Jephian Lin
    • Create new note
    • Create a note from template
      • Sharing URL Link copied
      • /edit
      • View mode
        • Edit mode
        • View mode
        • Book mode
        • Slide mode
        Edit mode View mode Book mode Slide mode
      • Customize slides
      • Note Permission
      • Read
        • Only me
        • Signed-in users
        • Everyone
        Only me Signed-in users Everyone
      • Write
        • Only me
        • Signed-in users
        • Everyone
        Only me Signed-in users Everyone
      • Engagement control Commenting, Suggest edit, Emoji Reply
    • Invite by email
      Invitee

      This note has no invitees

    • Publish Note

      Share your work with the world Congratulations! 🎉 Your note is out in the world Publish Note

      Your note will be visible on your profile and discoverable by anyone.
      Your note is now live.
      This note is visible on your profile and discoverable online.
      Everyone on the web can find and read all notes of this public team.
      See published notes
      Unpublish note
      Please check the box to agree to the Community Guidelines.
      View profile
    • Commenting
      Permission
      Disabled Forbidden Owners Signed-in users Everyone
    • Enable
    • Permission
      • Forbidden
      • Owners
      • Signed-in users
      • Everyone
    • Suggest edit
      Permission
      Disabled Forbidden Owners Signed-in users Everyone
    • Enable
    • Permission
      • Forbidden
      • Owners
      • Signed-in users
    • Emoji Reply
    • Enable
    • Versions and GitHub Sync
    • Note settings
    • Note Insights New
    • Engagement control
    • Transfer ownership
    • Delete this note
    • Save as template
    • Insert from template
    • Import from
      • Dropbox
      • Google Drive
      • Gist
      • Clipboard
    • Export to
      • Dropbox
      • Google Drive
      • Gist
    • Download
      • Markdown
      • HTML
      • Raw HTML
Menu Note settings Note Insights Versions and GitHub Sync Sharing URL Create Help
Create Create new note Create a note from template
Menu
Options
Engagement control Transfer ownership Delete this note
Import from
Dropbox Google Drive Gist Clipboard
Export to
Dropbox Google Drive Gist
Download
Markdown HTML Raw HTML
Back
Sharing URL Link copied
/edit
View mode
  • Edit mode
  • View mode
  • Book mode
  • Slide mode
Edit mode View mode Book mode Slide mode
Customize slides
Note Permission
Read
Only me
  • Only me
  • Signed-in users
  • Everyone
Only me Signed-in users Everyone
Write
Only me
  • Only me
  • Signed-in users
  • Everyone
Only me Signed-in users Everyone
Engagement control Commenting, Suggest edit, Emoji Reply
  • Invite by email
    Invitee

    This note has no invitees

  • Publish Note

    Share your work with the world Congratulations! 🎉 Your note is out in the world Publish Note

    Your note will be visible on your profile and discoverable by anyone.
    Your note is now live.
    This note is visible on your profile and discoverable online.
    Everyone on the web can find and read all notes of this public team.
    See published notes
    Unpublish note
    Please check the box to agree to the Community Guidelines.
    View profile
    Engagement control
    Commenting
    Permission
    Disabled Forbidden Owners Signed-in users Everyone
    Enable
    Permission
    • Forbidden
    • Owners
    • Signed-in users
    • Everyone
    Suggest edit
    Permission
    Disabled Forbidden Owners Signed-in users Everyone
    Enable
    Permission
    • Forbidden
    • Owners
    • Signed-in users
    Emoji Reply
    Enable
    Import from Dropbox Google Drive Gist Clipboard
       Owned this note    Owned this note      
    Published Linked with GitHub
    • Any changes
      Be notified of any changes
    • Mention me
      Be notified of mention me
    • Unsubscribe
    # 譜分解 ![Creative Commons License](https://i.creativecommons.org/l/by/4.0/88x31.png) This work by Jephian Lin is licensed under a [Creative Commons Attribution 4.0 International License](http://creativecommons.org/licenses/by/4.0/). $\newcommand{\trans}{^\top} \newcommand{\adj}{^{\rm adj}} \newcommand{\cof}{^{\rm cof}} \newcommand{\inp}[2]{\left\langle#1,#2\right\rangle} \newcommand{\dunion}{\mathbin{\dot\cup}} \newcommand{\bzero}{\mathbf{0}} \newcommand{\bone}{\mathbf{1}} \newcommand{\ba}{\mathbf{a}} \newcommand{\bb}{\mathbf{b}} \newcommand{\bc}{\mathbf{c}} \newcommand{\bd}{\mathbf{d}} \newcommand{\be}{\mathbf{e}} \newcommand{\bh}{\mathbf{h}} \newcommand{\bp}{\mathbf{p}} \newcommand{\bq}{\mathbf{q}} \newcommand{\br}{\mathbf{r}} \newcommand{\bx}{\mathbf{x}} \newcommand{\by}{\mathbf{y}} \newcommand{\bz}{\mathbf{z}} \newcommand{\bu}{\mathbf{u}} \newcommand{\bv}{\mathbf{v}} \newcommand{\bw}{\mathbf{w}} \newcommand{\tr}{\operatorname{tr}} \newcommand{\nul}{\operatorname{null}} \newcommand{\rank}{\operatorname{rank}} %\newcommand{\ker}{\operatorname{ker}} \newcommand{\range}{\operatorname{range}} \newcommand{\Col}{\operatorname{Col}} \newcommand{\Row}{\operatorname{Row}} \newcommand{\spec}{\operatorname{spec}} \newcommand{\vspan}{\operatorname{span}} \newcommand{\Vol}{\operatorname{Vol}} \newcommand{\sgn}{\operatorname{sgn}} \newcommand{\idmap}{\operatorname{id}} \newcommand{\am}{\operatorname{am}} \newcommand{\gm}{\operatorname{gm}}$ ```python from lingeo import random_int_list from linspace import QR ``` ## Main idea Continuing the introduction of the spectral decomposition in 313, this section will provide the theoretical foundation of it. Let $A$ be an $n\times n$ real symmetric matrix. Recall that the spectral theorem ensures the following equivalent properties. - There is an orthogonal matrix $Q$ such that $Q\trans AQ$ is diagonal. - There is an orthonormal basis $\{\bv_1,\ldots, \bv_n\}$ of $\mathbb{R}^n$ such that $A\bv_i = \lambda_i\bv_i$ for some $\lambda_i$ for each $i = 1,\ldots, n$. Here $Q$ is the matrix whose columns are $\{\bv_1, \ldots, \bv_n\}$. Equivalently, we may write $$ A = QDQ^\top = \begin{bmatrix} | & ~ & | \\ {\bf v}_1 & \cdots & {\bf v}_n \\ | & ~ & | \end{bmatrix} \begin{bmatrix} \lambda_1 & ~ & ~ \\ ~ & \ddots & ~ \\ ~ & ~ & \lambda_n \\ \end{bmatrix} \begin{bmatrix} - & {\bf v}_1^\top & - \\ ~ & \vdots & ~\\ - & {\bf v}_n^\top & - \end{bmatrix} = \sum_{i = 1}^n \lambda_i {\bf v}_i{\bf v}_i^\top. $$ Suppose $\{\lambda_1,\ldots,\lambda_n\}$ only has $q$ distinct values $\{\mu_1,\ldots, \mu_q\}$. For each $j = 1,\ldots, q$, we may let $\displaystyle P_j = \sum_{\lambda_i = \mu_j} {\bf v}_i{\bf v}_i^\top$. Thus, we have the following. ##### Spectral theorem (projection version) Let $A$ be an $n\times n$ symmetric matrix. Then there are $q$ distinct values $\mu_1,\ldots, \mu_q$ and $q$ projection matrices $P_1,\ldots, P_q$ such that - $A = \sum_{j=1}^q \mu_j P_j$, - $P_i^2 = P_i$ for any $i$, - $P_iP_j = O$ for any $i$ and $j$, and - $\sum_{j=1}^q P_j = I_n$. ## Side stories - $P_i$ as a polynomial of $A$ - orthogonal projection matrix - eigenvector-eigenvalue identity ## Experiments ##### Exercise 1 執行以下程式碼。 ```python ### code set_random_seed(0) print_ans = None while True: L = matrix(3, random_int_list(9, 2)) eigs = random_int_list(2) if L.is_invertible() and eigs[0] != eigs[1]: break Q,R = QR(L) for j in range(3): v = Q[:,j] length = sqrt((v.transpose() * v)[0,0]) Q[:,j] = v / length eigs.append(eigs[-1]) D = diagonal_matrix(eigs) A = Q * D * Q.transpose() pretty_print(LatexExpr("A ="), A) pretty_print(LatexExpr("A = Q D Q^{-1} ="), Q, D, Q.transpose()) if print_ans: print("eigenvalues of A:", eigs) print("eigenvectors of A = columns of Q") pretty_print(LatexExpr("A ="), eigs[0], Q[:,0]*Q[:,0].transpose(), LatexExpr("+"), eigs[1], Q[:,1:]*Q[:,1:].transpose()) ``` ##### Exercise 1(a) 求 $A$ 的所有特徵值及其對應的特徵向量。 **答:** 藉由 `seed = 0` 得到 $$ A = \begin{bmatrix} \frac{8}{3} & \frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{8}{3} & -\frac{1}{3} \\ \frac{1}{3} & -\frac{1}{3} & \frac{8}{3} \\ \end{bmatrix}. $$ 找 $p_A(x) = \det(A-xI) = -(x-2)(x-3)^2$ ,若 $p_A(x) = 0$ ,即可得 $\spec(A) = \{2,3,3\}$ 。 ##### Exercise 1(b) 求 $A$ 的譜分解。 **[由温佳明同學提供]** 藉由 `seed = 0` 得到 $$ A = \begin{bmatrix} \frac{8}{3} & \frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & \frac{8}{3} & -\frac{1}{3} \\ \frac{1}{3} & -\frac{1}{3} & \frac{8}{3} \\ \end{bmatrix}. $$ 找 $p_A(x) = \det(A-xI) = -(x-2)(x-3)^2$ ,若 $p_A(x) = 0$ ,即可得 $\spec(A) = \{2,3,3\}$ 。 找每一個 $\ker(A - \lambda I)$ 的基底,且每一個 $\ker(A - \lambda I)$ 的基底必要垂直且長度為 $1$。 $\lambda = 2$, $A-\lambda I = \begin{bmatrix} \frac{2}{3} & \frac{1}{3}&\frac{1}{3} \\ \frac{1}{3} & \frac{2}{3}& -\frac{1}{3} \\ \frac{1}{3} & -\frac{1}{3}& \frac{2}{3} \\ \end{bmatrix}$ , $\ker(A-\lambda I) = \vspan\left\{\begin{bmatrix}-1\\1\\1\end{bmatrix}\right\}=\vspan\left\{\begin{bmatrix}\frac{-1}{\sqrt3} \\\frac{1}{\sqrt3}\\ \frac{1}{\sqrt3}\\\end{bmatrix}\right\}$ $\lambda = 3$, $A - \lambda I = \begin{bmatrix} -\frac{1}{3} & \frac{1}{3}&\frac{1}{3} \\ \frac{1}{3} & -\frac{1}{3}& -\frac{1}{3} \\ \frac{1}{3} & -\frac{1}{3}& -\frac{1}{3} \\ \end{bmatrix}$, $\ker(A-\lambda I) = \vspan\left\{\begin{bmatrix}1\\1\\0\end{bmatrix} 、\begin{bmatrix}1\\-1\\2\end{bmatrix}\right\}= \vspan\left\{\begin{bmatrix}\frac{1}{\sqrt2} \\\frac{1}{\sqrt2}\\0\\\end{bmatrix} 、\begin{bmatrix}\frac{1}{\sqrt6} \\\frac{-1}{\sqrt6}\\ \frac{2}{\sqrt6}\\\end{bmatrix}\right\}.$ 建構一個 $S$ 由每一個 $\ker(A - \lambda I)$ 的基底所組成 $$S = \begin{bmatrix} \frac{-1}{\sqrt3} & \frac{1}{\sqrt2} & \frac{1}{\sqrt6} \\ \frac{1}{\sqrt3}& \frac{1}{\sqrt2}& \frac{-1}{\sqrt6} \\ \frac{1}{\sqrt3} & 0 & \frac{2}{\sqrt6} \\ \end{bmatrix}. $$ 根據 $\spec(A) = \{2,3,3\}$, $$A = 2P_1 + 3P_2. $$ 令 $\bu_1,\bu_2,\bu_3$ 為 $S$ 的各向量,則取 $P_1 = \bu_1\bu_1\trans$ 及 $P_2 = \bu_2\bu_2\trans + \bu_3\bu_3\trans$ $P_1 = \begin{bmatrix}\frac{-1}{\sqrt3} \\\frac{1}{\sqrt3}\\\frac{1}{\sqrt3}\\\end{bmatrix}\begin{bmatrix}\frac{-1}{\sqrt3} &\frac{1}{\sqrt3}&\frac{1}{\sqrt3}\\\end{bmatrix}= \begin{bmatrix} \frac{1}{3} & - \frac{1}{3} & - \frac{1}{3}\\ -\frac{1}{3} & \frac{1}{3} & \frac{1}{3}\\ -\frac{1}{3} & \frac{1}{3} & \frac{1}{3}\\ \end{bmatrix}.$ $P_2= \begin{bmatrix}\frac{1}{\sqrt2} \\\frac{1}{\sqrt2}\\0\\\end{bmatrix}\begin{bmatrix}\frac{1}{\sqrt2} &\frac{1}{\sqrt2}&0\\\end{bmatrix}+\begin{bmatrix}\frac{1}{\sqrt6} \\\frac{-1}{\sqrt6}\\\frac{2}{\sqrt6}\\\end{bmatrix}\begin{bmatrix}\frac{1}{\sqrt6} &\frac{-1}{\sqrt6}&\frac{2}{\sqrt6}\\\end{bmatrix} = \begin{bmatrix} \frac{1}{2} &\frac{1}{2} & 0\\ \frac{1}{2} &\frac{1}{2} & 0\\ 0 & 0 & 0\\ \end{bmatrix}+ \begin{bmatrix} \frac{1}{6} &-\frac{1}{6} & \frac{1}{3}\\ -\frac{1}{6} &\frac{1}{6} & -\frac{1}{3}\\ \frac{1}{3}& -\frac{1}{3}& \frac{2}{3}\\ \end{bmatrix}=\begin{bmatrix} \frac{2}{3} &\frac{1}{3} & \frac{1}{3}\\ \frac{1}{3} &\frac{2}{3}& -\frac{1}{3}\\ \frac{1}{3}& -\frac{1}{3}& \frac{2}{3}\\ \end{bmatrix}$ 故 $A = 2\begin{bmatrix} \frac{1}{3} & - \frac{1}{3} & - \frac{1}{3}\\ -\frac{1}{3} & \frac{1}{3} & \frac{1}{3}\\ -\frac{1}{3} & \frac{1}{3} & \frac{1}{3}\\ \end{bmatrix} + 3\begin{bmatrix} \frac{2}{3} &\frac{1}{3} & \frac{1}{3}\\ \frac{1}{3} &\frac{2}{3}& -\frac{1}{3}\\ \frac{1}{3}& -\frac{1}{3}& \frac{2}{3}\\ \end{bmatrix}.$ ## Exercises ##### Exercise 2 求以下矩陣的譜分解。 ##### Exercise 2(a) $$ A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}. $$ **[由温佳明同學提供]** 找 $p_A(x) = \det(A-xI) = (x+1)(x-1)$ , 若 $p_A(x) = 0$ ,即可得 $\spec(A) = \{1,-1\}$ 。 找每一個 $\ker(A - \lambda I)$ 的基底,且每一個 $\ker(A - \lambda I)$ 的基底必要垂直且長度為 $1$。 $\lambda = 1$ , $A-\lambda I = \begin{bmatrix} -1 & 1 \\ 1 & -1 \end{bmatrix}$ , $\ker(A-\lambda I) = \vspan\left\{\begin{bmatrix}1\\1\end{bmatrix}\right\} = \vspan\left\{\begin{bmatrix}\frac{1}{\sqrt2}\\\frac{1}{\sqrt2}\end{bmatrix}\right\}.$ $\lambda = -1$ , $A-\lambda I = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$ , $\ker(A-\lambda I) = \vspan\left\{\begin{bmatrix}1\\-1\end{bmatrix}\right\} = \vspan\left\{\begin{bmatrix}\frac{1}{\sqrt2}\\\frac{-1}{\sqrt2}\end{bmatrix}\right\}.$ 建構一個 $S$ 由每一個 $\ker(A - \lambda I)$ 的基底所組成 $S= \begin{bmatrix} \frac{1}{\sqrt2} & \frac{1}{\sqrt2} \\ \frac{1}{\sqrt2} & \frac{-1}{\sqrt2} \end{bmatrix}.$ 根據 $\spec(A) = \{1,-1\}$ , $$A = 1P_1 + (-1)P_2. $$ 令 $\bu_1,\bu_2$ 為 $S$ 的各向量,則取 $P_1 = \bu_1\bu_1\trans$ 及 $P_2 = \bu_2\bu_2\trans$。 $P_1 = \begin{bmatrix}\frac{1}{\sqrt2} \\\frac{1}{\sqrt2}\\\end{bmatrix}$$\begin{bmatrix}\frac{1}{\sqrt2} &\frac{1}{\sqrt2}\\\end{bmatrix}= \begin{bmatrix}\frac{1}{2} & \frac{1}{2}\\\frac{1}{2} & \frac{1}{2} \end{bmatrix}.$ $P_2 = \begin{bmatrix}\frac{1}{\sqrt2} \\\frac{-1}{\sqrt2}\\\end{bmatrix}$$\begin{bmatrix}\frac{1}{\sqrt2} &\frac{-1}{\sqrt2}\\\end{bmatrix}=\begin{bmatrix}\frac{1}{2} & \frac{-1}{2}\\\frac{-1}{2} & \frac{1}{2}\end{bmatrix}.$ 故 $A = 1\begin{bmatrix}\frac{1}{2} & \frac{1}{2}\\\frac{1}{2} & \frac{1}{2}\end{bmatrix} + (-1)\begin{bmatrix}\frac{1}{2} & \frac{-1}{2}\\\frac{-1}{2} & \frac{1}{2}\end{bmatrix}=\begin{bmatrix} 0 & 1 \\ 1 & 0\end{bmatrix}.$ ##### Exercise 2(b) $$ A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \\ \end{bmatrix}. $$ **[由温佳明同學提供]** 找 $p_A(x) = \det(A-xI) = x^2(-x+3)$ ,若 $p_A(x) = 0$ ,即可得 $\spec(A) = \{0,0,3\}$ 。 找每一個 $\ker(A - \lambda I)$ 的基底,且每一個 $\ker(A - \lambda I)$ 的基底必要垂直且長度為 $1$。 $\lambda = 3$ , $A-\lambda I = \begin{bmatrix} -2 & 1 & 1 \\ 1 & -2 & 1 \\ 1 & 1 & -2 \\ \end{bmatrix}$ , $\ker(A-\lambda I) = \vspan\left\{\begin{bmatrix}1\\1\\1\end{bmatrix}\right\}=\vspan\left\{\begin{bmatrix}\frac{1}{\sqrt3} \\\frac{1}{\sqrt3}\\ \frac{1}{\sqrt3}\\\end{bmatrix}\right\}$ $\lambda = 0.$ $A - \lambda I = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \\\end{bmatrix}$, $\ker(A-\lambda I) = \vspan\left\{\begin{bmatrix}-1\\1\\0\end{bmatrix},\begin{bmatrix}1\\1\\-2\end{bmatrix}\right\}= \vspan\left\{\begin{bmatrix}\frac{-1}{\sqrt2} \\\frac{1}{\sqrt2}\\0\\\end{bmatrix},\begin{bmatrix}\frac{1}{\sqrt6} \\\frac{1}{\sqrt6}\\ \frac{-2}{\sqrt6}\\\end{bmatrix}\right\}.$ 建構一個 $S$ 由每一個 $\ker(A - \lambda I)$ 的基底所組成 $$S = \begin{bmatrix} \frac{1}{\sqrt3} & \frac{-1}{\sqrt2} & \frac{1}{\sqrt6} \\ \frac{1}{\sqrt3}& \frac{1}{\sqrt2}& \frac{1}{\sqrt6} \\ \frac{1}{\sqrt3} & 0 & \frac{-2}{\sqrt6} \\ \end{bmatrix}.$$ 根據 $\lambda = 0,0,3$ $$A=3P_1+0P_2. $$ 令 $\bu_1,\bu_2,\bu_3$ 為 $S$ 的各向量,則取 $P_1 = \bu_1\bu_1\trans$ 及 $P_2 = \bu_2\bu_2\trans + \bu_3\bu_3\trans$ $P_1 = \begin{bmatrix}\frac{1}{\sqrt3} \\\frac{1}{\sqrt3}\\\frac{1}{\sqrt3}\\\end{bmatrix}\begin{bmatrix}\frac{1}{\sqrt3} &\frac{1}{\sqrt3}&\frac{1}{\sqrt3}\\\end{bmatrix}= \begin{bmatrix} \frac{1}{3} & \frac{1}{3} & \frac{1}{3}\\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3}\\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3}\\ \end{bmatrix}.$ $P_2 = \begin{bmatrix}\frac{-1}{\sqrt2} \\\frac{1}{\sqrt2}\\0\\\end{bmatrix}\begin{bmatrix}\frac{-1}{\sqrt2} &\frac{1}{\sqrt2}&0\\\end{bmatrix}+\begin{bmatrix}\frac{1}{\sqrt6} \\\frac{1}{\sqrt6}\\\frac{-2}{\sqrt6}\\\end{bmatrix}\begin{bmatrix}\frac{1}{\sqrt6} &\frac{1}{\sqrt6}&\frac{-2}{\sqrt6}\\\end{bmatrix} = \begin{bmatrix} \frac{1}{2} &\frac{-1}{2} & 0\\ \frac{-1}{2} &\frac{1}{2} & 0\\ 0 & 0 & 0\\ \end{bmatrix}+ \begin{bmatrix} \frac{1}{6} &\frac{1}{6} & -\frac{1}{3}\\ \frac{1}{6} &\frac{1}{6} & -\frac{1}{3}\\ -\frac{1}{3}& -\frac{1}{3}& \frac{2}{3}\\ \end{bmatrix}=\begin{bmatrix} \frac{2}{3} &-\frac{1}{3} &-\frac{1}{3}\\ -\frac{1}{3} &\frac{2}{3}& -\frac{1}{3}\\ -\frac{1}{3}& -\frac{1}{3}& \frac{2}{3}\\ \end{bmatrix}$ 故 $A = 3\begin{bmatrix} \frac{1}{3} & \frac{1}{3} & \frac{1}{3}\\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3}\\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3}\\ \end{bmatrix} + 0\begin{bmatrix} \frac{2}{3} &-\frac{1}{3} &-\frac{1}{3}\\ -\frac{1}{3} &\frac{2}{3}& -\frac{1}{3}\\ -\frac{1}{3}& -\frac{1}{3}& \frac{2}{3}\\ \end{bmatrix}=\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \\ \end{bmatrix}.$ ##### Exercise 2(c) $$ A = \begin{bmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{bmatrix}. $$ **[由温佳明同學提供]** 找 $p_A(x) = \det(A-xI) = -x(x-3)^2$ ,若 $p_A(x) = 0$ ,即可得 $\spec(A) = \{0,3,3\}$ 。 找每一個 $\ker(A - \lambda I)$ 的基底,且每一個 $\ker(A - \lambda I)$ 的基底必要垂直且長度為 $1$。 $\lambda = 0$ , $A-\lambda I = \begin{bmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \\ \end{bmatrix}$ , $\ker(A-\lambda I) = \vspan\left\{\begin{bmatrix}1\\1\\1\end{bmatrix}\right\}=\vspan\left\{\begin{bmatrix}\frac{1}{\sqrt3} \\\frac{1}{\sqrt3}\\ \frac{1}{\sqrt3}\\\end{bmatrix}\right\}.$ $\lambda = 3$ , $A-\lambda I = \begin{bmatrix} -1 & -1 & -1 \\ -1 & -1 & -1 \\ -1 & -1 & -1 \\ \end{bmatrix}$ , $\ker(A-\lambda I) = \vspan\left\{\begin{bmatrix}-1\\1\\0\end{bmatrix}、\begin{bmatrix}1\\1\\-2\end{bmatrix}\right\}= \vspan\left\{\begin{bmatrix}\frac{-1}{\sqrt2} \\\frac{1}{\sqrt2}\\0\\\end{bmatrix} 、\begin{bmatrix}\frac{1}{\sqrt6} \\\frac{1}{\sqrt6}\\ \frac{-2}{\sqrt6}\\\end{bmatrix}\right\}.$ 建構一個 $S$ 由每一個 $\ker(A - \lambda I)$ 的基底所組成 $$S = \begin{bmatrix} \frac{1}{\sqrt3} & \frac{-1}{\sqrt2} & \frac{1}{\sqrt6} \\ \frac{1}{\sqrt3}& \frac{1}{\sqrt2}& \frac{1}{\sqrt6} \\ \frac{1}{\sqrt3} & 0 & \frac{-2}{\sqrt6} \\ \end{bmatrix}. $$ 根據$\lambda = 0,3,3$ $$A=0P_1+3P_2. $$ 令 $\bu_1,\bu_2,\bu_3$ 為 $S$ 的各向量,則取 $P_1 = \bu_1\bu_1\trans$ 及 $P_2 = \bu_2\bu_2\trans + \bu_3\bu_3\trans.$ $P_1 = \begin{bmatrix}\frac{1}{\sqrt3} \\\frac{1}{\sqrt3}\\\frac{1}{\sqrt3}\\\end{bmatrix}\begin{bmatrix}\frac{1}{\sqrt3} &\frac{1}{\sqrt3}&\frac{1}{\sqrt3}\\\end{bmatrix}= \begin{bmatrix} \frac{1}{3} & \frac{1}{3} & \frac{1}{3}\\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3}\\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3}\\ \end{bmatrix}.$ $P_2 = \begin{bmatrix}\frac{-1}{\sqrt2} \\\frac{1}{\sqrt2}\\0\\\end{bmatrix}\begin{bmatrix}\frac{-1}{\sqrt2} &\frac{1}{\sqrt2}&0\\\end{bmatrix}+\begin{bmatrix}\frac{1}{\sqrt6} \\\frac{1}{\sqrt6}\\\frac{-2}{\sqrt6}\\\end{bmatrix}\begin{bmatrix}\frac{1}{\sqrt6} &\frac{1}{\sqrt6}&\frac{-2}{\sqrt6}\\\end{bmatrix} = \begin{bmatrix} \frac{1}{2} &\frac{-1}{2} & 0\\ \frac{-1}{2} &\frac{1}{2} & 0\\ 0 & 0 & 0\\ \end{bmatrix}+ \begin{bmatrix} \frac{1}{6} &\frac{1}{6} & -\frac{1}{3}\\ \frac{1}{6} &\frac{1}{6} & -\frac{1}{3}\\ -\frac{1}{3}& -\frac{1}{3}& \frac{2}{3}\\ \end{bmatrix}=\begin{bmatrix} \frac{2}{3} &-\frac{1}{3} &-\frac{1}{3}\\ -\frac{1}{3} &\frac{2}{3}& -\frac{1}{3}\\ -\frac{1}{3}& -\frac{1}{3}& \frac{2}{3}\\ \end{bmatrix}$ 故 $A = 0\begin{bmatrix} \frac{1}{3} & \frac{1}{3} & \frac{1}{3}\\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3}\\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3}\\ \end{bmatrix} + 3\begin{bmatrix} \frac{2}{3} &-\frac{1}{3} &-\frac{1}{3}\\ -\frac{1}{3} &\frac{2}{3}& -\frac{1}{3}\\ -\frac{1}{3}& -\frac{1}{3}& \frac{2}{3}\\ \end{bmatrix}=\begin{bmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \\ \end{bmatrix}.$ ##### Exercise 3 令 $\bu$ 為一長度為 $1$ 的實向量。 令 $P = \bu\bu\trans$。 ##### Exercise 3(a) 說明 $P$ 為垂直投影到 $\vspan\{\bu\}$ 的投影矩陣。 :::warning - [x] 我沒看出哪一部份有解釋到 "投影" ::: $Ans:$ 令 $\bu = \begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix}$。那麼, $$ \begin{array}{l} P = \bu\bu\trans &= \begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix} \begin{pmatrix} a_1 ,\cdots, a_n \end{pmatrix} = \begin{bmatrix} a_1^2 & a_1a_2 & \cdots & a_1a_n \\ a_2a_1 & a_2^2 & \cdots & a_2a_n \\ \vdots & & \ddots & \vdots \\ a_na_1 & a_na_2 & \cdots & a_n^2 \end{bmatrix} \\ &=\begin{bmatrix} a_1\begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix} & a_2\begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix} & \cdots & a_n\begin{pmatrix} a_1 \\ \vdots \\ a_n \end{pmatrix} \end{bmatrix} = \begin{bmatrix} | & | & ~ & | \\ a_1\bu & a_2\bu & \cdots & a_n\bu \\ | & | & ~ & | \end{bmatrix}. \end{array} $$ 如此,對於每一個 $\bx = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$,我們都有 $$ P\bx = a_1x_1\bu + a_2x_2\bu + \cdots + a_nx_n\bu = \inp{\bx}{\bu}\bu. $$ 因此我們得知 $P$ 為垂直投影到 $\vspan\{\bu\}$ 的投影矩陣, 並且我們從中可以看到 $P$ 為對稱矩陣。 ##### Exercise 3(b) 證明 $\tr(P\trans P) = \rank(P) = 1$。 $Ans:$ 藉由 $P$ 的形式我們可以很清楚的知道 $\rank(P) = 1$。而 $$ P\trans P = \begin{bmatrix} -& a_1\bu\trans & - \\ -& a_2\bu\trans & -\\ ~ & \vdots & ~ \\ -& a_n\bu\trans & - \end{bmatrix} \begin{bmatrix} | & | & ~ & | \\ a_1\bu & a_2\bu & \cdots & a_n\bu \\ | & | & ~ & | \end{bmatrix}= \begin{bmatrix} a_1^2\bu\trans \bu & a_1a_2\bu\trans \bu & \cdots & a_1a_n\bu\trans \bu \\ a_2a_1\bu\trans \bu & a_2^2\bu\trans \bu & \cdots & a_2a_n\bu\trans \bu \\ \vdots & ~ & \ddots & \vdots \\ a_na_1\bu\trans \bu & a_na_2\bu\trans \bu & \cdots & a_n^2\bu\trans \bu \end{bmatrix} = P. $$ 由於 $\bu\trans\bu = a_1^2 + \cdots + a_n^2 = 1$,故 $$ \tr(P\trans P) = a_1^2\bu\trans \bu + \cdots + a_n^2\bu\trans \bu = a_1^2 + \cdots + a_n^2 = 1. $$ 所以 $\tr(P\trans P) = \rank(P) = 1$。 :::info 也可以用 $\tr(AB) = \tr(BA)$ 來說明。 ::: ##### Exercise 4 令 $\{\bu_1, \ldots, \bu_d\}$ 為一群互相垂直且長度均為 $1$ 的實向量。 令 $P = \bu_1\bu_1\trans + \cdots + \bu_d\bu_d\trans$。 ##### Exercise 4(a) 說明 $P$ 為垂直投影到 $\vspan\{\bu_1,\ldots, \bu_d\}$ 的投影矩陣。 :::warning - [x] 集合 $\subseteq$ 集合,元素 $\in$ 集合;所以要寫「令 $\bu_1, \ldots, \bu_d \in \mathbb R^n$」或「令 $\{\bu_1, \ldots, \bu_d\} \subseteq \mathbb R^n$」 - [x] 這裡的 $a_1,\ldots,a_d$ 沒解釋到什麼事情? - [ ] 如果有兩個向量 $\{\bx,\by\}$ 把另一向量投影到 $\bx$ 及投影到 $\by$ 後相加,會等於這向量投影到 $\vspan\{\bx,\by\}$ 嗎? ::: $Ans:$ 假設有一向量 $\bu$ 投影到 $\bx$ 及 $\by$ 上分別為 $k\bx$,$m\by$,其中 $m,k \in \mathbb R$,$\bx,\by \in \mathbb R^n$ 且不為線性相依。那投影後的向量相加就會是 $k\bx+m\by$,也就會是我們將 $\bu$ 投影到 $\vspan{\{\bx,\by}\}$ 上。 那麼,令 $\{\bu_1, \ldots, \bu_d\} \subseteq \mathbb R^n$。 根據 **Exercise 3**,我們知道 $\bu\bu\trans$ 會垂直投影到 $\vspan{\{\bu}\}$ 上,我們可以利用這個性質以及矩陣的分配律得到 $$ P\bx = (\bu_1\bu_1\trans + \cdots + \bu_d\bu_d\trans)\bx = \bu_1\bu_1\trans\bx + \cdots + \bu_d\bu_d\trans\bx. $$ 這裡 $\bx \in \mathbb R^n$。 因此我們可以看出 $P$ 為垂直投影到 $\vspan\{\bu_1,\ldots, \bu_d\}$ 的投影矩陣。 ##### Exercise 4(b) 證明 $\tr(P\trans P) = \rank(P) = d$。 :::warning - [x] 第一段沒有解釋為什麼 $\{\bu_1,\ldots,\bu_d\}$ 獨立可以得到 $\rank(P) = d$。這應該跟 $\Col(P)$ 有關。 - [x] 後半段可以再簡單一點,因為 $\bu_1\bu\trans\bu_1\bu_1\trans = \bu_1\bu_1\trans$ ::: $Ans:$ 由於我們知道 $P$ 會把向量投影到 $\Col(P)$ 上,而 $\Col(P)$ 由 $\{\bu_1, \ldots, \bu_d\}$ 組成,又這些向量正交,所以這些向量為線性獨立。由此我們可以確定 $\rank(P) = d$。 另外,從 **Exercise 3(a)** 中我們也能知道這邊的 $P$ 也是一個對稱矩陣。所以 $$ P\trans P = P^2 = (\bu_1\bu_1\trans + \cdots + \bu_d\bu_d\trans)(\bu_1\bu_1\trans + \cdots + \bu_d\bu_d\trans). $$ 利用他們互相垂直的性質,得到 $$ (\bu_1\bu_1\trans + \cdots + \bu_d\bu_d\trans)(\bu_1\bu_1\trans + \cdots + \bu_d\bu_d\trans) = (\bu_1\bu_1\trans)^2 + \cdots + (\bu_d\bu_d\trans)^2 = \bu_1\bu_1\trans + \cdots + \bu_d\bu_d\trans. $$ 所以,$\tr(P\trans P)$ 就會是這些矩陣的對角線相加後出來的數字,而 **Exercise 3(a)** 告訴我們對於每一個 $\bu\bu\trans$,$\tr(\bu\bu\trans) = 1$。因此,$\tr(P\trans P) = d$。 得證 $\tr(P\trans P) = \rank(P) = d$。 ##### Exercise 5 一個 **垂直投影矩陣** 指的是一個可以被垂直矩陣對角化且特徵值均是 $1$ 或 $0$ 的矩陣。 令 $P$ 為一實方陣。 證明以下敘述等價: 1. $P$ 為一垂直投影矩陣。 2. $P$ 是對稱矩陣,且 $P^2 = P$。 :::warning - [x] 可是 $P$ 不見得只投到一維空間;$1\Rightarrow 2$ 的部份可以直接用投影公式 ::: $Ans:$ 設矩陣 $A$ 的行為空間 $S$ 中的垂直基底且矩陣 $P$ 垂直投影到 $S$, 由投影公式得知 $P = A(A\trans A)^{-1}A\trans$, 其中 $A\trans A = I_n$, 則 $P$ 可以化簡為 $P = AA\trans$, 將 $P$ 平方得 $$\begin{aligned} P^2 &= (AA\trans)(AA\trans)\\ &= A(A\trans A)A\trans\\ &= AA\trans = P. \end{aligned} $$ 故 $1.\Rightarrow2.$ 得證。 $2.\Rightarrow1.$ 因為 $P$ 為一個對稱矩陣, 我們可以設 $P = QDQ\trans$, 其中 $Q$ 為一個垂直矩陣、$D$ 為一個對角矩陣, 可以算出 $P^2 = PP = (QDQ\trans)(QDQ\trans) = QD^2Q\trans$, 又 $P^2 = P$, 所以 $D^2 = D$, 為滿足上述條件, $D$ 主對角線上的元素必須為 $1$ 或 $0$, 得到 $P$ 為一個可以被垂直矩陣對角化且特徵值均是 $1$ 或 $0$ 的矩陣, 故 $2.\Rightarrow1.$ 得證。 ##### Exercise 6 雖然譜分解裡的條件沒有明顯說明 $P_i$ 是垂直投影矩陣, 依照以下步驟證明下列條件 1. $A = \sum_{j=1}^q \mu_j P_j$, 2. $P_i^2 = P_i$ for any $i$, 3. $P_iP_j = O$ for any $i$ and $j$, and 4. $\sum_{j=1}^q P_j = I_n$. 足以說明每一個 $P_i$ 都是垂直投影矩陣。 ##### Exercise 6(a) 驗證 $$ \begin{aligned} I &= P_1 + \cdots + P_q, \\ A &= \mu_1 P_1 + \cdots + \mu_q P_q, \\ A^2 &= \mu_1^2 P_1 + \cdots + \mu_q^2 P_q, \\ ~ & \vdots \\ A^{q-1} &= \mu_1^{q-1} P_1 + \cdots + \mu_q^{q-1} P_q. \end{aligned} $$ 並利用拉格朗日多項式來說明對每一個 $i = 1,\ldots, q$ 來說, 都找得到一些係數 $c_0,\ldots,c_{q-1}$ 使得 $P_i = c_0 I + c_1 A + \cdots + c_{q-1} A^{q-1}$。 因此每一個 $P_i$ 都是對稱矩陣。 :::warning - [x] 沒辦法這樣寫矩陣喔... 這題要參考 311-5 或是 510-6 ::: **答:** 令 $f_1$ 使得 $f(\mu_1) = 1$ 且對 $i = 2,\ldots,q$ 都有 $f_1(\mu_i) = 0$. 將 $f_1$ 展開寫成 $f_1 = \alpha_0I + \alpha_1A + \cdots + \alpha_{q-1}A^{q-1}$。則 $$ \begin{aligned} \alpha_0(&P_1 + \cdots + P_q &= I)\\ \alpha_1(&\mu_1 P_1 + \cdots + \mu_q P_q &= A)\\ &\vdots\\ +)\alpha_{q-1}(&\mu_1^{q-1} P_1 + \cdots + \mu_q^{q-1} P_q &= A^{q-1})\\ \hline &f(\mu_1)P_1+\cdots+f(\mu_q)P_q&= \alpha_0I + \alpha_1A + \cdots + \alpha_{q-1}A^{q-1}. \end{aligned} $$ \ 而對 $i = 2,3,4,\ldots,q$ 都有 $f_1(\mu_i) = 0$。 所以 $f_1(\mu_1)P_1= \alpha_0I + \alpha_1A + \cdots + \alpha_{q-1}A^{q-1}$。 其中 $f(\mu_1) = 1$,推得 $$ P_1= \alpha_0I + \alpha_1A + \cdots + \alpha_{q-1}A^{q-1}. $$ \ 令 $f_2$ 使得 $f_2(\mu_2) = 1$ 且對 $i = 1,3,4,\ldots,q$ 都有 $f_2(\mu_i) = 0$。 將 $f_2$ 展開寫成 $\beta_0I + \beta_1A + \cdots + \beta_{q-1}A^{q-1}$。則 $$ \begin{aligned} \beta_0(&P_1 + \cdots + P_q &= I)\\ \beta_1(&\mu_1 P_1 + \cdots + \mu_q P_q &= A)\\ &\vdots\\ +)\beta_{q-1}(&\mu_1^{q-1} P_1 + \cdots + \mu_q^{q-1} P_q &= A^{q-1})\\ \hline &f(\mu_1)P_1+\cdots+f(\mu_q)P_q&= \beta_0I + \beta_1A + \cdots + \beta_{q-1}A^{q-1}. \end{aligned} $$ \ 而對 $i = 1,3,4,\ldots,q$ 都有 $f(\mu_i) = 0$。 所以 $f(\mu_2)P_2= \beta_0I + \beta_1A + \cdots + \beta_{q-1}A^{q-1}$。 其中 $f(\mu_2) = 1$,推得 $$ P_2= \beta_0I + \beta_1A + \cdots + \beta_{q-1}A^{q-1}. $$ 用以上觀點推廣對於任意 $i = 1,2,\ldots,q$,都有 $f_i(x)$ 使得 $$ P_i = c_0 I + c_1 A + \cdots + c_{q-1} A^{q-1}. $$ 其中 $c_0,\ldots,c_{q-1} \in \mathbb R$。故得證。 ##### Exercise 6(b) 說明每一個 $P_i$ 都是垂直投影矩陣。 **[由黃佑祥同學提供]** 藉由 **Exercise 6(a)** 可以得出 $P_i$ 是對稱矩陣, 而題目已經假設 $P_i^2 = P_i$。 再加上 **Exercise 5** 的等價敘述,由於 $P_i$ 為一個對稱矩陣且 $P_i^2 = P_i$ ,所以 $P_i$ 是一個垂直投影矩陣。 ##### Exercise 7 依照以下步驟證明下述定理。 ##### Eigenvector-eigenvalue identity 若 $A$ 為一 $n\times n$ 實對稱矩陣。 其特徵值為 $\lambda_1,\ldots,\lambda_n$ 且某一個 $\lambda_i$ 只出現一次沒有重覆。 令 $\bv_1,\ldots, \bv_n$ 為其相對應的特徵向量,且其形成一垂直標準基底。 $$ (A - \lambda_i I)\adj = \left(\prod_{j\neq i}(\lambda_j - \lambda_i)\right)\bv_i\bv_i\trans. $$ ##### Exercise 7(a) 說明當 $x$ 不為 $A$ 的特徵值時, $$ \begin{aligned} (A - xI)\adj &= \det(A - xI) \times \sum_{j = 1}^n (\lambda_j - x)^{-1}\bv_j\bv_j\trans \\ &= \sum_{j = 1}^n p_i(x) \bv_j\bv_j\trans, \end{aligned} $$ 其中 $$ p_j(x) = \prod_{k \neq j}(\lambda_k - x). $$ :::warning 原本題目有錯 $\bv_i\bv_i\trans$ 應該是 $\bv_j\bv_j\trans$ - [x] 由伴隨矩陣的定義得知 --> 由伴隨矩陣的性質得知 ::: 解: 由伴隨矩陣的性質得知, $$ \begin{aligned} (A - xI)\adj & \times (A - xI) = \det(A - xI)I \end{aligned}. $$ 因為 $x$ 不為 $A$ 的特徵值,所以 $(A - xI)$ 為可逆矩陣,且有下式, $$ \begin{aligned} (A - xI)\adj & = \det(A - xI) \times (A - xI)^{-1} \end{aligned}, $$ 在將 $(A - xI)^{-1}$ 對角化之前,我們先探討 $A$ 與 $(A - xI)$ 對角化的關係。 將 $A$ 對角化,求 $$ \begin{aligned} \det(A - yI) = 0 \end{aligned} $$ 的解;將 $(A - xI)$ 對角化,求 $$ \begin{aligned} \det((A - xI)-zI) = \det(A - (x+z)I) = \det(A - yI) = 0 \end{aligned} $$ 的解,其中等式成立時,$y$ 與 $z$ 分別為 $A$ 與 $(A - xI)$ 的特徵值, 故由上述得知,兩矩陣的特徵值有關係式 $z = y - x$, 且兩矩陣可以找到相同的特徵向量將其對角化。 接下來,假設 $A = QDQ^{-1}$,$D$ 為一對角矩陣,由上述推論得知, 我們有 $(A - xI) = QD'Q^{-1}$,並且可以推得 $(A - xI)^{-1} = QD'^{-1}Q^{-1}$, 其中 $$ A = QDQ^{-1} = \begin{bmatrix} | & ~ & | \\ {\bf v}_1 & \cdots & {\bf v}_n \\ | & ~ & | \end{bmatrix} \begin{bmatrix} \lambda_1 & ~ & ~ \\ ~ & \ddots & ~ \\ ~ & ~ & \lambda_n \end{bmatrix} \begin{bmatrix} - & {\bf v}_1 & - \\ ~ & \vdots & ~ \\ - & {\bf v}_n & - \end{bmatrix}, $$ $$ (A - xI)^{-1} = QD'^{-1}Q^{-1} = \begin{bmatrix} | & ~ & | \\ {\bf v}_1 & \cdots & {\bf v}_n \\ | & ~ & | \end{bmatrix} \begin{bmatrix} \frac{1}{\lambda_1 - x} & ~ & ~ \\ ~ & \ddots & ~ \\ ~ & ~ & \frac{1}{\lambda_n - x} \end{bmatrix} \begin{bmatrix} - & {\bf v}_1 & - \\ ~ & \vdots & ~ \\ - & {\bf v}_n & - \end{bmatrix}. $$ 故對於任意給定的 $x$,皆存在 $n$ 個相應的 $\frac{1}{\lambda_i - x}$,對於 $i= 1,2, \cdots ,n$,使得 $$ \begin{aligned} (A - xI)\adj &= \det(A - xI) \times (A - xI)^{-1} \\ &= \det(A - xI) \times \begin{bmatrix} | & ~ & | \\ {\bf v}_1 & \cdots & {\bf v}_n \\ | & ~ & | \end{bmatrix} \begin{bmatrix} \frac{1}{\lambda_1 - x} & ~ & ~ \\ ~ & \ddots & ~ \\ ~ & ~ & \frac{1}{\lambda_n - x} \end{bmatrix} \begin{bmatrix} - & {\bf v}_1 & - \\ ~ & \vdots & ~ \\ - & {\bf v}_n & - \end{bmatrix} \\ &= \det(A - xI) \times \sum_{j = 1}^n (\lambda_j - x)^{-1}\bv_j\bv_j\trans \\ &= \left(\prod(\lambda_i - x)\right) \times \sum_{j = 1}^n (\lambda_j - x)^{-1}\bv_j\bv_j\trans \\ &= \sum_{j = 1}^n \left(\prod_{k \neq j}(\lambda_k - x)\right)\bv_j\bv_j\trans \\ &= \sum_{j = 1}^n p_i(x) \bv_j\bv_j\trans. \end{aligned} $$ :::success Nice work! ::: ##### Exercise 7(b) 將 $x$ 趨近到 $\lambda_i$,並證明特徵向量-特徵值定理。 解: 若 $x$ 趨近到 $\lambda_i$,則在 $\sum_{j = 1}^n \left(\prod_{k \neq j}(\lambda_k - x)\right)\bv_j\bv_j\trans$ 所有的通項中, 連乘中有乘上 $(\lambda_i - x)$ 的通項可以忽略不計, 也就是說,除了第 $j=i$ 的通項以外,其餘的通項皆可視為 $0$, 所以 $\sum_{j = 1}^n \left(\prod_{k \neq j}(\lambda_k - x)\right)\bv_j\bv_j\trans$ 可以化簡為 $\left(\prod_{j\neq i}(\lambda_j - \lambda_i)\right)\bv_i\bv_i\trans$, 故當 $x$ 趨近到 $\lambda_i$,下式成立 $$ \begin{aligned} (A - xI)\adj &= \sum_{j = 1}^n \left(\prod_{k \neq j}(\lambda_k - x)\right)\bv_j\bv_j\trans \\ &= \left(\prod_{j\neq i}(\lambda_j - \lambda_i)\right)\bv_i\bv_i\trans. \end{aligned} $$ :::success Excellent! ::: :::info 目前分數 = 6 × 檢討 = 6.5 :::

    Import from clipboard

    Paste your markdown or webpage here...

    Advanced permission required

    Your current role can only read. Ask the system administrator to acquire write and comment permission.

    This team is disabled

    Sorry, this team is disabled. You can't edit this note.

    This note is locked

    Sorry, only owner can edit this note.

    Reach the limit

    Sorry, you've reached the max length this note can be.
    Please reduce the content or divide it to more notes, thank you!

    Import from Gist

    Import from Snippet

    or

    Export to Snippet

    Are you sure?

    Do you really want to delete this note?
    All users will lose their connection.

    Create a note from template

    Create a note from template

    Oops...
    This template has been removed or transferred.
    Upgrade
    All
    • All
    • Team
    No template.

    Create a template

    Upgrade

    Delete template

    Do you really want to delete this template?
    Turn this template into a regular note and keep its content, versions, and comments.

    This page need refresh

    You have an incompatible client version.
    Refresh to update.
    New version available!
    See releases notes here
    Refresh to enjoy new features.
    Your user state has changed.
    Refresh to load new user state.

    Sign in

    Forgot password

    or

    By clicking below, you agree to our terms of service.

    Sign in via Facebook Sign in via Twitter Sign in via GitHub Sign in via Dropbox Sign in with Wallet
    Wallet ( )
    Connect another wallet

    New to HackMD? Sign up

    Help

    • English
    • 中文
    • Français
    • Deutsch
    • 日本語
    • Español
    • Català
    • Ελληνικά
    • Português
    • italiano
    • Türkçe
    • Русский
    • Nederlands
    • hrvatski jezik
    • język polski
    • Українська
    • हिन्दी
    • svenska
    • Esperanto
    • dansk

    Documents

    Help & Tutorial

    How to use Book mode

    Slide Example

    API Docs

    Edit in VSCode

    Install browser extension

    Contacts

    Feedback

    Discord

    Send us email

    Resources

    Releases

    Pricing

    Blog

    Policy

    Terms

    Privacy

    Cheatsheet

    Syntax Example Reference
    # Header Header 基本排版
    - Unordered List
    • Unordered List
    1. Ordered List
    1. Ordered List
    - [ ] Todo List
    • Todo List
    > Blockquote
    Blockquote
    **Bold font** Bold font
    *Italics font* Italics font
    ~~Strikethrough~~ Strikethrough
    19^th^ 19th
    H~2~O H2O
    ++Inserted text++ Inserted text
    ==Marked text== Marked text
    [link text](https:// "title") Link
    ![image alt](https:// "title") Image
    `Code` Code 在筆記中貼入程式碼
    ```javascript
    var i = 0;
    ```
    var i = 0;
    :smile: :smile: Emoji list
    {%youtube youtube_id %} Externals
    $L^aT_eX$ LaTeX
    :::info
    This is a alert area.
    :::

    This is a alert area.

    Versions and GitHub Sync
    Get Full History Access

    • Edit version name
    • Delete

    revision author avatar     named on  

    More Less

    Note content is identical to the latest version.
    Compare
      Choose a version
      No search result
      Version not found
    Sign in to link this note to GitHub
    Learn more
    This note is not linked with GitHub
     

    Feedback

    Submission failed, please try again

    Thanks for your support.

    On a scale of 0-10, how likely is it that you would recommend HackMD to your friends, family or business associates?

    Please give us some advice and help us improve HackMD.

     

    Thanks for your feedback

    Remove version name

    Do you want to remove this version name and description?

    Transfer ownership

    Transfer to
      Warning: is a public team. If you transfer note to this team, everyone on the web can find and read this note.

        Link with GitHub

        Please authorize HackMD on GitHub
        • Please sign in to GitHub and install the HackMD app on your GitHub repo.
        • HackMD links with GitHub through a GitHub App. You can choose which repo to install our App.
        Learn more  Sign in to GitHub

        Push the note to GitHub Push to GitHub Pull a file from GitHub

          Authorize again
         

        Choose which file to push to

        Select repo
        Refresh Authorize more repos
        Select branch
        Select file
        Select branch
        Choose version(s) to push
        • Save a new version and push
        • Choose from existing versions
        Include title and tags
        Available push count

        Pull from GitHub

         
        File from GitHub
        File from HackMD

        GitHub Link Settings

        File linked

        Linked by
        File path
        Last synced branch
        Available push count

        Danger Zone

        Unlink
        You will no longer receive notification when GitHub file changes after unlink.

        Syncing

        Push failed

        Push successfully