Jephian Lin
    • Create new note
    • Create a note from template
      • Sharing URL Link copied
      • /edit
      • View mode
        • Edit mode
        • View mode
        • Book mode
        • Slide mode
        Edit mode View mode Book mode Slide mode
      • Customize slides
      • Note Permission
      • Read
        • Only me
        • Signed-in users
        • Everyone
        Only me Signed-in users Everyone
      • Write
        • Only me
        • Signed-in users
        • Everyone
        Only me Signed-in users Everyone
      • Engagement control Commenting, Suggest edit, Emoji Reply
    • Invite by email
      Invitee

      This note has no invitees

    • Publish Note

      Share your work with the world Congratulations! 🎉 Your note is out in the world Publish Note

      Your note will be visible on your profile and discoverable by anyone.
      Your note is now live.
      This note is visible on your profile and discoverable online.
      Everyone on the web can find and read all notes of this public team.
      See published notes
      Unpublish note
      Please check the box to agree to the Community Guidelines.
      View profile
    • Commenting
      Permission
      Disabled Forbidden Owners Signed-in users Everyone
    • Enable
    • Permission
      • Forbidden
      • Owners
      • Signed-in users
      • Everyone
    • Suggest edit
      Permission
      Disabled Forbidden Owners Signed-in users Everyone
    • Enable
    • Permission
      • Forbidden
      • Owners
      • Signed-in users
    • Emoji Reply
    • Enable
    • Versions and GitHub Sync
    • Note settings
    • Note Insights
    • Engagement control
    • Transfer ownership
    • Delete this note
    • Save as template
    • Insert from template
    • Import from
      • Dropbox
      • Google Drive
      • Gist
      • Clipboard
    • Export to
      • Dropbox
      • Google Drive
      • Gist
    • Download
      • Markdown
      • HTML
      • Raw HTML
Menu Note settings Versions and GitHub Sync Note Insights Sharing URL Create Help
Create Create new note Create a note from template
Menu
Options
Engagement control Transfer ownership Delete this note
Import from
Dropbox Google Drive Gist Clipboard
Export to
Dropbox Google Drive Gist
Download
Markdown HTML Raw HTML
Back
Sharing URL Link copied
/edit
View mode
  • Edit mode
  • View mode
  • Book mode
  • Slide mode
Edit mode View mode Book mode Slide mode
Customize slides
Note Permission
Read
Only me
  • Only me
  • Signed-in users
  • Everyone
Only me Signed-in users Everyone
Write
Only me
  • Only me
  • Signed-in users
  • Everyone
Only me Signed-in users Everyone
Engagement control Commenting, Suggest edit, Emoji Reply
  • Invite by email
    Invitee

    This note has no invitees

  • Publish Note

    Share your work with the world Congratulations! 🎉 Your note is out in the world Publish Note

    Your note will be visible on your profile and discoverable by anyone.
    Your note is now live.
    This note is visible on your profile and discoverable online.
    Everyone on the web can find and read all notes of this public team.
    See published notes
    Unpublish note
    Please check the box to agree to the Community Guidelines.
    View profile
    Engagement control
    Commenting
    Permission
    Disabled Forbidden Owners Signed-in users Everyone
    Enable
    Permission
    • Forbidden
    • Owners
    • Signed-in users
    • Everyone
    Suggest edit
    Permission
    Disabled Forbidden Owners Signed-in users Everyone
    Enable
    Permission
    • Forbidden
    • Owners
    • Signed-in users
    Emoji Reply
    Enable
    Import from Dropbox Google Drive Gist Clipboard
       owned this note    owned this note      
    Published Linked with GitHub
    Subscribed
    • Any changes
      Be notified of any changes
    • Mention me
      Be notified of mention me
    • Unsubscribe
    Subscribe
    # 薛爾上三角化 ![Creative Commons License](https://i.creativecommons.org/l/by/4.0/88x31.png) This work by Jephian Lin is licensed under a [Creative Commons Attribution 4.0 International License](http://creativecommons.org/licenses/by/4.0/). $\newcommand{\trans}{^\top} \newcommand{\adj}{^{\rm adj}} \newcommand{\cof}{^{\rm cof}} \newcommand{\inp}[2]{\left\langle#1,#2\right\rangle} \newcommand{\dunion}{\mathbin{\dot\cup}} \newcommand{\bzero}{\mathbf{0}} \newcommand{\bone}{\mathbf{1}} \newcommand{\ba}{\mathbf{a}} \newcommand{\bb}{\mathbf{b}} \newcommand{\bc}{\mathbf{c}} \newcommand{\bd}{\mathbf{d}} \newcommand{\be}{\mathbf{e}} \newcommand{\bh}{\mathbf{h}} \newcommand{\bp}{\mathbf{p}} \newcommand{\bq}{\mathbf{q}} \newcommand{\br}{\mathbf{r}} \newcommand{\bx}{\mathbf{x}} \newcommand{\by}{\mathbf{y}} \newcommand{\bz}{\mathbf{z}} \newcommand{\bu}{\mathbf{u}} \newcommand{\bv}{\mathbf{v}} \newcommand{\bw}{\mathbf{w}} \newcommand{\tr}{\operatorname{tr}} \newcommand{\nul}{\operatorname{null}} \newcommand{\rank}{\operatorname{rank}} %\newcommand{\ker}{\operatorname{ker}} \newcommand{\range}{\operatorname{range}} \newcommand{\Col}{\operatorname{Col}} \newcommand{\Row}{\operatorname{Row}} \newcommand{\spec}{\operatorname{spec}} \newcommand{\vspan}{\operatorname{span}} \newcommand{\Vol}{\operatorname{Vol}} \newcommand{\sgn}{\operatorname{sgn}} \newcommand{\idmap}{\operatorname{id}} \newcommand{\am}{\operatorname{am}} \newcommand{\gm}{\operatorname{gm}}$ ```python from lingeo import random_int_list, random_good_matrix ``` ## Main idea Recall that an $n\times n$ matrix $A = \begin{bmatrix} a_{ij} \end{bmatrix}$ is called upper triangular if $a_{ij} = 0$ for all $i > j$. ##### Schur triangulation theorem Let $A$ be a square complex matrix. Then there are a unitary matrix $Q$ such that $Q^*AQ = T$ is a upper triangular matrix. Necessarily, the diagonal entries of $T$ are the eigenvalues of $A$. Note that if $A$ is a real matrix with complex eigenvalues, then the Schur triangulation theorem still work since $A$ can be viewed as a complex matrix. However, the decomposition will enforce $Q$ and $T$ to have non-real entries. ##### Schur triangulation theorem (real matrix with real eigenvalues) Let $A$ be a square real matrix. Then there are a real orthogonal matrix $Q$ such that $Q\trans AQ = T$ is a upper triangular matrix. Necessarily, the diagonal entries of $T$ are the eigenvalues of $A$. ##### Schur triangulation theorem (real matrix) Let $A$ be a square real matrix. Then there are a real invertible matrix $Q$ such that $Q^{-1}AQ = T$ has the form $$ T = \begin{bmatrix} B_1 & ~ & * \\ ~ & \ddots & ~ \\ O & ~ & B_t \end{bmatrix}, $$ such that $B_k = \begin{bmatrix} \lambda_k \end{bmatrix}$ if $\lambda_k\in\mathbb{R}$ and $B_k = \begin{bmatrix} a & b \\ -b & a \end{bmatrix}$ if $\lambda = a + bi$ with $b \neq 0$. Necessarily, the diagonal blocks of $T$ determine the eigenvalues of $A$. ## Side stories - cases of real matrices - properties of unitary/orthogonal matrices ## Experiments ##### Exercise 1 執行以下程式碼。 ```python ### code set_random_seed(0) print_ans = False n = 4 eigs = random_int_list(n) Q = random_good_matrix(n - 1, n - 1, n - 1, 3) A2 = Q * diagonal_matrix(eigs[1:]) * Q.inverse() Q2 = identity_matrix(n - 1) Q2[:,0] = Q[:,0] T2 = Q2.inverse() * A2 * Q2 A = zero_matrix(n, n) A[0,0] = eigs[0] A[0,1:] = vector(random_int_list(n - 1)) A[1:,1:] = A2 pretty_print(LatexExpr("Q_2^{-1} A_2 Q_2 ="), Q2.inverse(), A2, Q2, LatexExpr("="), T2) pretty_print(LatexExpr("A ="), A) if print_ans: Qhat2 = block_diagonal_matrix(matrix([[1]]), Q2) T = Qhat2.inverse() * A * Qhat2 pretty_print(LatexExpr(r"\hat{Q}_2^{-1} A_2 \hat{Q}_2 ="), Qhat2.inverse(), A, Qhat2, LatexExpr("="), T) print("eigenvalues of A:", eigs) ``` 當 `seed = 0` 時 $Q_2^{-1}A_2Q_2=\begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 3 & 0 & 1 \end{bmatrix}\begin{bmatrix} 21 & 42 & -22 \\ -22 & -59 & 34 \\ -18 & -66 & 41 \end{bmatrix}\begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ -3 & 0 & 1 \end{bmatrix}=\begin{bmatrix} 3 & 42 & -22 \\ 0 & 25 & -10 \\ 0 & 60& -25 \\ \end{bmatrix}$ $A=\begin{bmatrix} -4 & -4 & -4 & -3 \\ 0 & 21 & 42 &-22 \\ 0 & -22 & -59 & 34 \\ 0 & -18 & -66 & 41 \end{bmatrix}$ ##### Exercise 1(a) 令 $\hat{Q}_2 = 1 \oplus Q_2$。 求 $\hat{Q}_2^{-1} A\hat{Q}_2$。 :::warning - [x] $\hat{Q}_2$ 和 $\hat{Q}_2^{-1}$ 中間要有標點 ::: $Ans$ 得 $\hat{Q}_2 =\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & -2 & 1 & 0 \\ 0 & -3 & 0 & 1 \end{bmatrix},$ $\hat{Q}_2^{-1} =\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 2 & 1 & 0 \\ 0 & 3 & 0 & 1 \end{bmatrix}$, $\hat{Q}_2^{-1} A\hat{Q}_2=\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 2 & 1 & 0 \\ 0 & 3 & 0 & 1 \end{bmatrix}\begin{bmatrix} -4 & 4 & -4 & -3 \\ 0 & 21 & 42 & -22 \\ 0 & -22 & -59 & 34 \\ 0 & -18 & -66 & 41 \end{bmatrix}\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & -2 & 1 & 0 \\ 0 & -3 & 0 & 1 \end{bmatrix}=\begin{bmatrix} -4 & 21 & -4 & -3 \\ 0 & 3 & 42 & -22 \\ 0 & 0 & 25 & -10 \\ 0 & 0 & 60& -25 \\ \end{bmatrix}$。 ##### Exercise 1(b) 求 $A$ 的所有特徵值。 :::warning - [x] 令 $\hat{Q}_3 = 2 \oplus Q_3$,$\hat{Q}_2 = 1 \oplus Q_2$ --> 令 $\hat{Q}_3 = I_2 \oplus Q_3$,$\hat{Q}_2 = I_1 \oplus Q_2$ - [x] 中英數數之間空格 ::: $Ans$ $A_3=\begin{bmatrix} 25 & -10 \\ 60 & -25 \\ \end{bmatrix}$,經計算可得 $\spec(A_3)=\{5,-5\}$,取 $\lambda_3=5$ 得到 $Q_3^{-1}A_3Q_3=\begin{bmatrix} 1 & 0 \\ -2 & 1 \end{bmatrix}\begin{bmatrix} 25 & -10 \\ 60 & -25 \\ \end{bmatrix}\begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix}=\begin{bmatrix} 5 & -10 \\ 0 & -5 \\ \end{bmatrix}$。 令 $\hat{Q}_3 = I_2 \oplus Q_3$,$\hat{Q}_2 = I_1 \oplus Q_2$ $Q=\hat{Q}_2\hat{Q}_3$ ,則 $Q^{-1}AQ=\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & -2 & 1 \end{bmatrix}\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 2 & 1 & 0 \\ 0 & 3 & 0 & 1 \end{bmatrix}\begin{bmatrix} -4 & 4 & -4 & -3 \\ 0 & 21 & 42 & -22 \\ 0 & -22 & -59 & 34 \\ 0 & -18 & -66 & 41 \end{bmatrix}\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & -2 & 1 & 0 \\ 0 & -3 & 0 & 1 \end{bmatrix}\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 2 & 1 \end{bmatrix}=\begin{bmatrix} -4 & 21 & -10 & 3 \\ 0 & 3 & -2 & -22 \\ 0 & 0 & 5 & -10 \\ 0 & 0 & 0 & -5 \\ \end{bmatrix}$, $A$ 的所有特徵值為矩陣$\begin{bmatrix} -4 & 21 & -10 & 3 \\ 0 & 3 & -2 & -22 \\ 0 & 0 & 5 & -10 \\ 0 & 0 & 0 & -5 \\ \end{bmatrix}$ 對角線的數值,得$\ -4 ,3 ,5 ,-5$。 ## Exercises ##### Exercise 2 令 $$ A = \begin{bmatrix} -1 & -4 & 2 \\ 2 & 4 & -1 \\ 0 & -2 & 3 \end{bmatrix}. $$ 求一個實垂直矩陣 $Q$ 使得 $Q\trans AQ$ 為一上三角矩陣。 **[由林柏仰同學提供]** 經計算得知, $\spec(A) = \{1,2,3\}$ 。 取 $\lambda_1 = 1$ , $\ker(A-I) = \operatorname{span}\left\{\begin{bmatrix} 1 \\ -1 \\ -1 \end{bmatrix}\right\}$ 。 取 $\bv_1 = (1,-1,-1)$ ,將其擴充並正交化後得到矩陣 $$ Q_1 = \begin{bmatrix} \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{6}} \\ \frac{-1}{\sqrt{3}} & 0 & \frac{-2}{\sqrt{6}} \\ \frac{-1}{\sqrt{3}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} \end{bmatrix}, \\ {Q_1}^{-1}AQ_1 = \begin{bmatrix} 1 & -\frac{\sqrt{3}}{\sqrt{2}} & \frac{5}{\sqrt{2}} \\ 0 & 2 & \frac{3}{\sqrt{3}} \\ 0 & 0 & 3 \end{bmatrix}. $$ 運氣很好,此時 ${Q_1}^{-1}AQ_1$ 已是上三角矩陣。 則取 $$ Q = \begin{bmatrix} \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{6}} \\ \frac{-1}{\sqrt{3}} & 0 & \frac{-2}{\sqrt{6}} \\ \frac{-1}{\sqrt{3}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} \end{bmatrix}. $$ 可將 $A$ 上三角化。 ##### Exercise 3 令 $A$ 為一方陣、 $Q$ 為一可逆矩陣、 而 $T$ 為一上三角矩陣。 已知 $Q^{-1}AQ = T$, 證明 $\spec(A) = \spec(T)$ 且它們就是 $T$ 的對角線元素所成的集合。 :::warning - [x] 題目已經說 $Q^{-1}AQ = T$ 了所以前兩行是多餘的 - [x] 這裡解釋了 $T$ 的對角線元素就是 $\spec(T)$,可是沒有解釋為什麼 $\spec(A) = \spec(T)$ ::: $Ans:$ 由上可知,$T$ 為 $A$ 的基底轉換,所以 $\spec(A) = \spec(T)$ 。 因為 $T$ 為上三角矩陣,所以 $p_T(x)=(x-\lambda_1)\dots(x-\lambda_1)$,也就是 $p_A(x)$ 的因式分解。 因此 $T$ 的對角線元素所成的集合等於 $\spec(T) = \spec(A)$。 ##### Exercise 4 若 $P$ 和 $Q$ 為大小相同的么正矩陣,證明 $PQ$ 和 $QP$ 都是么正矩陣。 若 $P$ 和 $Q$ 為大小相同的實垂直矩陣,證明 $PQ$ 和 $QP$ 都是實垂直矩陣。 :::warning - [x] $^T$ --> $\trans$ ::: $Ans:$ (1) 設 $P$ 和 $Q$ 皆為 $n\times n$ 的方陣,而且因為 $P$ 和 $Q$ 皆為么正矩陣,所以可以得到: $P\times P^* = I_n$ 和 $Q\times Q^* = I_n$. $PQ\times (PQ)^* = PQQ^*P^* = P\times I_n\times P^* = PP^* = I_n$. $QP\times (QP)^* = QPP^*Q^* = Q\times I_n\times Q^* = QQ^* = I_n$. 故 $PQ$ 和 $QP$ 都是么正矩陣。 (2) 設 $P$ 和 $Q$ 皆為 $n\times n$ 的方陣,而且因為 $P$ 和 $Q$ 皆為實垂直矩陣,所以可以得到: $P\trans = P^{-1}$ 和 $Q\trans = Q^{-1}$. $(PQ)\trans = Q\trans(P\trans) = Q^{-1}P^{-1} = (PQ)^{-1}$. $(QP)\trans = P\trans(Q\trans) = P^{-1}Q^{-1} = (QP)^{-1}$. 故 $PQ$ 和 $QP$ 都是實垂直矩陣。 ##### Exercise 5 證明一般版本的薛爾上三角化定理: ##### Schur triangulation theorem Let $A$ be a square complex matrix. Then there are a unitary matrix $Q$ such that $Q^*AQ = T$ is a upper triangular matrix. Necessarily, the diagonal entries of $T$ are the eigenvalues of $A$. **[由林柏仰同學提供]** 令 $\lambda_1$ 為 $\spec(A)$ 中的一個元素,且 $\bv_1$ 為一長度為 $1$ 的對應到 $\lambda_1$ 的特徵向量。 令 $Q_1$ 為用 $\bv_1$ 擴張出來的么正矩陣。 則 $Q_1$ 可以對 $A$ 做到一部分的三角化,即 $$ Q_1^*AQ_1 = \begin{bmatrix} \lambda_1 & ? \\ O & A_2 \end{bmatrix}. $$ 若再令 $\lambda_2$ 為 $\spec(A_2)$ 中的一個元素。 並以同樣方法得出么正矩陣 $Q_2$ ,將 $Q_2$ 擴張成 $Q_2'$ ,且 $$ Q_2' = \begin{bmatrix} I & O \\ O & Q_2 \end{bmatrix}. $$ 則 $Q_2'$ 會滿足 1. $Q_2'^* = Q_2'$ ,$Q_2'$ 為一么正矩陣。 2. $Q_2'$ 不會影響到 $Q_1^*AQ_1$ 中已被三角化的部分,且可對其未被三角化的部分進行一部份的三角化。 則可重複上述動作,直到將 $A$ 三角化。 且 $Q = Q_1Q_2'...Q_n'$ 為一么正矩陣。 ##### Exercise 6 證明所有特徵值皆為實數的實矩陣版本的薛爾上三角化定理: ##### Schur triangulation theorem (real matrix with real eigenvalues) Let $A$ be a square real matrix. Then there are a real orthogonal matrix $Q$ such that $Q\trans AQ = T$ is a upper triangular matrix. Necessarily, the diagonal entries of $T$ are the eigenvalues of $A$. :::warning - [x] 向量用粗體 - [x] $Q_2$ 左上角是 $1$ 不是 $\lambda_1$ - [x] 標點 - [x] 中英數之間空格 ::: $Ans:$ 令 $A$ 的第一個特徵值為 $\lambda_1$,則至少存在一個對應的單位特徵向量 $\bx_1$,$\Vert$$\bx_1$$\Vert$$=1$,將 $n$ 維向量 $\bx_1$ 置於矩陣 $Q_1$ 的第一行,再將 $\bx_1$ 擴充成 $\mathbb{R}^{n}$ 的基底並正交化後得到么正矩陣 $Q_1$ 的另外 $(n-1)$ 個單位向量。 $$ Q_1= \begin{bmatrix} | & |&~ & | \\ {\bf x}_1 & *&\cdots & * \\ | & |&~ & | \end{bmatrix} $$ 由特徵方程式 $A \bx_1=\lambda_1 \bx_1$ 可知 $AQ_1=A \begin{bmatrix} | & |&~ & | \\ {\bf x}_1 & *&\cdots & * \\ | & |&~ & | \end{bmatrix} = \begin{bmatrix} | & |&~ & | \\ {\lambda_1\bf x}_1 & *&\cdots & * \\ | & |&~ & | \end{bmatrix} =Q_1 \begin{bmatrix} \lambda_1 & ?&\dots & ? \\ 0 & *&\cdots & * \\ \vdots & |&~ & | \end{bmatrix}$ 或寫為 $Q_1^{-1}AQ_1= \begin{bmatrix} \lambda_1 & ?&\dots & ? \\ 0 & *&\dots & * \\ \vdots & |&~ & | \end{bmatrix}=T_1.$ 第二個步驟僅需考慮 $T_1$ 矩陣右下標為 $*$ 的 $(n-1)×(n-1)$ 階分塊,令此分塊的一個特徵值為 $\lambda_2$,正規化後的 $(n-1)$ 維特徵向量以 $\bx_2$ 表示, $\Vert$$\bx_2$$\Vert$$=1$ 。 如前一步驟做法,將 $(n-1)$ 維向量 $\bx_2$ 置於矩陣 $Q_2$ 的第一行,其餘的 $(n-2)$ 行由 $\bx_2$ 擴充並正交化後確定 。 $$ Q_2= \begin{bmatrix} 1 & 0&\dots & 0 \\ 0 & | & * & * \\ \vdots & x_2 & |\ & | \\ 0 & | & * & * \end{bmatrix} $$ 由特徵方程式 $T_1Q_2 = Q_2 \begin{bmatrix} \lambda_1 & ?&~&\cdots & ? \\ 0 & \lambda_2&?&\cdots & ? \\ \vdots &0 &*&\cdots & * \\ 0 & \vdots &*&\cdots & * \\ \end{bmatrix}$ 或寫為 $Q_2^{-1}T_1Q_2=\begin{bmatrix} \lambda_1 & ?&~&\cdots & ? \\ 0 & \lambda_2&?&\cdots & ? \\ \vdots &0 &*&\cdots & * \\ 0 & \vdots &*&\cdots & * \\ \end{bmatrix}$ 以此類推,經過 $n$ 次步驟後,可以得到一個上三角矩陣 $T$ ,整個計算式為 $Q_n^{-1}Q_{n-1}^{-1}Q_{n-2}^{-1}\cdots Q_1^{-1}AQ_1 \cdots Q_{n-2}Q_{n-1}Q_n=T$ 。 其中么正矩陣乘積 $Q=Q_1\cdots Q_n$ 仍然是么正矩陣, 因為 $(Q_1\cdots Q_n)^{-1}=Q_n^{-1}\cdots Q_1^{-1}=Q_n^{\trans}\cdots Q_1^{\trans}=(Q_1\cdots Q_n)^{\trans}$ 得證 $Q^{\trans}AQ=T$。 :::success 除了細節和格式外都很棒 :thumbsup: ::: ##### Exercise 7 證明一般實矩陣版本的薛爾上三角化定理: ##### Schur triangulation theorem (real matrix) Let $A$ be a square real matrix. Then there are a real invertible matrix $Q$ such that $Q^{-1}AQ = T$ has the form $$ T = \begin{bmatrix} B_1 & ~ & * \\ ~ & \ddots & ~ \\ O & ~ & B_t \end{bmatrix}, $$ such that $B_k = \begin{bmatrix} \lambda_k \end{bmatrix}$ if $\lambda_k\in\mathbb{R}$ and $B_k = \begin{bmatrix} a & b \\ -b & a \end{bmatrix}$ if $\lambda = a + bi$ with $b \neq 0$. Necessarily, the diagonal blocks of $T$ determine the eigenvalues of $A$. **[由林柏仰同學提供]** 假設 $\spec(A)$ 為一複數集合。 觀察 $\spec(A)$ 中的元素 $\lambda_1$ 為實數的情況。 令向量 $\bv_1$ 滿足 $A\bv_1 = \lambda_1\bv_1$ 。 則可用 $\bv_1$ 擴張出可逆矩陣 $Q_1$ ,使得 $$ {Q_1}^{-1}AQ_1 = \begin{bmatrix} \lambda & ? \\ O & A_2 \end{bmatrix}. $$ 觀察 $\spec(A)$ 中的元素 $\lambda_1$ 為複數的情況。 令 $\lambda_1 = a + bi$ , $a,\ b$ 為實數。 再令向量 $\bv_1 = \bx + \by i$ 滿足 $A\bv_1 = \lambda_1\bv_1$ ,且 $\bx,\ \by$ 為實數向量。 則 $A\bx + A\by i = (a\bx + b\by) + (b\bx + a\by)i$ 。 則可知 $$ \left\{ \begin{array}{} A\bx = a\bx - b\by,\\ A\by = b\bx - a\by. \end{array} \right. $$ 令 $$ Q_1 = \begin{bmatrix} | & | & ~ \\ \bx & \by & \ldots \\ | & | & ~ \end{bmatrix}. $$ 且 $Q_1$ 為一可逆矩陣。 則 $$ {Q_1}^{-1}AQ_1 = \begin{bmatrix} a & b & ? \\ -b & a & ? \\ O & O & A_2 \end{bmatrix}. $$ 此時可知,無論 $\lambda$ 為實數或複數,皆可以做到一部分的三角化。 再觀察 $A_2$ 。 可重複上述動作得到一可逆矩陣 $Q_2$ ,且 $Q_2$ 可對 $A_2$ 做到一部分的三角化。 將 $Q_2$ 擴張成 $n\times n$ 矩陣 ${Q_2}'$ ,且 $$ {Q_2}' = \begin{bmatrix} I & O \\ O & Q_2 \end{bmatrix}. $$ 觀察 ${{Q_2}'}^{-1}\ {Q_1}^{-1}AQ_1\ {Q_2}'$ 。 可以發現 ${Q_2}'$ 不會影響到已被三角化的部分,且對於未被三角化的部分也可以做到一部份的三角化。 換句話說,我們可以重複以上動作直到得出一個三角矩陣 $T$ 。 :::info 分數 = 6 :::

    Import from clipboard

    Paste your markdown or webpage here...

    Advanced permission required

    Your current role can only read. Ask the system administrator to acquire write and comment permission.

    This team is disabled

    Sorry, this team is disabled. You can't edit this note.

    This note is locked

    Sorry, only owner can edit this note.

    Reach the limit

    Sorry, you've reached the max length this note can be.
    Please reduce the content or divide it to more notes, thank you!

    Import from Gist

    Import from Snippet

    or

    Export to Snippet

    Are you sure?

    Do you really want to delete this note?
    All users will lose their connection.

    Create a note from template

    Create a note from template

    Oops...
    This template has been removed or transferred.
    Upgrade
    All
    • All
    • Team
    No template.

    Create a template

    Upgrade

    Delete template

    Do you really want to delete this template?
    Turn this template into a regular note and keep its content, versions, and comments.

    This page need refresh

    You have an incompatible client version.
    Refresh to update.
    New version available!
    See releases notes here
    Refresh to enjoy new features.
    Your user state has changed.
    Refresh to load new user state.

    Sign in

    Forgot password

    or

    By clicking below, you agree to our terms of service.

    Sign in via Facebook Sign in via Twitter Sign in via GitHub Sign in via Dropbox Sign in with Wallet
    Wallet ( )
    Connect another wallet

    New to HackMD? Sign up

    Help

    • English
    • 中文
    • Français
    • Deutsch
    • 日本語
    • Español
    • Català
    • Ελληνικά
    • Português
    • italiano
    • Türkçe
    • Русский
    • Nederlands
    • hrvatski jezik
    • język polski
    • Українська
    • हिन्दी
    • svenska
    • Esperanto
    • dansk

    Documents

    Help & Tutorial

    How to use Book mode

    Slide Example

    API Docs

    Edit in VSCode

    Install browser extension

    Contacts

    Feedback

    Discord

    Send us email

    Resources

    Releases

    Pricing

    Blog

    Policy

    Terms

    Privacy

    Cheatsheet

    Syntax Example Reference
    # Header Header 基本排版
    - Unordered List
    • Unordered List
    1. Ordered List
    1. Ordered List
    - [ ] Todo List
    • Todo List
    > Blockquote
    Blockquote
    **Bold font** Bold font
    *Italics font* Italics font
    ~~Strikethrough~~ Strikethrough
    19^th^ 19th
    H~2~O H2O
    ++Inserted text++ Inserted text
    ==Marked text== Marked text
    [link text](https:// "title") Link
    ![image alt](https:// "title") Image
    `Code` Code 在筆記中貼入程式碼
    ```javascript
    var i = 0;
    ```
    var i = 0;
    :smile: :smile: Emoji list
    {%youtube youtube_id %} Externals
    $L^aT_eX$ LaTeX
    :::info
    This is a alert area.
    :::

    This is a alert area.

    Versions and GitHub Sync
    Get Full History Access

    • Edit version name
    • Delete

    revision author avatar     named on  

    More Less

    Note content is identical to the latest version.
    Compare
      Choose a version
      No search result
      Version not found
    Sign in to link this note to GitHub
    Learn more
    This note is not linked with GitHub
     

    Feedback

    Submission failed, please try again

    Thanks for your support.

    On a scale of 0-10, how likely is it that you would recommend HackMD to your friends, family or business associates?

    Please give us some advice and help us improve HackMD.

     

    Thanks for your feedback

    Remove version name

    Do you want to remove this version name and description?

    Transfer ownership

    Transfer to
      Warning: is a public team. If you transfer note to this team, everyone on the web can find and read this note.

        Link with GitHub

        Please authorize HackMD on GitHub
        • Please sign in to GitHub and install the HackMD app on your GitHub repo.
        • HackMD links with GitHub through a GitHub App. You can choose which repo to install our App.
        Learn more  Sign in to GitHub

        Push the note to GitHub Push to GitHub Pull a file from GitHub

          Authorize again
         

        Choose which file to push to

        Select repo
        Refresh Authorize more repos
        Select branch
        Select file
        Select branch
        Choose version(s) to push
        • Save a new version and push
        • Choose from existing versions
        Include title and tags
        Available push count

        Pull from GitHub

         
        File from GitHub
        File from HackMD

        GitHub Link Settings

        File linked

        Linked by
        File path
        Last synced branch
        Available push count

        Danger Zone

        Unlink
        You will no longer receive notification when GitHub file changes after unlink.

        Syncing

        Push failed

        Push successfully