Jephian Lin
    • Create new note
    • Create a note from template
      • Sharing URL Link copied
      • /edit
      • View mode
        • Edit mode
        • View mode
        • Book mode
        • Slide mode
        Edit mode View mode Book mode Slide mode
      • Customize slides
      • Note Permission
      • Read
        • Only me
        • Signed-in users
        • Everyone
        Only me Signed-in users Everyone
      • Write
        • Only me
        • Signed-in users
        • Everyone
        Only me Signed-in users Everyone
      • Engagement control Commenting, Suggest edit, Emoji Reply
    • Invite by email
      Invitee

      This note has no invitees

    • Publish Note

      Share your work with the world Congratulations! 🎉 Your note is out in the world Publish Note

      Your note will be visible on your profile and discoverable by anyone.
      Your note is now live.
      This note is visible on your profile and discoverable online.
      Everyone on the web can find and read all notes of this public team.
      See published notes
      Unpublish note
      Please check the box to agree to the Community Guidelines.
      View profile
    • Commenting
      Permission
      Disabled Forbidden Owners Signed-in users Everyone
    • Enable
    • Permission
      • Forbidden
      • Owners
      • Signed-in users
      • Everyone
    • Suggest edit
      Permission
      Disabled Forbidden Owners Signed-in users Everyone
    • Enable
    • Permission
      • Forbidden
      • Owners
      • Signed-in users
    • Emoji Reply
    • Enable
    • Versions and GitHub Sync
    • Note settings
    • Note Insights
    • Engagement control
    • Transfer ownership
    • Delete this note
    • Save as template
    • Insert from template
    • Import from
      • Dropbox
      • Google Drive
      • Gist
      • Clipboard
    • Export to
      • Dropbox
      • Google Drive
      • Gist
    • Download
      • Markdown
      • HTML
      • Raw HTML
Menu Note settings Versions and GitHub Sync Note Insights Sharing URL Create Help
Create Create new note Create a note from template
Menu
Options
Engagement control Transfer ownership Delete this note
Import from
Dropbox Google Drive Gist Clipboard
Export to
Dropbox Google Drive Gist
Download
Markdown HTML Raw HTML
Back
Sharing URL Link copied
/edit
View mode
  • Edit mode
  • View mode
  • Book mode
  • Slide mode
Edit mode View mode Book mode Slide mode
Customize slides
Note Permission
Read
Only me
  • Only me
  • Signed-in users
  • Everyone
Only me Signed-in users Everyone
Write
Only me
  • Only me
  • Signed-in users
  • Everyone
Only me Signed-in users Everyone
Engagement control Commenting, Suggest edit, Emoji Reply
  • Invite by email
    Invitee

    This note has no invitees

  • Publish Note

    Share your work with the world Congratulations! 🎉 Your note is out in the world Publish Note

    Your note will be visible on your profile and discoverable by anyone.
    Your note is now live.
    This note is visible on your profile and discoverable online.
    Everyone on the web can find and read all notes of this public team.
    See published notes
    Unpublish note
    Please check the box to agree to the Community Guidelines.
    View profile
    Engagement control
    Commenting
    Permission
    Disabled Forbidden Owners Signed-in users Everyone
    Enable
    Permission
    • Forbidden
    • Owners
    • Signed-in users
    • Everyone
    Suggest edit
    Permission
    Disabled Forbidden Owners Signed-in users Everyone
    Enable
    Permission
    • Forbidden
    • Owners
    • Signed-in users
    Emoji Reply
    Enable
    Import from Dropbox Google Drive Gist Clipboard
       owned this note    owned this note      
    Published Linked with GitHub
    Subscribed
    • Any changes
      Be notified of any changes
    • Mention me
      Be notified of mention me
    • Unsubscribe
    Subscribe
    # 行空間、左零解空間、及其基底 Column space, left kernel, and their bases ![Creative Commons License](https://i.creativecommons.org/l/by/4.0/88x31.png) This work by Jephian Lin is licensed under a [Creative Commons Attribution 4.0 International License](http://creativecommons.org/licenses/by/4.0/). $\newcommand{\trans}{^\top} \newcommand{\adj}{^{\rm adj}} \newcommand{\cof}{^{\rm cof}} \newcommand{\inp}[2]{\left\langle#1,#2\right\rangle} \newcommand{\dunion}{\mathbin{\dot\cup}} \newcommand{\bzero}{\mathbf{0}} \newcommand{\bone}{\mathbf{1}} \newcommand{\ba}{\mathbf{a}} \newcommand{\bb}{\mathbf{b}} \newcommand{\bc}{\mathbf{c}} \newcommand{\bd}{\mathbf{d}} \newcommand{\be}{\mathbf{e}} \newcommand{\bh}{\mathbf{h}} \newcommand{\bp}{\mathbf{p}} \newcommand{\bq}{\mathbf{q}} \newcommand{\br}{\mathbf{r}} \newcommand{\bx}{\mathbf{x}} \newcommand{\by}{\mathbf{y}} \newcommand{\bz}{\mathbf{z}} \newcommand{\bu}{\mathbf{u}} \newcommand{\bv}{\mathbf{v}} \newcommand{\bw}{\mathbf{w}} \newcommand{\tr}{\operatorname{tr}} \newcommand{\nul}{\operatorname{null}} \newcommand{\rank}{\operatorname{rank}} %\newcommand{\ker}{\operatorname{ker}} \newcommand{\range}{\operatorname{range}} \newcommand{\Col}{\operatorname{Col}} \newcommand{\Row}{\operatorname{Row}} \newcommand{\spec}{\operatorname{spec}} \newcommand{\vspan}{\operatorname{span}} \newcommand{\Vol}{\operatorname{Vol}} \newcommand{\sgn}{\operatorname{sgn}} \newcommand{\idmap}{\operatorname{id}} \newcommand{\am}{\operatorname{am}} \newcommand{\gm}{\operatorname{gm}} \newcommand{\mult}{\operatorname{mult}} \newcommand{\iner}{\operatorname{iner}}$ ```python from lingeo import random_good_matrix, column_space_matrix, left_kernel_matrix ``` ## Main idea You are recommended to read the section _Four fundamental subspaces_ first, where you will find the definition of $\beta_R$, $\beta_K$, $\beta_C$, $\beta_L$. Let $A$ be a matrix. Let $\beta_C$ and $\beta_L$ be the standard bases of $\Col(A)$ and $\ker(A\trans)$, respectively. We have known that 1. $\Col(A) = \vspan(\beta_C)$. 2. $\ker(A\trans) = \vspan(\beta_L)$. In fact, both $\beta_C$ and $\beta_L$ are linearly independent. Therefore, it is fine that we call them the standard bases. When $S$ is a finite set of vectors and $V = \vspan(S)$, we may find a basis of $V$ as follows. 1. Write the matrix $A$ whose columns are the vectors in $S$ (in any order). 2. Let $R$ be the reduced echelon form of $A$ and find the pivots of $R$. 3. Let $\beta_C$ be the columns of $A$ that corresponds to the pivots. Thus, $\beta_C$ is a basis of $V$. Let $\bb$ be a vector in $\mathbb{R}^n$. Let $V$ be a subspace in $\mathbb{R}^n$ spanned by a finite set of vectors $S$. Then we may find the projection of $\bb$ onto $V$ as follows. 1. Find a basis of $V$. 2. Write the matrix $A$ whose columns are the vectors in the basis. 3. The projection is $A(A\trans A)^{-1}A\trans \bb$. ## Side stories - projection - basis with preferred vector ## Experiments ##### Exercise 1 執行下方程式碼。 令 $R$ 為 $A$ 最簡階梯形式矩陣。 令 $S= \{ \bu_1, \ldots, \bu_5 \}$ 為 $A$ 的各行向量且 $V = \vspan(S)$。 <!-- eng start --> Run the code below. Let $R$ be the reduced echelon form of $A$. Let $S= \{ \bu_1, \ldots, \bu_5 \}$ be the columns of $A$ and $V = \vspan(S)$. <!-- eng end --> ```python ### code set_random_seed(0) print_ans = False m,n,r = 3,5,2 A, R, pivots = random_good_matrix(m,n,r, return_answer=True) C = column_space_matrix(A) print("A =") show(A) print("R =") show(R) if print_ans: print("A basis of V can be the set of columns of") show(C) free = [i for i in range(n) if i not in pivots] for f in free: print("u%s = "%(f+1) + " + ".join("%s u%s"%(R[j,f], pivots[j]+1) for j in range(r)) ) ``` ##### Exercise 1(a) 求 $V$ 的一組基底。 <!-- eng start --> Find a basis of $V$. <!-- eng end --> :::warning - [x] we know $\bu_1$, $\bu_2$, the vectors corresponding to the pivots, are independent (boldface, and add explanation) - [x] $\bu_3$, $\bu_4$, $\bu_5$ might not be dependent --- think about why. - [x] Add a period in the end. ::: **Answer** Run the code above, we can get $$ A = \begin{bmatrix} 1 & -3 & 18 & 5 & -14\\ 3 & -8 & 49 & 15 & -39\\ -8 & 20 & -124 & -40 & 100\\ \end{bmatrix} $$ Let $R$ be the row reduced echelon form of $A$. $$ R = \begin{bmatrix} 1 & 0 & 3 & 5 & -5\\ 0 & 1 & -5 & 0 & 3\\ 0 & 0 & 0 & 0 & 0 \\ \end{bmatrix} $$ Let $S= \{ \bu_1, \ldots, \bu_5 \}$ be the columns of $A$ and $V = \vspan(S)$. According to reduced echelon form of $A$, we know $\bu_1$,$\bu_2$, the vectors corresponding to the pivots, are linealy independent because the only coefficients $c_1, c_2\in\mathbb{R}$ satisfying$c_1\bu_1$ + $c_2\bu_2$ = $\bzero$ is $c_1 = c_2 = 0$. Let $\beta_C$ be the standard bases of $\Col(A)$. $\beta_C$ is the basis of $V$. So the basis of $V$ can be the set of columns of $$ \begin{pmatrix} 1 & -3\\ 3 & -8\\ -8 & 20\\ \end{pmatrix}. $$ ##### Exercise 1(b) 把每個 $S$ 中不在基底裡的向量 寫成基底的線性組合。 <!-- eng start --> For any vector in $S$ but not in your basis in the previous problem, write it as a linear combination of the basis. <!-- eng end --> :::warning - [x] Make vectors boldface. - [x] Put equations into the math mode `$...$`. ::: **Answer** $$ \bu_3 = \begin{bmatrix} 3 \\ -5 \\ 0 \\ \end{bmatrix}, \bu_4 = \begin{bmatrix} 5 \\ 0 \\ 0 \\ \end{bmatrix}, \bu_5 = \begin{bmatrix} -5 \\ 3 \\ 0 \\ \end{bmatrix} $$ $$ \bu_3 = 3\bu_1 - 5\bu_2\\ \bu_4 = 5\bu_1 \\ \bu_5 = -5\bu_1 + 3\bu_2 $$ ## Exercises ##### Exercise 2 執行以下程式碼。 其中 $\left[\begin{array}{c|c} R & B \end{array}\right]$ 是 $\left[\begin{array}{c|c} A & I \end{array}\right]$ 的最簡階梯形式矩陣。 <!-- eng start --> Run the code below. Let $\left[\begin{array}{c|c} R & B \end{array}\right]$ be the reduced echelon form $\left[\begin{array}{c|c} A & I \end{array}\right]$. <!-- eng end --> ```python ### code set_random_seed(0) print_ans = False m,n,r = 4,5,2 A = random_good_matrix(m,n,r) AI = A.augment(identity_matrix(m), subdivide=True) RB = AI.rref() print("[ A | I ] =") show(AI) print("[ R | B ] =") show(RB) if print_ans: print("A basis of the column space can be the set of columns of") show(column_space_matrix(A)) print("A basis of the left kernel can be the set of rows of") show(left_kernel_matrix(A)) ``` ##### Exercise 2(a) 求出 $\Col(A)$ 的一組基底。 <!-- eng start --> Find a basis of $\Col(A)$. <!-- eng end --> :::warning - [x] Revise according to the comments in 1(a). ::: **Answer** $$ A=\left[\begin{array}{ccccc|cccc} 1 & -3 & 18 & 5 & -14 &1 & 0 & 0 & 0 \\ 3 & -8 & 49 & 15 & -39 & 0 & 1 & 0 & 0\\ -5 & 12 & -75 & -25 & 61 & 0 & 0 & 1 & 0\\ 2 & -4 & 26 & 10 & -22 & 0 & 0 & 0 & 1 \end{array}\right] \xrightarrow{\text{rref}} R = \left[\begin{array}{ccccc|cccc} 1 & 0 & 3 & 5 & -5&0&0&1&3\\ 0 & 1 & -5 & 0 & 3 &0&0&\frac{1}{2}&\frac{4}{5}\\ 0 & 0 & 0 & 0 & 0 &1&0&\frac{1}{2}&\frac{3}{4}\\ 0 & 0 & 0 & 0 & 0 &0&1&1&1\\ \end{array}\right]$$ Let $S= \{ \bu_1, \ldots, \bu_5 \}$ be the columns of $A$ and $V = \vspan(S)$. According to reduced echelon form of $A$, we know $\bu_1$,$\bu_2$ are independent, the vectors corresponding to the pivots, and the only solution of equation $c_1\bu_1$ + $c_2\bu_2$ = $\bzero$, where $c_1, c_2\in\mathbb{R}$ is coefficients $c_1=c_2=0.$ So one of the basis of $V$ can be the set of columns of $$\vspan\left\{ \begin{bmatrix} 1 \\ 3 \\ -5 \\ 2 \\ \end{bmatrix}, \begin{bmatrix} -3\\ -8\\ 12\\ -4\\ \end{bmatrix} \right\}. $$ ##### Exercise 2(b) 求出 $\ker(A\trans)$ 的一組基底。 <!-- eng start --> Find a basis of $\ker(A\trans)$. <!-- eng end --> :::warning Nice work! :thumbsup: However, please add some explanations about how you find the two vectors ($\bh_1$, $\bh_2$) for $\ker(A\trans)$. - [x] $span$ --> $\vspan$ - [x] basic --> basis ::: **Answer** Since $A$ is a $4\times 5$ matrix , $A\trans$ is a $5\times 4$ matrix. $$ A\trans=\begin{bmatrix} 1 & 3 & -5 & 2 \\ -3 & -8 & 12 & -4 \\ 18 & 49 & -75 & 26 \\ 5 & 15 & -25 & 10 \\ -14 & -39 &61 &-22 \\ \end{bmatrix} \xrightarrow{\text{rref}} R = \begin{bmatrix} 1 & 0 & 4 & -4 \\ 0 & 1 &-3 & 2 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ \end{bmatrix} $$ Then we may find the standard basis of $\ker(A\trans)$ as $$ \left\{ \begin{bmatrix} -4\\ 3\\ 1\\ 0 \end{bmatrix}, \begin{bmatrix} 4\\ -2\\ 0\\ 1\\ \end{bmatrix}\right\} . $$ ##### Exercise 3 令 $$ A = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ -1 & 1 & 1 & 0 & 0 \\ 0 & -1 & 0 & 1 & 0 \\ 0 & 0 & -1 & -1 & 1 \\ 0 & 0 & 0 & 0 & -1 \\ \end{bmatrix} $$ 而 $S = \{ \bu_1, \ldots, \bu_5 \}$ 為 $A$ 的各行向量。 集合 $S$ 有 $\binom{5}{4} = 5$ 個大小為 $4$ 的子集。 把這些子集分類﹐哪些是行空間的基底?哪些不是? <!-- eng start --> Let $$ A = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ -1 & 1 & 1 & 0 & 0 \\ 0 & -1 & 0 & 1 & 0 \\ 0 & 0 & -1 & -1 & 1 \\ 0 & 0 & 0 & 0 & -1 \\ \end{bmatrix} $$ and $S = \{ \bu_1, \ldots, \bu_5 \}$ the columns of $A$. The set $S$ contains $\binom{5}{4} = 5$ subsets of size $3$. For each of them, determine if it is a basis of $\Col(A)$ or not. <!-- eng end --> :::warning - [x] $\bu_1,\bu_5$ is independent --> $\bu_1,\bu_5$ cannot be a linear combination of other vectors - [x] A set must have the symbol $\{ ... \}$. - [x] We only need to get $2$ basis from $\bu_2,\bu_3,\bu_4$ we can get all three of them --> We only need to pick two vectors from $\{\bu_2, \bu_3, \bu_4\}$ to form an independent set. - [x] is a basis --> are bases - [x] But --> , but - [x] isn't --> aren't ::: $Ans:$ $\bu_1=\begin{bmatrix} 1 \\ -1\\ 0 \\ 0 \\ 0 \\ \end{bmatrix}$ , $\bu_2=\begin{bmatrix} 0 \\ 1 \\ -1\\ 0 \\ 0 \\ \end{bmatrix}$, $\bu_3=\begin{bmatrix} 0 \\ 1 \\ 0 \\ -1\\ 0 \\ \end{bmatrix}$, $\bu_4=\begin{bmatrix} 0 \\ 0 \\ 1 \\ -1\\ 0 \\ \end{bmatrix}$ , $\bu_5=\begin{bmatrix} 0 \\ 0 \\ 0 \\ 1\\ -1 \\ \end{bmatrix}$ We can observe that $\bu_4=\bu_3-\bu_2$, and $\bu_1,\bu_5$ cannot be a linear combination of other vectors (the first entry is only from $\bu_1$ and the last entry is only from $\bu_5$). We only need to pick two vectors from $\{\bu_2, \bu_3, \bu_4\}$ to form an independent set. So we can know that $\{\bu_1,\bu_2,\bu_3,\bu_5\}$, $\{\bu_1,\bu_2,\bu_4,\bu_5\}$, $\{\bu_1,\bu_3,\bu_4,\bu_5\}$ are bases of $\Col(A)$ but $\{\bu_2,\bu_3,\bu_4,\bu_5\}$, $\{\bu_1,\bu_2,\bu_3,\bu_4\}$ aren't. ##### Exercise 4 令 $A$ 為一矩陣而 $R$ 為其最簡階梯形式矩陣。 考慮 $R$ 的軸﹐ 令 $A_p$ 為 $A$ 中對應到軸的那些行所組成的矩陣、 令 $R_p$ 為 $R$ 中對應到軸的那些行所組成的矩陣。 (所以 $A_p$ 的各行向量就是 $\beta_C$。) 依序證明 $\ker(R_p) = \{ \bzero \}$ 以及 $\ker(A_p) = \{ \bzero \}$﹐ 最後得到 $\beta_C$ 是線性獨立的。 <!-- eng start --> Let $A$ be a matrix and $R$ its reduced echelon form. Let $A_p$ be the submatrix of $A$ induced on the columns corresponding to the pivots of $R$. Let $R_p$ be the submatrix of $R$ induced on the columns of its pivots. (Therefore, the columns of $A_p$ form $\beta_C$.) Show that $\ker(R_p) = \{ \bzero \}$ and $\ker(A_p) = \{ \bzero \}$. Use these facts to prove that $\beta_C$ is linearly independent. <!-- eng end --> ##### Exercise 5 若 $S = \{ \bu_1, \ldots, \bu_k \}$ 為一群 $\mathbb{R}^n$ 中的向量。 在某些比較簡單的狀況下﹐我們可以用以下的過程來說明 $S$ 是一個線性獨立集。 1. 令 $S' = S$。 2. 若 $j = 1,\ldots, n$ 中有一個足標﹐使得 $S'$ 中的每個向量的第 $j$ 項都是零﹐除了 $\bu_i$ 的第 $j$ 項不是零﹐則把 $\bu_i$ 從 $S'$ 中拿掉。 3. 重覆步驟 2﹐如果最後可以把所有向量都拿掉的話﹐則 $S$ 是一個線性獨立集。 這個方法稱作 **zero forcing** 。 <!-- eng start --> Let $S = \{ \bu_1, \ldots, \bu_k \}$ be some vectors in $\mathbb{R}^n$. In some special cases, we may use the following process to show that $S$ is linearly independent. 1. Let $S' = S$. 2. If for some $j = 1,\ldots, n$, every vector in $S'$ has its $j$-th entry zero except for one vector $\bu_i$ with its $j$-th entry nonzero, then remove $\bu_i$ from $S'$. 3. Repeat Step 2. If there is a way to remove all vectors, then $S$ is a linearly independent set. This process is called **zero forcing** . <!-- eng end --> ##### Exercise 5(a) 利用 zero forcing 的方法﹐ 說明 $$ A = \begin{bmatrix} 1 & 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 0 & 0 & 1 \\ \end{bmatrix} $$ 的列向量集合是線性獨立的。 <!-- eng start --> Use zero forcing to show that the rows of $$ A = \begin{bmatrix} 1 & 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 0 & 0 & 1 \\ \end{bmatrix} $$ form a linearly independent set. <!-- eng end --> ##### Exercise 5(b) 說明 $$ A = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & 4 & 8 \\ 1 & 3 & 9 & 27 \\ \end{bmatrix} $$ 的列向量集合是線性獨立的﹐ 但 zero forcing 的方法並不適用。 <!-- eng start --> Verify that the rows of $$ A = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & 4 & 8 \\ 1 & 3 & 9 & 27 \\ \end{bmatrix} $$ form a linearly independent set, but zero forcing fails to show the independence. <!-- eng end --> :::warning You did not explain why the zero forcing technique does not apply --- you may present your answer at the comprehension meeing. Do you mean the set of ==row== vectors? - [x] A --> $A$ ::: **Answer** Let $S = \{ {\bf u}_1, {\bf u}_2, {\bf u}_3 \}$ be three vectors in $\mathbb{R}^n$. $$ A = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & 4 & 8 \\ 1 & 3 & 9 & 6 \\ \end{bmatrix} \xrightarrow{\text{rref}} R = \begin{bmatrix} 1 & 0 & 0 & 6 \\ 0 & 1 & 0 & -11 \\ 0 & 0 & 1 & 6 \\ \end{bmatrix} $$ Because ${\bf u}_1,{\bf u}_2,{\bf u}_3$ cannot be written as linear combinations of each other, the set of row vectors of $A$ is linearly independent. ##### Exercise 6 利用 zero forcing 的方法來說明 $\beta_L$ 是線性獨立的。 <!-- eng start --> Use zero forcing to show that $\beta_L$ is linearly independent. <!-- eng end --> ##### Exercise 7 令 $$ A = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ -1 & 1 & 1 & 0 & 0 \\ 0 & -1 & 0 & 1 & 0 \\ 0 & 0 & -1 & -1 & 1 \\ 0 & 0 & 0 & 0 & -1 \\ \end{bmatrix} $$ 而 $S = \{ \bu_1, \ldots, \bu_5 \}$ 為 $A$ 的各行向量。 令 $A'$ 是把 $A$ 中第一行和第四行互換所得的矩陣。 因此 $\Col(A) = \Col(A')$。 計算 $A$ 和 $A'$ 各自算出來的 $\beta_C$。 它們一樣嗎? (這個例子說明如果想把確保某一個非零向量有被選到基底中﹐ 只要把它放在第一行再做高斯消去法就好。) <!-- eng start --> Let $$ A = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ -1 & 1 & 1 & 0 & 0 \\ 0 & -1 & 0 & 1 & 0 \\ 0 & 0 & -1 & -1 & 1 \\ 0 & 0 & 0 & 0 & -1 \\ \end{bmatrix} $$ and $S = \{ \bu_1, \ldots, \bu_5 \}$ the columns of $A$. Let $A'$ be the matrix obtained from $A$ by switching the first column and the fourth column. Thus, $\Col(A) = \Col(A')$. Find the $\beta_C$ for $A$ and for $A'$, respectively. Are they the same? This example shows that if we wish a column to be selected into the basis of the column space, then we may put it as the first column and then run the Gaussian elimination. <!-- eng end --> :::info collaboration: 1 4 problems: 4 bonus: 1 (nice answer from 2(b)) moderator: 1 quality control: 1 :::

    Import from clipboard

    Paste your markdown or webpage here...

    Advanced permission required

    Your current role can only read. Ask the system administrator to acquire write and comment permission.

    This team is disabled

    Sorry, this team is disabled. You can't edit this note.

    This note is locked

    Sorry, only owner can edit this note.

    Reach the limit

    Sorry, you've reached the max length this note can be.
    Please reduce the content or divide it to more notes, thank you!

    Import from Gist

    Import from Snippet

    or

    Export to Snippet

    Are you sure?

    Do you really want to delete this note?
    All users will lose their connection.

    Create a note from template

    Create a note from template

    Oops...
    This template has been removed or transferred.
    Upgrade
    All
    • All
    • Team
    No template.

    Create a template

    Upgrade

    Delete template

    Do you really want to delete this template?
    Turn this template into a regular note and keep its content, versions, and comments.

    This page need refresh

    You have an incompatible client version.
    Refresh to update.
    New version available!
    See releases notes here
    Refresh to enjoy new features.
    Your user state has changed.
    Refresh to load new user state.

    Sign in

    Forgot password

    or

    By clicking below, you agree to our terms of service.

    Sign in via Facebook Sign in via Twitter Sign in via GitHub Sign in via Dropbox Sign in with Wallet
    Wallet ( )
    Connect another wallet

    New to HackMD? Sign up

    Help

    • English
    • 中文
    • Français
    • Deutsch
    • 日本語
    • Español
    • Català
    • Ελληνικά
    • Português
    • italiano
    • Türkçe
    • Русский
    • Nederlands
    • hrvatski jezik
    • język polski
    • Українська
    • हिन्दी
    • svenska
    • Esperanto
    • dansk

    Documents

    Help & Tutorial

    How to use Book mode

    Slide Example

    API Docs

    Edit in VSCode

    Install browser extension

    Contacts

    Feedback

    Discord

    Send us email

    Resources

    Releases

    Pricing

    Blog

    Policy

    Terms

    Privacy

    Cheatsheet

    Syntax Example Reference
    # Header Header 基本排版
    - Unordered List
    • Unordered List
    1. Ordered List
    1. Ordered List
    - [ ] Todo List
    • Todo List
    > Blockquote
    Blockquote
    **Bold font** Bold font
    *Italics font* Italics font
    ~~Strikethrough~~ Strikethrough
    19^th^ 19th
    H~2~O H2O
    ++Inserted text++ Inserted text
    ==Marked text== Marked text
    [link text](https:// "title") Link
    ![image alt](https:// "title") Image
    `Code` Code 在筆記中貼入程式碼
    ```javascript
    var i = 0;
    ```
    var i = 0;
    :smile: :smile: Emoji list
    {%youtube youtube_id %} Externals
    $L^aT_eX$ LaTeX
    :::info
    This is a alert area.
    :::

    This is a alert area.

    Versions and GitHub Sync
    Get Full History Access

    • Edit version name
    • Delete

    revision author avatar     named on  

    More Less

    Note content is identical to the latest version.
    Compare
      Choose a version
      No search result
      Version not found
    Sign in to link this note to GitHub
    Learn more
    This note is not linked with GitHub
     

    Feedback

    Submission failed, please try again

    Thanks for your support.

    On a scale of 0-10, how likely is it that you would recommend HackMD to your friends, family or business associates?

    Please give us some advice and help us improve HackMD.

     

    Thanks for your feedback

    Remove version name

    Do you want to remove this version name and description?

    Transfer ownership

    Transfer to
      Warning: is a public team. If you transfer note to this team, everyone on the web can find and read this note.

        Link with GitHub

        Please authorize HackMD on GitHub
        • Please sign in to GitHub and install the HackMD app on your GitHub repo.
        • HackMD links with GitHub through a GitHub App. You can choose which repo to install our App.
        Learn more  Sign in to GitHub

        Push the note to GitHub Push to GitHub Pull a file from GitHub

          Authorize again
         

        Choose which file to push to

        Select repo
        Refresh Authorize more repos
        Select branch
        Select file
        Select branch
        Choose version(s) to push
        • Save a new version and push
        • Choose from existing versions
        Include title and tags
        Available push count

        Pull from GitHub

         
        File from GitHub
        File from HackMD

        GitHub Link Settings

        File linked

        Linked by
        File path
        Last synced branch
        Available push count

        Danger Zone

        Unlink
        You will no longer receive notification when GitHub file changes after unlink.

        Syncing

        Push failed

        Push successfully