or
or
By clicking below, you agree to our terms of service.
New to HackMD? Sign up
Syntax | Example | Reference | |
---|---|---|---|
# Header | Header | 基本排版 | |
- Unordered List |
|
||
1. Ordered List |
|
||
- [ ] Todo List |
|
||
> Blockquote | Blockquote |
||
**Bold font** | Bold font | ||
*Italics font* | Italics font | ||
~~Strikethrough~~ | |||
19^th^ | 19th | ||
H~2~O | H2O | ||
++Inserted text++ | Inserted text | ||
==Marked text== | Marked text | ||
[link text](https:// "title") | Link | ||
 | Image | ||
`Code` | Code |
在筆記中貼入程式碼 | |
```javascript var i = 0; ``` |
|
||
:smile: | ![]() |
Emoji list | |
{%youtube youtube_id %} | Externals | ||
$L^aT_eX$ | LaTeX | ||
:::info This is a alert area. ::: |
This is a alert area. |
On a scale of 0-10, how likely is it that you would recommend HackMD to your friends, family or business associates?
Please give us some advice and help us improve HackMD.
Do you want to remove this version name and description?
Syncing
xxxxxxxxxx
拉格朗日多項式、凡德孟矩陣
This work by Jephian Lin is licensed under a Creative Commons Attribution 4.0 International License.
\(\newcommand{\trans}{^\top} \newcommand{\adj}{^{\rm adj}} \newcommand{\cof}{^{\rm cof}} \newcommand{\inp}[2]{\left\langle#1,#2\right\rangle} \newcommand{\dunion}{\mathbin{\dot\cup}} \newcommand{\bzero}{\mathbf{0}} \newcommand{\bone}{\mathbf{1}} \newcommand{\ba}{\mathbf{a}} \newcommand{\bb}{\mathbf{b}} \newcommand{\bc}{\mathbf{c}} \newcommand{\bd}{\mathbf{d}} \newcommand{\be}{\mathbf{e}} \newcommand{\bh}{\mathbf{h}} \newcommand{\bp}{\mathbf{p}} \newcommand{\bq}{\mathbf{q}} \newcommand{\br}{\mathbf{r}} \newcommand{\bx}{\mathbf{x}} \newcommand{\by}{\mathbf{y}} \newcommand{\bz}{\mathbf{z}} \newcommand{\bu}{\mathbf{u}} \newcommand{\bv}{\mathbf{v}} \newcommand{\bw}{\mathbf{w}} \newcommand{\tr}{\operatorname{tr}} \newcommand{\nul}{\operatorname{null}} \newcommand{\rank}{\operatorname{rank}} %\newcommand{\ker}{\operatorname{ker}} \newcommand{\range}{\operatorname{range}} \newcommand{\Col}{\operatorname{Col}} \newcommand{\Row}{\operatorname{Row}} \newcommand{\spec}{\operatorname{spec}} \newcommand{\vspan}{\operatorname{span}} \newcommand{\Vol}{\operatorname{Vol}} \newcommand{\sgn}{\operatorname{sgn}} \newcommand{\idmap}{\operatorname{id}} \newcommand{\am}{\operatorname{am}} \newcommand{\gm}{\operatorname{gm}} \newcommand{\mult}{\operatorname{mult}} \newcommand{\iner}{\operatorname{iner}}\)
Main idea
Consider the vector space \(\mathcal{P}_d\).
Let \(\alpha = \{1, \ldots, x^d\}\) be the standard basis of \(\mathcal{P}_d\).
Pick \(d+1\) distinct values \(\lambda_0,\ldots,\lambda_{d}\in\mathbb{R}\).
Define
\[f_i = \frac{ \displaystyle\prod_{\substack{k\in\{0,\ldots,d\} \\ k \neq i }} (x - \lambda_k) } { \displaystyle\prod_{\substack{k\in\{0,\ldots,d\} \\ k \neq i }} (\lambda_i - \lambda_k) }. \]
Thus, each \(f_i\) is a polynomial of degree \(d\) such that \(f_i(\lambda_i) = 1\) and \(f_i(\lambda_k) = 0\) for all \(k\neq i\).
A polynomial of this form is called a Lagrange polynomial.
Meanwhile, \(\beta = \{f_0,\ldots,f_d\}\) is a basis of \(\mathcal{P}_d\) and is called the Lagrange basis with respect to \(\lambda_0,\ldots,\lambda_d\).
Lagrange interpolation
Let \(\lambda_0,\ldots,\lambda_d\) be distinct real numbers and \(\beta = \{f_0,\ldots,f_d\}\) the corresponding Lagrange polynomials.
Then every polynomial \(p\) in \(\mathcal{P}_d\) has a unique way to be written as a linear combination of \(\beta\).
Indeed,
\[p = p(\lambda_0)f_0 + \cdots + p(\lambda_d)f_d.\]
In other words, \([p]_\beta = ( p(\lambda_0), \ldots, p(\lambda_d) )\) is the vector that records the evaluations of \(p\) at \(\lambda_0,\ldots,\lambda_d\).
Let \(\lambda_0,\ldots,\lambda_d\) be distinct real numbers.
A \((d+1)\times (d+1)\) matrix of the form
\[A = \begin{bmatrix} 1 & \lambda_0 & \cdots & \lambda_0^d \\ 1 & \lambda_1 & \cdots & \lambda_1^d \\ \vdots & \vdots & & \vdots \\ 1 & \lambda_d & \cdots & \lambda_d^d \\ \end{bmatrix} \]
is called a Vandermonde matrix.
When the considered space is \(\mathcal{P}_d\), \(\alpha\) is its standard basis, and
\(\beta\) is the Lagrange basis with respect to \(\lambda_0,\ldots,\lambda_d\),
the change of basis matrix \([\operatorname{id}]_\alpha^\beta\) is the Vandermonde matrix with respect to \(\lambda_0,\ldots,\lambda_d\).
Therefore, a Vandermonde matrix is always invertible.
Suppose the evaluations of a polynomial are known on \(\lambda_0,\ldots,\lambda_d\).
That is, \([p]_\beta = ( p(\lambda_0), \ldots, p(\lambda_d) )\) is known.
Then \(p = c_0 + c_1x + \cdots + c_dx^d\) is uniquely determined by
\([p]_\alpha = (c_0,\ldots,c_d)\) and \(([\operatorname{id}]_\alpha^\beta)^{-1}[p]_\beta\).
Side stories
Experiments
Exercise 1
執行以下程式碼。
令 \(\alpha\) 為 \(\mathcal{P}_2\) 的標準基底。
令 \(\beta\) 為下述 \(\lambda_0,\ldots,\lambda_2\) 的拉格朗日基底。
seed
和題目給的數字,參考別組怎麼寫Exercise 1(a)
寫出相對應的凡德孟矩陣 \(A\)。
以
seed(0)
為例:由 \(\lambda_0 , ... ,\lambda_3 = 3,1,-2\) 可寫出相對應的凡德孟矩陣 \(A\) ,
\(\begin{aligned} A = \begin{bmatrix} 1 & 3 & 9 \\ 1 & 1 & 1 \\ 1 & -2 & 4 \end{bmatrix} \end{aligned}\)
Exercise 1(b)
求出 \([p]_\alpha\) 及 \([p]_\beta\) 並驗證 \(A[p]_\alpha = [p]_\beta\)。
以
seed(0)
為例:由 \(\alpha = \{1,x,x^2\}\) , \(\beta = \{3,1,-2\}\)
可得出 \([p]_\alpha\) 和 \([p]_\beta\) 分別為:
\([p]_\alpha = \begin{bmatrix} -4\\ 3\\ 5 \end{bmatrix}\), \([p]_\beta = \begin{bmatrix} p(3)\\ p(1)\\ p(-2) \end{bmatrix}= \begin{bmatrix} 50\\ 4\\ 10 \end{bmatrix}\)
以下驗證 \(A[p]_\alpha=[p]_\beta\) :
\(A[p]_\alpha = \left[\begin{array}{ccc} 1 & 3 & 9 \\ 1 & 1 & 1 \\ 1 & -2 & 4 \\ \end{array}\right]\times \left[\begin{array}{c} -4 \\ 3 \\ 5 \\ \end{array}\right]= \left[\begin{array}{c} 50\\ 4\\ 10\\ \end{array}\right] = [p]_\beta\)
Exercise 1©
寫出相對應的拉格朗日基底 \(\beta\)、並求出凡德孟矩陣的反矩陣。
根據定義可求出拉格朗日基底\(\beta\):
\(\beta = \{\dfrac{1}{10}(x+2)(x-1),\dfrac{-1}{6}(x+2)(x-3),\dfrac{1}{15}(x-1)(x-3)\}\)
將凡德孟矩陣 \(A\) 用增廣矩陣(另一邊放單位矩陣)可得: \[\left[\begin{array}{ccc|ccc} 1 & 0 & 0 & 1 & 3 & 9 \\ 0 & 1 & 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & -2 & 4 \end{array}\right] \] 經過列運算後可得此增廣矩陣:
\[\left[\begin{array}{ccc|ccc} \dfrac{-1}{5} & 1 & \dfrac{1}{5} & 1 & 0 & 0 \\ \dfrac{1}{10} & \dfrac{1}{6} & \dfrac{-4}{15} & 0 & 1 & 0 \\ \dfrac{1}{10} & \dfrac{-1}{6} & \dfrac{1}{15} & 0 & 0 & 1 \end{array}\right] \] 由結果可知 \(A^{-1}\) 為: \begin{bmatrix} \dfrac{-1}{5} & 1 & \dfrac{1}{5} \\ \dfrac{1}{10} & \dfrac{1}{6} & \dfrac{-4}{15} \\ \dfrac{1}{10} & \dfrac{-1}{6} & \dfrac{1}{15} \end{bmatrix}
Exercises
Exercise 2
以下小題說明給定一個次數小於等於 \(d\) 的多項式 \(p\)
以及它在 \(d+1\) 個相異點 \(\lambda_0,\ldots,\lambda_d\) 上的函數值 \(p(\lambda_0),\ldots,p(\lambda_d)\)﹐
可以唯一決定多項式 \(p\)。
Exercise 2(a)
令 \(p = c_0 + c_1x + c_2x^2\) 為一多項式。
已知 \(p(1) = 1\), \(p(2) = 2\), \(p(3) = 3\)。
說明這些條件等同於
\[\begin{aligned} c_0 + c_1 + c_2 &= 1, \\ c_0 + 2c_1 + 4c_2 &= 2, \\ c_0 + 3c_1 + 9c_2 &= 3, \\ \end{aligned} \]
並解出 \(p\)。
將 \(x = 1\) 代入,得到條件 \(c_0 + c_1 + c_2 = p(1) = 1\)。
…
因此得到題目中的三個等式。
解方程式後可得 …,因此 \(p = ...\)。
分別將 \(x = 1,2,3\) 帶入 \(p = c_0 + c_1x + c_2x^2\) : \[\begin{aligned} c_0+c_1+c_2 &= 1 = p(1) \\ c_0 + 2c_1 + 4c_2 &= 2 = p(2) \\ c_0 + 3c_1 + 9c_2 &= 3 =p(3) \end{aligned} \] 由上面式子可解出 \(c_0,c_1,c_2\):
\(c_0 = 0,c_1=1,c_2=0\) , 得 \[p = x\] 。
另外的方法
也可以將拉格朗日多項式相加後可得此多項式 \(p\) 為: \[\dfrac{(x-2)(x-3)}{(1-2)(1-3)} + \dfrac{(x-1)(x-3)}{(2-1)(2-3)} \times 2+ \dfrac{(x-1)(x-2)}{(3-1)(3-2)}\times 3 = x \]
Exercise 2(b)
令 \(\lambda_0,\ldots,\lambda_d\) 為 \(d+1\) 個相異實數。
令 \(y_0,\ldots, y_d\) 任意\(d+1\) 個實數(可能相等)。
利用凡德孟矩陣可逆的性質﹐證明方程組
\[\begin{array}{rcl} c_0 + \lambda_0c_1 + \cdots + \lambda_0^dc_d &= &y_0 \\ c_0 + \lambda_1c_1 + \cdots + \lambda_1^dc_d &= &y_1 \\ &\vdots & \\ c_0 + \lambda_dc_1 + \cdots + \lambda_d^dc_d &= &y_d \\ \end{array} \] 必定有唯一解。
–> \(\bc = (c_0, \ldots, c_d)\) , \(\by = (y_0, \ldots, y_d)\)。
大刮號是集合在用的。
aligned
令
\[A = \begin{bmatrix} 1 & \lambda_0 & \cdots & \lambda_0^d \\ 1 & \lambda_1 & \cdots & \lambda_1^d \\ \vdots & \vdots & & \vdots \\ 1 & \lambda_d & \cdots & \lambda_d^d \\ \end{bmatrix} \]
\(\ c = \{c_0, \ldots, c_d\}\) , \(\ y = \{y_0, \ldots, y_d\}\) 。
且
\[\begin{aligned}\\\det(A) &&=\prod_{2\le i\le j}(\lambda_i - \lambda_1)\end{aligned} \] 不等於0
所以 \(A\) 有反矩陣\(A^{-1}\)
使得方程組 \(Ac=y\)
有唯一解\(c=A^{-1}y\)
Exercise 3
依照以下步驟說明拉格朗日基底確實一組基底。
考慮向量空間 \(\mathcal{P}_d\)。
給定 \(d+1\) 個相異實數 \(\lambda_0,\ldots,\lambda_d\)。
令 \(\beta = \{f_0, \ldots, f_d\}\) 為其對應的拉格基底。
Exercise 3(a)
令 \(p\in\mathcal{P}_d\)。
說明 \(p\) 可以寫成 \(\beta\) 的線性組合。
先定義
\[f_i = \frac{ \displaystyle\prod_{\substack{k\in\{0,\ldots,d\} \\ k \neq i }} (x - \lambda_k) } { \displaystyle\prod_{\substack{k\in\{0,\ldots,d\} \\ k \neq i }} (\lambda_i - \lambda_k) }, \] \({\bf y}_i\) 為 \(x=i\) 時的函數值
根據拉格朗日插值法
\[p=f_0{\bf y}_0 + \cdots + f_d{\bf y}_d \] 所以\(p\) 可以寫成 \(\beta\) 的線性組合。
Exercise 3(b)
證明 \(\beta\) 線性獨立。
(令 \(c_0f_0 + \cdots + c_df_d = 0\)﹐
依序將等號兩側代入 \(x = \lambda_0,\ldots, \lambda_d\)。)
令 \(c_0f_0 + \cdots + c_df_d = 0\)
因為\[f_i = \frac{ \displaystyle\prod_{\substack{k\in\{0,\ldots,d\} \\ k \neq i }} (x - \lambda_k) } { \displaystyle\prod_{\substack{k\in\{0,\ldots,d\} \\ k \neq i }} (\lambda_i - \lambda_k) }\] 所以當 \(k=0\) , \(x = \lambda_0\) 時 \(f_0=1\) , \(f_1=f_2=\ldots=f_d=0\)
多項式 \(c_0f_0 + \cdots + c_df_d =c_0=0\)
當 \(k=1\) , \(x = \lambda_1\) 時 \(f_1=1\) , \(f_0=f_2=\ldots=f_d=0\)
多項式 \(c_0f_0 + \cdots + c_df_d =c_1=0\)
以此類推可得\(c_0=c_1=\ldots=c_d=0\)
所以 \(\beta\) 線性獨立。
Exercise 4
考慮向量空間 \(\mathcal{P}_d\)。
令 \(\alpha\) 和 \(\beta\) 分別為其標準基底和拉格朗日基底。
令 \(A = [\operatorname{id}]_\alpha^\beta\)。
說明 \(A^{-1}\) 的各行向量就是把 \(\beta\) 中的各多項式展開的係數。
答:
由於
\(\alpha = \{1, \ldots, x^d\}\),
\(\beta = \{f_0,\ldots,f_d\}\)。
且由 \(A = [\operatorname{id}]_\alpha^\beta\) , 得知\(A^{-1} = [\operatorname{id}]_\beta^\alpha\)。
則
\([\operatorname{id}]_\beta^\alpha = \begin{bmatrix} | & ~ & | \\ [f_0]_\alpha & \cdots & [f_d]_\alpha \\ | & ~ & | \\ \end{bmatrix}\)
若把 \(f_0\) 用 \(\alpha\) 表示成 \(c_0 + c_1x + c_2x^2 + ... + c_dx^d\) 的形式,
則 \([\operatorname{id}]_\beta^\alpha\) 的第一個行向量為 \((c_0,c_1,...,c_d)\) 。
再觀察 \(f_0\) 以 \(\beta\) 表示,則 \([f_0]_\beta = (1,0,0,...,0)\) 。
則 \([\operatorname{id}]_\beta^\alpha[f_0]_\beta = c_0 + c_1x + c_2x^2 + ... + c_dx^d\) ,相當於 \(f_0\) 展開後各項的係數。
同樣地,其它行分別是將 \(f_i\) 展開並將 \(x_k\) 的各項係數依序記錄下來。
Exercise 5
令 \(\lambda_1,\ldots,\lambda_n\) 為 \(n\) 個相異實數。
令 \(V\) 為一向量空間而 \(\gamma = \{{\bf u}_1, \ldots, {\bf u}_n\}\) 為任意 \(n\) 個非零向量。
假設已知
\[\begin{array}{rcl} c_1{\bf u}_1 + \cdots + c_n{\bf u}_n &= &{\bf 0}, \\ &\vdots & \\ c_1\lambda_1^{n-1}{\bf u}_1 + \cdots + c_n\lambda_n^{n-1}{\bf u}_d &= &{\bf 0}. \\ \end{array} \] 證明 \(c_1 = \cdots = c_n = 0\)。
(找一個多項式 \(f\) 使得 \(f(\lambda_1) = 1\) 且對所有的 \(k\neq 1\) 都有 \(f(\lambda_k) = 0\)。
將 \(f\) 展開寫成 \(f_0 = a_0 + a_1x + \cdots + a_{n-1}x^{n-1}\)。
從最上面往下﹐每一列分別乘以 \(a_0,\ldots, a_n\) 後加起來﹐藉此得到 \(c_1 = 0\)。
用類似手法說明其它係數也是 \(0\)。)
答:
令
\(f\) 使得 \(f(\lambda_1) = 1\) 且對所有的 \(k\neq 1\) 都有 \(f(\lambda_k) = 0\)。
將 \(f\) 展開寫成 \(f_0 = a_0 + a_1x + \cdots + a_{n-1}x^{n-1}\)。
\(\begin{aligned} &a_0*(c_1{\bf u}_1 + \cdots + c_n{\bf u}_n &= {\bf 0})\\ &a_1*(c_1\lambda_1 {\bf u}_1 + \cdots + c_n\lambda_{n} {\bf u}_n &= {\bf 0})\\ &\vdots\\ +)&a_{n-1}*(c_1\lambda_{1} {\bf u}_1 + \cdots + c_n\lambda_{n}^{n-1}{\bf u}_n &= {\bf 0})\\ \hline &f(\lambda_1)c_1 {\bf u_1} +\dots+f(\lambda_{n})c_1{\bf u_n}&={\bf 0} \end{aligned}\)
而對所有的 \(k\neq 1\) 都有 \(f(\lambda_k) = 0\) ,所以 \(f(\lambda_1)c_1 {\bf u_1}= {\bf 0}\) , 其中 \(f(\lambda_1) = 1 ,{\bf u_1} \neq0\) 推得 \(c_1=0\) 。
令
\(f\) 使得 \(f(\lambda_2) = 1\) 且對所有的 \(k\neq 2\) 都有 \(f(\lambda_k) = 0\)。
將 \(f\) 展開寫成 \(f_0 = a_0 + a_1x + \cdots + a_{n-1}x^{n-1}\)。
\(\begin{aligned} &a_0*(c_1{\bf u}_1 + \cdots + c_n{\bf u}_n &= {\bf 0})\\ &a_1*(c_1\lambda_1 {\bf u}_1 + \cdots + c_n\lambda_{n} {\bf u}_n &= {\bf 0})\\ &\vdots\\ +)&a_{n-1}*(c_1\lambda_{1} {\bf u}_1 + \cdots + c_n\lambda_{n}^{n-1}{\bf u}_n &= {\bf 0})\\ \hline &f(\lambda_1)c_1 {\bf u_1} +\dots+f(\lambda_{n})c_1{\bf u_n}&={\bf 0} \end{aligned}\)
而對所有的 \(k\neq 2\) 都有 \(f(\lambda_k) = 0\) ,所以 \(f(\lambda_2)c_2 {\bf u_2}= {\bf 0}\) , 其中 \(f(\lambda_2) = 1 ,{\bf u_2} \neq0\) 推得 \(c_2=0\) 。
用以上觀點推廣對所有 \(k = 1,\ldots, n\) 都有 \(c_n=0\),得證。
Exercise 6
若 \(A\) 是實數 \(\lambda_0,\ldots,\lambda_d\) 對應的凡德孟矩陣。
證明當 \(d = 1,2\) 時﹐
\[\det(A) = \prod_{i<j}(\lambda_i - \lambda_j).\] (實際上這個公式對所有大小的凡德孟矩陣都對。)
格式可以改善,但整體而言沒問題
答:
<i> 當 \(d=1\) ,
\(\begin{aligned}\\ \det(A) &=\det(\begin{bmatrix} 1 &\lambda_0 \\ 1 &\lambda_1 \end{bmatrix})\\ &=_{\rho_2:-\rho_1} \det(\begin{bmatrix} 1& \lambda_0\\ 0& \lambda_1-\lambda_0 \end{bmatrix})\\ &=1*(\lambda_1-\lambda_0)-0*(\lambda_0)\\ &=\prod_{0\le i<j \le 1}(\lambda_i - \lambda_j) \end{aligned}\)
得證當 \(d=1\) 時的情況
<ii> 當 \(d=2\) ,
\(\begin{aligned}\\ \det(A) &=\det(\begin{bmatrix} 1 &\lambda_0 &\lambda_0^2 \\ 1 &\lambda_1 &\lambda_1^2 \\ 1 &\lambda_2 &\lambda_2^2 \end{bmatrix})\\ &=_{(\rho_3:-\rho_2,\rho_2:-\rho_1)} \det(\begin{bmatrix} 1& \lambda_0 &\lambda_0^2\\ 0& \lambda_1-\lambda_0 &\lambda_1^2 -\lambda_0^2\\ 0& \lambda_2-\lambda_1 &\lambda_2^2 -\lambda_1^2 \end{bmatrix})\\ &=_{(降階)}1* \det\begin{bmatrix} \lambda_1-\lambda_0 &\lambda_1^2 -\lambda_0^2\\ \lambda_2-\lambda_1 &\lambda_2^2 -\lambda_1^2 \end{bmatrix} -\lambda_0* \overbrace{\det\begin{bmatrix} 0& \lambda_1^2 -\lambda_0^2\\ 0& \lambda_2^2 -\lambda_1^2 \end{bmatrix}}^{=0} +\lambda_0^2* \overbrace{\det( \begin{bmatrix} 0& \lambda_1-\lambda_0 &\\ 0& \lambda_2-\lambda_1 & \end{bmatrix})}^{=0}\\ &= (\lambda_1-\lambda_0)*(\lambda_2^2 -\lambda_1^2)- (\lambda_2-\lambda_1)*(\lambda_1^2 -\lambda_0^2)\\ &= (\lambda_1-\lambda_0)*(\lambda_2 -\lambda_1)*(\lambda_2 +\lambda_1)- (\lambda_2-\lambda_1)*(\lambda_1 -\lambda_0)*(\lambda_1 +\lambda_0)\\ &=_{(同類項合併)} (\lambda_1-\lambda_0)*(\lambda_2 -\lambda_1)*(\lambda_2-\lambda_0)\\ &=_{(整理)} (\lambda_2-\lambda_0)*(\lambda_2 -\lambda_1)*(\lambda_1-\lambda_0)\\ &=\prod_{0 \le i<j \le 2}(\lambda_i - \lambda_j) \end{aligned}\)
得證當 \(d=2\) 時的情況
目前分數 6.5