Shengwen Cheng
    • Create new note
    • Create a note from template
      • Sharing URL Link copied
      • /edit
      • View mode
        • Edit mode
        • View mode
        • Book mode
        • Slide mode
        Edit mode View mode Book mode Slide mode
      • Customize slides
      • Note Permission
      • Read
        • Only me
        • Signed-in users
        • Everyone
        Only me Signed-in users Everyone
      • Write
        • Only me
        • Signed-in users
        • Everyone
        Only me Signed-in users Everyone
      • Engagement control Commenting, Suggest edit, Emoji Reply
      • Invitee
    • Publish Note

      Share your work with the world Congratulations! 🎉 Your note is out in the world Publish Note

      Your note will be visible on your profile and discoverable by anyone.
      Your note is now live.
      This note is visible on your profile and discoverable online.
      Everyone on the web can find and read all notes of this public team.
      See published notes
      Unpublish note
      Please check the box to agree to the Community Guidelines.
      View profile
    • Commenting
      Permission
      Disabled Forbidden Owners Signed-in users Everyone
    • Enable
    • Permission
      • Forbidden
      • Owners
      • Signed-in users
      • Everyone
    • Suggest edit
      Permission
      Disabled Forbidden Owners Signed-in users Everyone
    • Enable
    • Permission
      • Forbidden
      • Owners
      • Signed-in users
    • Emoji Reply
    • Enable
    • Versions and GitHub Sync
    • Note settings
    • Engagement control
    • Transfer ownership
    • Delete this note
    • Save as template
    • Insert from template
    • Import from
      • Dropbox
      • Google Drive
      • Gist
      • Clipboard
    • Export to
      • Dropbox
      • Google Drive
      • Gist
    • Download
      • Markdown
      • HTML
      • Raw HTML
Menu Note settings Sharing URL Create Help
Create Create new note Create a note from template
Menu
Options
Versions and GitHub Sync Engagement control Transfer ownership Delete this note
Import from
Dropbox Google Drive Gist Clipboard
Export to
Dropbox Google Drive Gist
Download
Markdown HTML Raw HTML
Back
Sharing URL Link copied
/edit
View mode
  • Edit mode
  • View mode
  • Book mode
  • Slide mode
Edit mode View mode Book mode Slide mode
Customize slides
Note Permission
Read
Only me
  • Only me
  • Signed-in users
  • Everyone
Only me Signed-in users Everyone
Write
Only me
  • Only me
  • Signed-in users
  • Everyone
Only me Signed-in users Everyone
Engagement control Commenting, Suggest edit, Emoji Reply
Invitee
Publish Note

Share your work with the world Congratulations! 🎉 Your note is out in the world Publish Note

Your note will be visible on your profile and discoverable by anyone.
Your note is now live.
This note is visible on your profile and discoverable online.
Everyone on the web can find and read all notes of this public team.
See published notes
Unpublish note
Please check the box to agree to the Community Guidelines.
View profile
Engagement control
Commenting
Permission
Disabled Forbidden Owners Signed-in users Everyone
Enable
Permission
  • Forbidden
  • Owners
  • Signed-in users
  • Everyone
Suggest edit
Permission
Disabled Forbidden Owners Signed-in users Everyone
Enable
Permission
  • Forbidden
  • Owners
  • Signed-in users
Emoji Reply
Enable
Import from Dropbox Google Drive Gist Clipboard
   owned this note    owned this note      
Published Linked with GitHub
4
Subscribed
  • Any changes
    Be notified of any changes
  • Mention me
    Be notified of mention me
  • Unsubscribe
Subscribe
# 旋轉矩陣及四元數的空間轉換 ###### tags: `articles` **作者: [鄭聖文](http://wiki.csie.ncku.edu.tw/User/shengwen)** **E-mail:** `shengwen1997.tw@gmail.com` **本文章以 `創用CC 姓名標示─非商業性─相同方式分享` 授權** ![](https://i.imgur.com/v5kNGVI.png) ## 前言 旋轉矩陣及四元數是用來描述四軸飛行器、機械手臂或是各式機器人姿態的基本數學公式,本文是依照我的理解所撰寫的一篇導讀,若有錯誤,麻煩請您來信指正。 ## 歐拉角及旋轉矩陣 歐拉角(Euler angle)是用於表示兩座標系之間相對應的角度關係,從一座標系至一座標系的轉換可以以一線性轉換進行描述。 給出沿著$x$軸旋轉$\phi$度的轉換: $\pmatrix{x' \\ y' \\ z'} = \pmatrix{1 & 0 & 0 \\ 0 & cos\phi & -sin\phi \\ 0 & sin\phi & cos\phi}\pmatrix{x \\ y \\ z}$ &#160; &#160;&#160;&#160;&#160;&#160; ![](https://i.imgur.com/0oAC6S5.png) 給出沿著$y$軸旋轉$\theta$度的轉換: $\pmatrix{x' \\ y' \\ z'} = \pmatrix{cos\theta & 0 & sin\theta \\ 0 & 1 & 0 \\ -sin\theta & 0 & cos\theta}\pmatrix{x \\ y \\ z}$ &#160; &#160;&#160;&#160;&#160;&#160; ![](https://i.imgur.com/o3F0zyn.png) 給出沿著$z$軸旋轉$\psi$度的轉換: $\pmatrix{x' \\ y' \\ z'} = \pmatrix{cos\psi & -sin\psi & 0 \\sin\psi & cos\psi & 0 \\ 0 & 0 & 1}\pmatrix{x \\ y \\ z}$ &#160; &#160;&#160;&#160;&#160;&#160; ![](https://i.imgur.com/tjb6CRT.png) 分別列出上面三組所使用到的轉換矩陣$R_x$, $R_y$以及$R_z$, 我們以下標表示旋轉軸: $$R_x = \pmatrix{1 & 0 & 0 \\ 0 & cos\phi & -sin\phi \\ 0 & sin\phi & cos\phi}$$ $$R_y = \pmatrix{cos\theta & 0 & sin\theta \\ 0 & 1 & 0 \\ -sin\theta & 0 & cos\theta}$$ $$R_z = \pmatrix{cos\psi & -sin\psi & 0 \\sin\psi & cos\psi & 0 \\ 0 & 0 & 1}$$ 接著可以定義由載體參考系(body frame of reference)旋轉至慣性參考系(Inertial frame of reference)的數學公式: $$\pmatrix{x_i \\ y_i \\ z_i} = R_z R_y R_x \pmatrix{x_b \\ y_b \\ z_b} = R^i_b \pmatrix{x_b \\ y_b \\ z_b}$$ 我們以$R_b^i$表示載體到慣性(body to interial)的轉換: $$R_b^i = R_{z}R_{y}R_{x}$$ $$= \pmatrix{\cos\psi\cos\theta & -\sin\psi\cos\phi+\cos\psi\sin\theta\sin\phi & \sin\psi\sin\phi+\cos\psi\cos\phi\sin\theta \\ \sin\psi\cos\theta & \cos\psi\cos\phi+\sin\phi\sin\theta\sin\psi & -\cos\psi\sin\phi+\sin\theta\sin\psi\cos\phi \\ -\sin\theta & \cos\theta\sin\phi & cos\theta\cos\phi}$$ 旋轉矩陣並不具有交換律,以上我們以$(x-y-z)$的順序旋轉。 而若給定一已知旋轉矩陣,可由下式求出歐拉角: $$\pmatrix{\phi \\ \theta \\ \psi} = \pmatrix{\tan^{-1}(\frac{r_{32}}{r_{33}}) \\ \sin^{-1}(-r_{31}) \\ \tan^{-1}(\frac{r_{21}}{r_{11}})} = \pmatrix{\tan^{-1}(\frac{\cos\theta\sin\phi}{cos\theta\cos\phi}) \\ \sin^{-1}(-(-\sin\theta)) \\ \tan^{-1}(\frac{\sin\psi\cos\theta}{\cos\psi\cos\theta})}$$ 旋轉矩陣的逆轉換可由反矩陣取得: $$\pmatrix{x_b \\ y_b \\ z_b} = R_x^{-1} R_y^{-1} R_z^{-1} \pmatrix{x_i \\ y_i \\ z_i} = R^b_i \pmatrix{x_i \\ y_i \\ z_i}$$ 而因旋轉矩陣屬於**特殊旋轉群 SO(3)**,因此逆矩陣將等價於轉置矩陣: $$R^b_i = R_{x}^{-1}R_{y}^{-1}R_{z}^{-1} = R_{x}^{\top}R_{y}^{\top}R_{z}^{\top}, \ \ \ \ \ since \ R \in SO(3)$$ ## 定義四元數之基本運算 四元數是數學家 **威廉·哈密頓 (William Rowan Hamilton)** 於1843年提出的數學概念,其用途是作為物理學表達空間的工具。四元數是複數系的擴展,因此了解複數對於理解四元數有一定幫助。 四元數由一實數與三虛數組成,可以表示如下: $$q \triangleq w+xi+yj+zk = \pmatrix{x \\ y \\ z \\ w}$$ 如同虛數一樣,四元數具有其獨特的乘法關係: $$i^2=j^2=k^2=-1$$ 以及 $$ij=k,\ ji=-k$$ $$jk=i,\ kj=-i$$ $$ki=j,\ ik=-j$$ 由上面六條規則可以發現,**四元數虛數之間相互乘法不具有交換性** 四元數的乘法關係可以整理為以下表格: <center> <img src="https://i.imgur.com/yMz9cIm.png" width="35%" height="35%"></a> <!--- | $\cdot$ | $1$ | $\ \ i$ | $\ \ j$ | $\ \ k$ | |---|---|----|----|----| | $1$ | $1$ | $\ \ i$ | $\ \ j$ | $\ \ k$ | | $i$ | $i$ | $-1$ | $\ \ k$ | $-j$ | | $j$ | $j$ | $-k$ | $-1$ | $\ \ i$ | | $k$ | $k$ | $\ \ j$ | $-i$ | $-1$ | --> </center> 我們首先定義四元數的加法: $$q_1+q_2 = (w_1+w_2)+(x_1+x_2)i+(y_1+y_2)j+(z_1+z_2)k$$ 接著定義乘法運算: $$q_1q_2=(w_1+x_1i+y_1j+z_1k)(w_2+x_2i+y_2j+z_2k)=$$ $$(w_1w_2-x_1x_2-y_1y_2-z_1z_2)\ +$$ $$(w_1x_2+x_1w_2+y_1z_2-z_1y_2)i\ +$$ $$(w_1y_2+x_1z_2+y_1w_2+z_1x_2)j\ +$$ $$(w_1z_2+x_1y_2-y_1x_2+z_1w_2)k$$ 上式可以從乘法表中導出。 可以將四元數的實數部及虛數部拆開寫作下式: $$q=s+\vec{v}$$ 因此乘法可寫作: $$q_1q_2=s_1s_2-\vec{v_1}\vec{v_2}+s_1\vec{v_2}+s_2\vec{v_1}+\vec{v_1}\times\vec{v_2}$$ 上式的$\times$為向量運算之外積運算。 而四元數乘法亦可以矩陣形式表示: $$\pmatrix{x\\y\\z\\w}=\pmatrix{w_1&-z_1&y_1&x_1 \\ z_1&w_1&-x_1&y_1 \\ -y_1&x_1&w_1&z_1 \\ -x_1&-y_1&-z_1&w_1} \pmatrix{x_2 \\ y_2 \\ z_2 \\ w_2}$$ 在稍後的章節中,會使用到四元數乘法的逆運算,而乘法逆運算必須由四元數的共軛值求得,因此我們首先定義四元數的共軛值為: $$q^{*}=w-xi-yj-zk$$ 而四元數的長度為: $$|q|=\sqrt{q q^{*}}=\sqrt{w^2+x^2+y^2+z^2}$$ 並且由於: $$q^{-1}=\frac{1}{q}=\frac{q^{*}}{qq^{*}}=\frac{q^{*}}{|q|^2}$$ 因此四元數的乘法逆運算可由下式求得: $$q^{-1}=\frac{q^{*}}{|q|^2}$$ 而當四元數為單位四元數時($\sqrt{w^2+x^2+y^2+z^2}=1$),乘法逆運算等於共軛值: $$q^{-1}=q^{*} \ \ \ \ if\ |q|=1$$ ## 四元數的空間旋轉 根據已被證明之數學,若給出一四元數: $$q=\cos(\frac{\theta}{2})+\sin(\frac{\theta}{2})\vec{n}$$ 以及以四元數表達的一座標: $$q_{space}=\pmatrix{x\\y\\z\\0}$$ 則下式可以將點$q_{space}$相對原點旋轉$\theta$度: $$q^{'}_{space}=qq_{space}q^{-1}$$ 而$\vec{n}$是任意想要旋轉的軸。 $qq_{space}q^{-1}$可以想像為一四度空間上的旋轉,該運算除了會使原座標旋轉$\theta$度之外,也會在第四維空間上產生一位移,因此除了一次運算($q$)外,可以另一次逆運算($q^{-1}$)消除空間上的位移,但兩次運算皆會使座標旋轉$\theta$度,使最終旋轉的度數為$2\theta$度,因此我們必須選定原先的$\theta$角為$\frac{\theta}{2}$度。 ![](https://i.imgur.com/tlJTbrv.png) 接著將上式以矩陣形式描述: $$\pmatrix{x^{"}\\y^{"}\\z^{"}\\w^{"}}=\pmatrix{1-2(y^2+z^2)&2(xy-yz)&2(wy+xz)&0 \\ 2(xy+wz)&1-2(x^2+z^2)&2(yz-wx)&0 \\ 2(xz-wy)&2(yz+wx)&1-2(x^2+y^2)&0 \\ 0&0&0&1}\pmatrix{x^{'}\\y^{'}\\z^{'}\\w^{'}}$$ 亦可將行4列4省略記做下式: $$\pmatrix{x^{"}\\y^{"}\\z^{"}}=\pmatrix{1-2(y^2+z^2)&2(xy-yz)&2(wy+xz) \\ 2(xy+wz)&1-2(x^2+z^2)&2(yz-wx) \\ 2(xz-wy)&2(yz+wx)&1-2(x^2+y^2)}\pmatrix{x^{'}\\y^{'}\\z^{'}}$$ 接著擴展$q=\cos(\frac{\theta}{2})+\sin(\frac{\theta}{2})\vec{n}$使得我們可以一次描述$(x-y-z)$三軸的旋轉: $$q=q_zq_yq_x=(\cos(\frac{\psi}{2})+\sin(\frac{\psi}{2})\vec{k})(\cos(\frac{\theta}{2})+\sin(\frac{\theta}{2})\vec{j})(\cos(\frac{\phi}{2})+\sin(\frac{\phi}{2})\vec{i})$$ $$\rightarrow \pmatrix{x\\y\\z\\w}=\pmatrix{\sin(\frac{\phi}{2})\cos(\frac{\theta}{2})cos(\frac{\psi}{2})-\cos(\frac{\phi}{2})\sin(\frac{\theta}{2})\sin(\frac{\psi}{2}) \\ \cos(\frac{\phi}{2})\sin(\frac{\theta}{2})cos(\frac{\psi}{2})+\sin(\frac{\phi}{2})\cos(\frac{\theta}{2})\sin(\frac{\psi}{2}) \\ \cos(\frac{\phi}{2})\cos(\frac{\theta}{2})sin(\frac{\psi}{2})-\sin(\frac{\phi}{2})\sin(\frac{\theta}{2})\cos(\frac{\psi}{2}) \\ \cos(\frac{\phi}{2})\cos(\frac{\theta}{2})cos(\frac{\psi}{2})+\sin(\frac{\phi}{2})\sin(\frac{\theta}{2})\sin(\frac{\psi}{2})}$$ 注意,四元數乘法並不具備交換性,改變順序將會導致結果改變。 而數學上由於旋轉矩陣與四元數具有對稱性,因此由: $$\pmatrix{\cos\psi\cos\theta & -\sin\psi\cos\phi+\cos\psi\sin\theta\sin\phi & \sin\psi\sin\phi+\cos\psi\cos\phi\sin\theta \\ \sin\psi\cos\theta & \cos\psi\cos\phi+\sin\phi\sin\theta\sin\psi & -\cos\psi\sin\phi+\sin\theta\sin\psi\cos\phi \\ -\sin\theta & \cos\theta\sin\phi & cos\theta\cos\phi}$$ $$\pmatrix{\phi \\ \theta \\ \psi} = \pmatrix{\tan^{-1}(\frac{r_{32}}{r_{33}}) \\ \sin^{-1}(-r_{31}) \\ \tan^{-1}(\frac{r_{21}}{r_{11}})} = \pmatrix{\tan^{-1}(\frac{\cos\theta\sin\phi}{cos\theta\cos\phi}) \\ \sin^{-1}(-(-\sin\theta)) \\ \tan^{-1}(\frac{\sin\psi\cos\theta}{\cos\psi\cos\theta})}$$ 可以給出: $$\pmatrix{1-2(y^2+z^2)&2(xy-yz)&2(wy+xz) \\ 2(xy+wz)&1-2(x^2+z^2)&2(yz-wx) \\ 2(xz-wy)&2(yz+wx)&1-2(x^2+y^2)}$$ $$\pmatrix{\phi \\ \theta \\ \psi} = \pmatrix{\tan^{-1}(\frac{q_{32}}{q_{33}}) \\ \sin^{-1}(-q_{31}) \\ \tan^{-1}(\frac{q_{21}}{q_{11}})} = \pmatrix{\tan^{-1}(\frac{2(yz+wx)}{1-2(x^2+y^2)}) \\ \sin^{-1}(2(xz-wy)) \\ \tan^{-1}(\frac{2(xy+wz)}{1-2(y^2+z^2)})}$$ 由上式便可將四元數轉換回歐拉角。 ## 參考資料 [1] Conversion between quaternions and Euler angles, Wikipedia

Import from clipboard

Paste your markdown or webpage here...

Advanced permission required

Your current role can only read. Ask the system administrator to acquire write and comment permission.

This team is disabled

Sorry, this team is disabled. You can't edit this note.

This note is locked

Sorry, only owner can edit this note.

Reach the limit

Sorry, you've reached the max length this note can be.
Please reduce the content or divide it to more notes, thank you!

Import from Gist

Import from Snippet

or

Export to Snippet

Are you sure?

Do you really want to delete this note?
All users will lose their connection.

Create a note from template

Create a note from template

Oops...
This template has been removed or transferred.
Upgrade
All
  • All
  • Team
No template.

Create a template

Upgrade

Delete template

Do you really want to delete this template?
Turn this template into a regular note and keep its content, versions, and comments.

This page need refresh

You have an incompatible client version.
Refresh to update.
New version available!
See releases notes here
Refresh to enjoy new features.
Your user state has changed.
Refresh to load new user state.

Sign in

Forgot password

or

By clicking below, you agree to our terms of service.

Sign in via Facebook Sign in via Twitter Sign in via GitHub Sign in via Dropbox Sign in with Wallet
Wallet ( )
Connect another wallet

New to HackMD? Sign up

Help

  • English
  • 中文
  • Français
  • Deutsch
  • 日本語
  • Español
  • Català
  • Ελληνικά
  • Português
  • italiano
  • Türkçe
  • Русский
  • Nederlands
  • hrvatski jezik
  • język polski
  • Українська
  • हिन्दी
  • svenska
  • Esperanto
  • dansk

Documents

Help & Tutorial

How to use Book mode

Slide Example

API Docs

Edit in VSCode

Install browser extension

Contacts

Feedback

Discord

Send us email

Resources

Releases

Pricing

Blog

Policy

Terms

Privacy

Cheatsheet

Syntax Example Reference
# Header Header 基本排版
- Unordered List
  • Unordered List
1. Ordered List
  1. Ordered List
- [ ] Todo List
  • Todo List
> Blockquote
Blockquote
**Bold font** Bold font
*Italics font* Italics font
~~Strikethrough~~ Strikethrough
19^th^ 19th
H~2~O H2O
++Inserted text++ Inserted text
==Marked text== Marked text
[link text](https:// "title") Link
![image alt](https:// "title") Image
`Code` Code 在筆記中貼入程式碼
```javascript
var i = 0;
```
var i = 0;
:smile: :smile: Emoji list
{%youtube youtube_id %} Externals
$L^aT_eX$ LaTeX
:::info
This is a alert area.
:::

This is a alert area.

Versions and GitHub Sync
Get Full History Access

  • Edit version name
  • Delete

revision author avatar     named on  

More Less

Note content is identical to the latest version.
Compare
    Choose a version
    No search result
    Version not found
Sign in to link this note to GitHub
Learn more
This note is not linked with GitHub
 

Feedback

Submission failed, please try again

Thanks for your support.

On a scale of 0-10, how likely is it that you would recommend HackMD to your friends, family or business associates?

Please give us some advice and help us improve HackMD.

 

Thanks for your feedback

Remove version name

Do you want to remove this version name and description?

Transfer ownership

Transfer to
    Warning: is a public team. If you transfer note to this team, everyone on the web can find and read this note.

      Link with GitHub

      Please authorize HackMD on GitHub
      • Please sign in to GitHub and install the HackMD app on your GitHub repo.
      • HackMD links with GitHub through a GitHub App. You can choose which repo to install our App.
      Learn more  Sign in to GitHub

      Push the note to GitHub Push to GitHub Pull a file from GitHub

        Authorize again
       

      Choose which file to push to

      Select repo
      Refresh Authorize more repos
      Select branch
      Select file
      Select branch
      Choose version(s) to push
      • Save a new version and push
      • Choose from existing versions
      Include title and tags
      Available push count

      Pull from GitHub

       
      File from GitHub
      File from HackMD

      GitHub Link Settings

      File linked

      Linked by
      File path
      Last synced branch
      Available push count

      Danger Zone

      Unlink
      You will no longer receive notification when GitHub file changes after unlink.

      Syncing

      Push failed

      Push successfully