令 $\beta = \{{\bf e}_1, {\bf e}_2, {\bf e}_3\}$ 為 $I_3$ 的行向量集合﹐其為 $\mathbb{R}^3$ 的基底。 ```python ### code set_random_seed(0) print_ans = False m,n,r = 4,3,2 A = random_good_matrix(m,n,r) for i in range(n): print("f(e%s) ="%(i+1), A.column(i)) if print_ans: print("f(3e1 + 2e2) = 3f(e1) + 2f(e2) =", 3*A.column(0) + 2*A.column(1)) print("To make f(u) = 0 for some nonzero u, one may choose u =", kernel_matrix(A).column(0)) print("A =") show(A) ``` ##### Exercise 1(a) 求 $f(3{\bf e}_1 + 2{\bf e}_2)$。 $Ans:$ 因為 $f$ 為線性函數, 所以 $f(3{\bf e}_1 + 2{\bf e}_2)=f(3{\bf e}_1)+f(2{\bf e}_2)=3f({\bf e}_1)+2f ({\bf e}_2)$。 而 $f({\bf e}_1)=(1,-5,15,-12)、f({\bf e}_2)=(-5,26,-78,63)$, 則 $f(3{\bf e}_1 + 2{\bf e}_2)=3f({\bf e}_1)+2f ({\bf e}_2)=(-7,37,-111,90)$。 ##### Exercise 1(b) :::warning - [x] 所以矩陣 後面的 $A{\bf x}=f({\bf x})$ 拿掉,還有 $f(\beta)$ 拿掉($f$ 代入一個集合出來是一個集合,不會是矩陣。) - [x] 最後面常數和等號不用粗體 ::: 求 $\mathbb{R}^3$ 中的一個非零向量 ${\bf u}$ 使得 $f({\bf u}) = {\bf 0}$。 $Ans:$ 令 $f({\bf x}) = A{\bf x}$, 根據題目 $f({\bf u}) = {\bf 0}$ ,所以 $A{\bf u} = {\bf 0}$ ,也就是 $\ker({A}) = {\bf 0}$ 因為條件 $\beta = \{{\bf e}_1, {\bf e}_2, {\bf e}_3\}$ 為 $I_3$ 的行向量集合, 且 $f({\bf e}_1)=(1,-5,15,-12)、f({\bf e}_2)=(-5,26,-78,63)、f({\bf e}_3)=(-22,115,-345,279)$, 所以矩陣 $$AI_3 =\begin{bmatrix} 1 & -5 & -22\\ -5 & 26 & 115\\ 15 & -78 & -345\\ -12 & 63 & 279 \end{bmatrix} = A。 $$ 找到矩陣 $A$ 的最簡階梯形式 $R = \begin{bmatrix} 1 & 0 & 3\\ 0 & 1 & 5\\ 0 & 0 & 0\\ 0 & 0 & 0 \end{bmatrix}$。 將自由變數設為 $1$ 可以找到 $A{\bf u} = 0$ 的其中一個解 ${\bf u} = (-3,-5,1)$。 ##### Exercise 1(c) 找一個矩陣 $A$ 使得對所有向量 ${\bf u}\in\mathbb{R}^3$ 都有 $f({\bf u}) = A{\bf u}$。 :::warning - [x] 同上題 ::: $Ans:$ 因為條件 $\beta = \{{\bf e}_1, {\bf e}_2, {\bf e}_3\}$ 為 $I_3$ 的行向量集合, 且 $f({\bf e}_1)=(1,-5,15,-12)、f({\bf e}_2)=(-5,26,-78,63)、f({\bf e}_3)=(-22,115,-345,279)$。 所以矩陣 $AI_3=\begin{bmatrix} 1 & -5 & -22\\ -5 & 26 & 115\\ 15 & -78 & -345\\ -12 & 63 & 279 \end{bmatrix} = A$。 ## Exercises ##### Exercise 2 判斷以下函數是否線性。 :::warning - [x] 向量粗體,不要在上面加箭頭 - [x] 實數是 $\mathbb{R}$ - [x] 注意空格 ::: 如函數為線性,有以下特性: For any ${\bf u}_1, {\bf u}_2 \in U$ , $f({\bf u}_1+{\bf u}_2)=f({\bf u}_1)+f({\bf u}_2)$ and for any $k \in \mathbb{R}$ , $f(k{\bf u})=kf({\bf u})$. ##### Exercise 2(a) 判斷 $f: \mathbb{R}\rightarrow\mathbb{R}$ 且 $f(x) = 3x + 5$ 是否線性。 :::warning - [x] 句子邏輯 因為 ... 所以 ... 請敘述完整 ::: $Ans:$ 因為 $f(kx) = 3kx + 5$,而 $kf(x) = 3kx + 5k$,所以 $f(kx) \neq kf(x)$。 故 $f$ 不為線性。 ##### Exercise 2(b) 判斷 $f: \mathbb{R}\rightarrow\mathbb{R}$ 且 $f(x) = 3x$ 是否線性。 $Ans:$ 因為 $f(kx) = 3kx = kf(x)$ 而且 $f(x_1+x_2) = 3x_1 + 3x_2 = f(x_1) + f(x_2)$,滿足定義, 故 $f$ 為線性。 ##### Exercise 2(c) 判斷 $f: \mathbb{R}\rightarrow\mathbb{R}$ 且 $f(x) = x^2$ 是否線性。 :::warning - [x] 後面加上 $\neq f(x_1) + f(x_2)$ ::: $Ans:$ 因為 $f(x_1 + x_2) = (x_1 + x_2)^2 = x_1^2 + x_2^2 + 2x_1x_2 = f(x_1)+f(x_2)+2x_1x_2$, 得到 $f(x_1+x_2)\neq f(x_1) + f(x_2)$, 故 $f$ 不為線性。 ##### Exercise 2(d) 判斷 $f: \mathbb{R}^2\rightarrow\mathbb{R}$ 且 $f(x,y) = x^2 + y^2$ 是否線性。 :::warning - [x] 句子邏輯 因為 ... 所以 ... 請敘述完整 ::: $Ans:$ 因為 $f(kx,ky) = k^2x^2 + k^2y^2$ , 而 $kf(x,y) = kx^2 + ky^2$, 得到 $kf(x,y) \neq f(kx,ky)$, 故 $f$ 不為線性。 ##### Exercise 2(e) 判斷 $f: \mathbb{R}^2\rightarrow\mathbb{R}$ 且 $f(x,y) = 3x + 2y$ 是否線性。 :::warning - [x] 式子太長用 `aligned` 整理好 ::: $Ans:$ 因為 $kf(x,y) = 3kx + 2ky = f(kx,ky)$ 且 $$\begin{align} f(x_1 + x_2,y_1 + y_2) & = 3(x_1 + x_2) + 2(y_1 + y_2) \\ & = 3x_1 + 3x_2 + 2y_1 + 2y_2 \\ & = f(x_1,y_1) + f(x_2,y_2), \end{align} $$ 滿足定義。 故 $f$ 為線性。 ##### Exercise 2(f) 判斷 $f: \mathbb{R}^2\rightarrow\mathbb{R}$ 且 $f(x,y) = 3x + 2y + 1$ 是否線性。 $Ans:$ 因為 $kf(x,y) = 3kx + 2ky + k \neq f(kx,ky)$, 故 $f$ 不為線性。 ##### Exercise 3 令 ${\bf u}_1, {\bf u}_2, {\bf u}_3$ 為 $U$ 中的向量﹐ 已知 $f$ 為從 $U$ 到 $\mathbb{R}^4$ 的線性函數且 $$\begin{aligned} f({\bf u}_1) &= (1,1,1,1) \\ f({\bf u}_2) &= (1,2,3,4) \\ f({\bf u}_3) &= (4,3,2,1) \\ \end{aligned} $$ 求 $f(3{\bf u}_1 + 2{\bf u}_2 + 2{\bf u}_3)$。 :::warning - [x] 用 `aligned` 整理 ::: $Ans:$ 因為 $f$ 為線性函數, 所以 $$\begin{aligned} f(3{\bf u}_1 + 2{\bf u}_2 + 2{\bf u}_3) &= f(3{\bf u}_1)+f(2{\bf u}_2)+f(2{\bf u}_3) \\ &= 3f({\bf u}_1)+2f({\bf u}_2)+2f({\bf u}_3) \\ &=(13,13,13,13). \end{aligned} $$ ##### Exercise 4 令 $f: U\rightarrow V$ 為一線性函數。 證明以下敘述等價: 1. $f$ is injective. 2. $\operatorname{ker}(f) = \{ {\bf 0} \}$. 3. $\operatorname{null}(f) = 0$. :::warning - [x] $1. \rightarrow 2.$ --> $1. \implies 2.$ - [x] 用句末兩個空格換行,空一行是拿來換段的 - [x] 向量用粗體,不要用箭頭那個 - [x] 把 $\times$ 改成 $\cdot$ - [x] 敘述中不要用 $\implies$,用中文講敘述 ::: $Ans:$ 證明 $1.$ 和 $2.$ 等價: $1. \implies 2.$ 若存在 ${\bf v} \in \ker(f)$ 且 ${\bf v} \neq {\bf 0}$, 則 $f({\bf v}) = {\bf 0}$。 同時 $f({\bf 0}) = f(0 \cdot {\bf 0}) = 0 \cdot f({\bf 0}) = {\bf 0}$, 所以 ${\bf v} \neq {\bf 0}$ 且 $f({\bf v}) = f({\bf 0})$, 得到 $f$ 不為嵌射的線性函數。 $2. \implies 1.$ 若 ${\bf u_1} \neq {\bf u_2} \in U$, 則 ${\bf u_1} -{\bf u_2} \neq {\bf 0}$。 因為 $\ker(f) = {\bf 0}$, 所以 $f({\bf u_1} - {\bf u_2}) \neq {\bf 0}$。 因此可以知道 $f({\bf u_1}) \neq f({\bf u_2})$, 得到 $f$ 為嵌射的線性函數。 故 $1.$ 和 $2.$ 等價。 而根據線性函數定義 $\operatorname{null}(f) = \operatorname{dim}(\ker(f))$, 所以當 $\ker(f) = {0}$ 時 $\operatorname{null}(f) = 0$, 得到 $2.$ 和 $3.$ 等價。 因為 $1.$ 和 $2.$ 等價且 $2.$ 和 $3.$ 也等價, 故 $1.$, $2.$, $3.$ 互為等價。 ##### Exercise 5 嵌射顧名思義有點像是把定義域嵌入到對應域之中﹐所以很多性質都會被保留下來。 ##### Exercise 5(a) 令 $f: U\rightarrow V$ 為一線性函數。 證明若 $f$ 是嵌射且 $\alpha = \{{\bf u}_1,\ldots,{\bf u}_k\}$ 為 $U$ 中的一線性獨立集﹐ 則 $f(\alpha)$ 是 $V$ 中的一線性獨立集。 :::warning - [x] 標點 - [x] 向量用粗體,不要箭頭 - [x] 則 ... --> 因為 $f$ 線性,所以 ... - [x] 所以 $c_1 = \cdots =$... ::: 令 $c_1f({\bf u}_1) + \cdots +c_kf({\bf u}_k) = \bf0$。 因為 $f$ 線性,所以 $f(c_1{\bf u}_1 + \cdots + c_k\bu_k) = \bf0$。 因為 $f$ 為嵌射,由上一題我們知道 $\ker(f) = \{ \bzero \}$, 所以 $c_1\bu_1 + \cdots + c_k{\bf u}_k = \bf0$。 因為 $\alpha$ 獨立,所以 $c_1 = \cdots = c_k = 0$。 因此 $f(\alpha)$ 是 $V$ 中的一線性獨立集。 ##### Exercise 5(b) 令 $f: U\rightarrow V$ 為一線性函數。 證明若 $f$ 是嵌射且 $\alpha = \{{\bf u}_1,\ldots,{\bf u}_k\}$ 為 $U$ 的一組基底﹐ 則 $f(\alpha)$ 是 $\operatorname{range}(f)$ 的一組基底。 :::warning - [x] $span$ --> $\vspan$ - [x] 標點 - [x] 向量用粗體 - [x] 用敘述取代 $\implies$ ::: 1. $f(\alpha)$ 是獨立 2. 檢查 $\vspan(f(\alpha)) = \operatorname{range}(f)$ **Claim:** $\vspan(f(\alpha))\subseteq \operatorname{range}(f)$ 因為 $f(\alpha)\subseteq \operatorname{range}(f)$, 所以 $\vspan(f(\alpha))\subseteq \operatorname{range}(f)$。 **Claim:** $\operatorname{range}(f) \subseteq \vspan(f(\alpha))$ 令 $\bv \in \operatorname{range}(f)$,則存在 $\bu\in U$ 使得 $f({\bf u}) = \bv$。 因為 $\alpha$ 為基底,所以 $\bu$ 可寫成 $c_1{\bf u}_1 + \cdots + c_k{\bf u}_k = \bu$, 則 $\bv = f({\bf u}) = f(c_1{\bf u}_1 + \cdots + c_k{\bf u}_k)$, 故 $\bv = c_1f({\bf u}_1) + \cdots +c_kf({\bf u}_k)$。 因此 $\bv \in \vspan(f(\alpha))$, 得到 $\operatorname{range}(f) \subseteq \vspan(f(\alpha))$。 ##### Exercise 6 依照步驟確認線性擴充出來的函數符合我們要的性質。 令 $U$ 和 $V$ 為兩向量空間 且 $\beta = \{ {\bf u}_1, \ldots, {\bf u}_n \}$ 為 $U$ 的一組基底。 若 $f : U \rightarrow V$ 是一個線性函數 且已知 $f({\bf u}_1) = {\bf v}_1$, $\ldots$, $f({\bf u}_n) = {\bf v}_n$。 ##### Exercise 6(a) 說明對任何 $\beta$ 的線性組合﹐$f(c_1{\bf u}_1 + \cdots + c_n{\bf u}_n)$ 必須是 $c_1{\bf v}_1 + \cdots + c_n{\bf v}_n$。 $Ans:$ 由 $f : U \rightarrow V$ 是一個線性函數得到 $f(c_1{\bf u}_1 + \cdots + c_n{\bf u}_n) = f(c_1{\bf u}_1) + \cdots + f(c_n{\bf u}_n) = c_1f({\bf u}_1) + \cdots + c_nf({\bf u}_n)$, 又已知 $f({\bf u}_1) = {\bf v}_1$, $\ldots$, $f({\bf u}_n) = {\bf v}_n$, 則 $c_1f({\bf u}_1) + \cdots + c_nf({\bf u}_n) = c_1{\bf v}_1 + \cdots + c_n{\bf v}_n$, 所以 $f(c_1{\bf u}_1 + \cdots + c_n{\bf u}_n)$ 必須是 $c_1{\bf v}_1 + \cdots + c_n{\bf v}_n$。 ##### Exercise 6(b) 說明 $$f(c_1{\bf u}_1 + \cdots + c_n{\bf u}_n) = c_1{\bf v}_1 + \cdots + c_n{\bf v}_n $$ 這個公式是定義完善的函數。 (每個 $U$ 中的元素都有被定義到、 且線性組合的不同表示法不會造成任何問題。) :::warning - [x] 中英數之間空格 - [x] $\beta = \{ {\bf u}_1, \ldots, {\bf u}_n \}$ 這句應該不用 - [x] 由於$\beta$為$U$之基底且$\beta$中任何元素都有被定義到,故$U$中的所有元素都可被$\beta$做出。--> 由於 $\beta$ 為 $U$ 之基底,所以任何 $U$ 中的元素都可以寫成 $\beta$ 的線性組合,而且係數唯一,一次 $U$ 中的所有元素都可被題目中 $f$ 的公式完善定義出來。 - [x] 最後一句不用 ::: $Ans:$ 由於 $\beta$ 為 $U$ 之基底,所以任何 $U$ 中的元素都可以寫成 $\beta$ 的線性組合,而且係數唯一,一次 $U$ 中的所有元素都可被題目中 $f$ 的公式完善定義出來。 ##### Exercise 6(c) 說明 $$f(c_1{\bf u}_1 + \cdots + c_n{\bf u}_n) = c_1{\bf v}_1 + \cdots + c_n{\bf v}_n $$ 這個公式是定義出來的函數是線性的。 :::warning - [x] 適當地把換段改成換行 - [x] 中英數之間空格 - [x] 用 `aligned` 整理數學式 - [x] 第一點要用 $f((c_1\bu_1 + \cdots + c_n\bu_n) + (d_1\bu_1 + \cdots + d_n\bu_n))$ 開頭 - [x] 第二點是要證明 $f(k(c_1\bu_1 + \cdots + c_n\bu_n)) = \cdots = kf(c_1\bu_1 + \cdots + c_n\bu_n)$ ::: $Ans:$ 若要說明函數是線性的,則必須滿足以下兩點。 設以下方程式: 對於任何的 $c_1 \cdots c_n$ 及 $d_1 \cdots d_n$ 屬於實數, 已知 $f({\bf u}_1) = {\bf v}_1$, $\ldots$, $f({\bf u}_n) = {\bf v}_n$, 則第一點: $$\begin{aligned} f((c_1\bu_1 + \cdots + c_n\bu_n) + (d_1\bu_1 + \cdots + d_n\bu_n)) &=f((c_1+d_1){\bf u}_1 + \cdots + (c_n+d_n){\bf u}_n) \\ &= (c_1+d_1){\bf v}_1 + \cdots + (c_n+d_n){\bf v}_n \\ &=(c_1{\bf v}_1+d_1{\bf v}_1) + \cdots + (c_n{\bf v}_n+d_n{\bf v}_n) \\ &=f(c_1{\bf u}_1 + \cdots + c_n{\bf u}_n)+f(d_1{\bf u}_1 + \cdots + d_n{\bf u}_n). \end{aligned} $$ 第二點: 對於任何實數 $k$ 都可驗證 $$\begin{aligned} f(k(c_1\bu_1 + \cdots + c_n\bu_n)) &= kc_1\bv_1+\cdots+kc_n\bv_n \\ &= kf(c_1\bu_1 + \cdots + c_n\bu_n). \end{aligned} $$ 故此公式$$f(c_1{\bf u}_1 + \cdots + c_n{\bf u}_n) = c_1{\bf v}_1 + \cdots + c_n{\bf v}_n$$ 定義的函數為線性。 :::info 目前分數 5.5 :::

    Import from clipboard

    Paste your markdown or webpage here...

    Advanced permission required

    Your current role can only read. Ask the system administrator to acquire write and comment permission.

    This team is disabled

    Sorry, this team is disabled. You can't edit this note.

    This note is locked

    Sorry, only owner can edit this note.

    Reach the limit

    Sorry, you've reached the max length this note can be.
    Please reduce the content or divide it to more notes, thank you!

    Import from Gist

    Import from Snippet

    or

    Export to Snippet

    Are you sure?

    Do you really want to delete this note?
    All users will lose their connection.

    Create a note from template

    Create a note from template

    Oops...
    This template has been removed or transferred.
    Upgrade
    All
    • All
    • Team
    No template.

    Create a template

    Upgrade

    Delete template

    Do you really want to delete this template?
    Turn this template into a regular note and keep its content, versions, and comments.

    This page need refresh

    You have an incompatible client version.
    Refresh to update.
    New version available!
    See releases notes here
    Refresh to enjoy new features.
    Your user state has changed.
    Refresh to load new user state.

    Sign in

    Forgot password

    or

    By clicking below, you agree to our terms of service.

    Sign in via Facebook Sign in via Twitter Sign in via GitHub Sign in via Dropbox Sign in with Wallet
    Wallet ( )
    Connect another wallet

    New to HackMD? Sign up

    Help

    • English
    • 中文
    • Français
    • Deutsch
    • 日本語
    • Español
    • Català
    • Ελληνικά
    • Português
    • italiano
    • Türkçe
    • Русский
    • Nederlands
    • hrvatski jezik
    • język polski
    • Українська
    • हिन्दी
    • svenska
    • Esperanto
    • dansk

    Documents

    Help & Tutorial

    How to use Book mode

    Slide Example

    API Docs

    Edit in VSCode

    Install browser extension

    Contacts

    Feedback

    Discord

    Send us email

    Resources

    Releases

    Pricing

    Blog

    Policy

    Terms

    Privacy

    Cheatsheet

    Syntax Example Reference
    # Header Header 基本排版
    - Unordered List
    • Unordered List
    1. Ordered List
    1. Ordered List
    - [ ] Todo List
    • Todo List
    > Blockquote
    Blockquote
    **Bold font** Bold font
    *Italics font* Italics font
    ~~Strikethrough~~ Strikethrough
    19^th^ 19th
    H~2~O H2O
    ++Inserted text++ Inserted text
    ==Marked text== Marked text
    [link text](https:// "title") Link
    ![image alt](https:// "title") Image
    `Code` Code 在筆記中貼入程式碼
    ```javascript
    var i = 0;
    ```
    var i = 0;
    :smile: :smile: Emoji list
    {%youtube youtube_id %} Externals
    $L^aT_eX$ LaTeX
    :::info
    This is a alert area.
    :::

    This is a alert area.

    Versions and GitHub Sync
    Get Full History Access

    • Edit version name
    • Delete

    revision author avatar     named on  

    More Less

    Note content is identical to the latest version.
    Compare
      Choose a version
      No search result
      Version not found
    Sign in to link this note to GitHub
    Learn more
    This note is not linked with GitHub
     

    Feedback

    Submission failed, please try again

    Thanks for your support.

    On a scale of 0-10, how likely is it that you would recommend HackMD to your friends, family or business associates?

    Please give us some advice and help us improve HackMD.

     

    Thanks for your feedback

    Remove version name

    Do you want to remove this version name and description?

    Transfer ownership

    Transfer to
      Warning: is a public team. If you transfer note to this team, everyone on the web can find and read this note.

        Link with GitHub

        Please authorize HackMD on GitHub
        • Please sign in to GitHub and install the HackMD app on your GitHub repo.
        • HackMD links with GitHub through a GitHub App. You can choose which repo to install our App.
        Learn more  Sign in to GitHub

        Push the note to GitHub Push to GitHub Pull a file from GitHub

          Authorize again
         

        Choose which file to push to

        Select repo
        Refresh Authorize more repos
        Select branch
        Select file
        Select branch
        Choose version(s) to push
        • Save a new version and push
        • Choose from existing versions
        Include title and tags
        Available push count

        Pull from GitHub

         
        File from GitHub
        File from HackMD

        GitHub Link Settings

        File linked

        Linked by
        File path
        Last synced branch
        Available push count

        Danger Zone

        Unlink
        You will no longer receive notification when GitHub file changes after unlink.

        Syncing

        Push failed

        Push successfully