Probability outcomes measuring distinguishable states \(\leftrightarrow\) Information
Average information gain on state \(\rho_A\) for measurement in its eigenbasis
\[S(\rho_A)=-\sum_k\lambda_k\log_2(\lambda_k)\]
\[\frac{1}{d}n\leq\sum_i^n\lambda_i\leq\sum_i^n\mu_i\leq 1\]
\[\lambda=D\cdot \mu\]
\(D\) is a doubly-stochastic matrix.
\[\lambda = (\sum_\pi q_\pi\cdot P_\pi)\cdot \mu\]
\(P_\pi\) is a random permutation.
🧐 Can one define entanglement operationally?
⭐️⭐️⭐️ Entanglement state =
State that cannot be created using only local operations (LO) coordinated by classical communication (CC)
⭐️⭐️⭐️ Entanglement proccessing =
modifying existing entanglement using only LOCC
⭐️⭐️⭐️ "More entangled" states have "less ordered" marginals and can be converted to "less entangled" states with "more ordered" marginals.
LOCC cannot increase entanglement rank
\(|e\rangle\)\(=\sqrt{\frac{1}{2}}|00\rangle+\sqrt{\frac{1}{2}}|11\rangle\) \(\xrightarrow[]{Dilution}\) \(|\varphi\rangle\)\(=\sqrt{\frac{2}{3}}|00\rangle+\sqrt{\frac{1}{3}}|11\rangle\)
\(|e\rangle\)\(=\sqrt{\frac{2}{3}}|00\rangle+\sqrt{\frac{1}{3}}|11\rangle\) \(\xrightarrow[]{Concentration}\) \(|\varphi\rangle\)\(=\sqrt{\frac{1}{2}}|00\rangle+\sqrt{\frac{1}{2}}|11\rangle\)
majorization condition
\(\lambda(\)\(\rho\)\()=\)\((\frac{2}{3},\frac{1}{3})\) \(\prec\) \(p_1(\frac{1}{2},\frac{1}{2})\) \(+\) \(p_2(1,0)\) \(=\) \(p_1\) \(\lambda(\)\(\rho_1\)\()+\)\(p_2\) \(\lambda(\)\(\rho_2\)\()\)
\(\therefore\) \(p_1\leq 2/3\), \(p_2\geq 1/3\) are indeed optimal.
⭐️⭐️⭐️ Single-copy conversion of pure entangled states is in general possible only for ensembles with some probabilities \(p_k\)
\[|\psi\rangle\xrightarrow[]{\mathcal{M}_k}\{p_k,|\psi_k\rangle\}\Leftrightarrow\lambda(\rho_A)\prec\sum_k p_k\lambda (\rho_{Ak})\]
⭐️⭐️⭐️ LOCC quantum instrument = POVM + coarse graining
\[\begin{aligned}&p_k|\psi_k\rangle\langle\psi_k|=(\mathcal{M}_k\otimes\mathcal{I})|\psi\rangle\langle\psi| &\text{ POVM}\\ &\mathcal{M}_k=\sum_{i\in k}M_{Aik}\bullet M_{Aik}^\dagger &\text{ coarse-graining}\end{aligned}\]
or
or
By clicking below, you agree to our terms of service.
New to HackMD? Sign up
Syntax | Example | Reference | |
---|---|---|---|
# Header | Header | 基本排版 | |
- Unordered List |
|
||
1. Ordered List |
|
||
- [ ] Todo List |
|
||
> Blockquote | Blockquote |
||
**Bold font** | Bold font | ||
*Italics font* | Italics font | ||
~~Strikethrough~~ | |||
19^th^ | 19th | ||
H~2~O | H2O | ||
++Inserted text++ | Inserted text | ||
==Marked text== | Marked text | ||
[link text](https:// "title") | Link | ||
 | Image | ||
`Code` | Code |
在筆記中貼入程式碼 | |
```javascript var i = 0; ``` |
|
||
:smile: | ![]() |
Emoji list | |
{%youtube youtube_id %} | Externals | ||
$L^aT_eX$ | LaTeX | ||
:::info This is a alert area. ::: |
This is a alert area. |
On a scale of 0-10, how likely is it that you would recommend HackMD to your friends, family or business associates?
Please give us some advice and help us improve HackMD.
Syncing