Jephian Lin
    • Create new note
    • Create a note from template
      • Sharing URL Link copied
      • /edit
      • View mode
        • Edit mode
        • View mode
        • Book mode
        • Slide mode
        Edit mode View mode Book mode Slide mode
      • Customize slides
      • Note Permission
      • Read
        • Only me
        • Signed-in users
        • Everyone
        Only me Signed-in users Everyone
      • Write
        • Only me
        • Signed-in users
        • Everyone
        Only me Signed-in users Everyone
      • Engagement control Commenting, Suggest edit, Emoji Reply
    • Invite by email
      Invitee

      This note has no invitees

    • Publish Note

      Share your work with the world Congratulations! 🎉 Your note is out in the world Publish Note

      Your note will be visible on your profile and discoverable by anyone.
      Your note is now live.
      This note is visible on your profile and discoverable online.
      Everyone on the web can find and read all notes of this public team.
      See published notes
      Unpublish note
      Please check the box to agree to the Community Guidelines.
      View profile
    • Commenting
      Permission
      Disabled Forbidden Owners Signed-in users Everyone
    • Enable
    • Permission
      • Forbidden
      • Owners
      • Signed-in users
      • Everyone
    • Suggest edit
      Permission
      Disabled Forbidden Owners Signed-in users Everyone
    • Enable
    • Permission
      • Forbidden
      • Owners
      • Signed-in users
    • Emoji Reply
    • Enable
    • Versions and GitHub Sync
    • Note settings
    • Note Insights
    • Engagement control
    • Transfer ownership
    • Delete this note
    • Save as template
    • Insert from template
    • Import from
      • Dropbox
      • Google Drive
      • Gist
      • Clipboard
    • Export to
      • Dropbox
      • Google Drive
      • Gist
    • Download
      • Markdown
      • HTML
      • Raw HTML
Menu Note settings Versions and GitHub Sync Note Insights Sharing URL Create Help
Create Create new note Create a note from template
Menu
Options
Engagement control Transfer ownership Delete this note
Import from
Dropbox Google Drive Gist Clipboard
Export to
Dropbox Google Drive Gist
Download
Markdown HTML Raw HTML
Back
Sharing URL Link copied
/edit
View mode
  • Edit mode
  • View mode
  • Book mode
  • Slide mode
Edit mode View mode Book mode Slide mode
Customize slides
Note Permission
Read
Only me
  • Only me
  • Signed-in users
  • Everyone
Only me Signed-in users Everyone
Write
Only me
  • Only me
  • Signed-in users
  • Everyone
Only me Signed-in users Everyone
Engagement control Commenting, Suggest edit, Emoji Reply
  • Invite by email
    Invitee

    This note has no invitees

  • Publish Note

    Share your work with the world Congratulations! 🎉 Your note is out in the world Publish Note

    Your note will be visible on your profile and discoverable by anyone.
    Your note is now live.
    This note is visible on your profile and discoverable online.
    Everyone on the web can find and read all notes of this public team.
    See published notes
    Unpublish note
    Please check the box to agree to the Community Guidelines.
    View profile
    Engagement control
    Commenting
    Permission
    Disabled Forbidden Owners Signed-in users Everyone
    Enable
    Permission
    • Forbidden
    • Owners
    • Signed-in users
    • Everyone
    Suggest edit
    Permission
    Disabled Forbidden Owners Signed-in users Everyone
    Enable
    Permission
    • Forbidden
    • Owners
    • Signed-in users
    Emoji Reply
    Enable
    Import from Dropbox Google Drive Gist Clipboard
       owned this note    owned this note      
    Published Linked with GitHub
    Subscribed
    • Any changes
      Be notified of any changes
    • Mention me
      Be notified of mention me
    • Unsubscribe
    Subscribe
    # 體驗譜分解 Understanding the spectral decomposition ![Creative Commons License](https://i.creativecommons.org/l/by/4.0/88x31.png) This work by Jephian Lin is licensed under a [Creative Commons Attribution 4.0 International License](http://creativecommons.org/licenses/by/4.0/). $\newcommand{\trans}{^\top} \newcommand{\adj}{^{\rm adj}} \newcommand{\cof}{^{\rm cof}} \newcommand{\inp}[2]{\left\langle#1,#2\right\rangle} \newcommand{\dunion}{\mathbin{\dot\cup}} \newcommand{\bzero}{\mathbf{0}} \newcommand{\bone}{\mathbf{1}} \newcommand{\ba}{\mathbf{a}} \newcommand{\bb}{\mathbf{b}} \newcommand{\bc}{\mathbf{c}} \newcommand{\bd}{\mathbf{d}} \newcommand{\be}{\mathbf{e}} \newcommand{\bh}{\mathbf{h}} \newcommand{\bp}{\mathbf{p}} \newcommand{\bq}{\mathbf{q}} \newcommand{\br}{\mathbf{r}} \newcommand{\bx}{\mathbf{x}} \newcommand{\by}{\mathbf{y}} \newcommand{\bz}{\mathbf{z}} \newcommand{\bu}{\mathbf{u}} \newcommand{\bv}{\mathbf{v}} \newcommand{\bw}{\mathbf{w}} \newcommand{\tr}{\operatorname{tr}} \newcommand{\nul}{\operatorname{null}} \newcommand{\rank}{\operatorname{rank}} %\newcommand{\ker}{\operatorname{ker}} \newcommand{\range}{\operatorname{range}} \newcommand{\Col}{\operatorname{Col}} \newcommand{\Row}{\operatorname{Row}} \newcommand{\spec}{\operatorname{spec}} \newcommand{\vspan}{\operatorname{span}} \newcommand{\Vol}{\operatorname{Vol}} \newcommand{\sgn}{\operatorname{sgn}} \newcommand{\idmap}{\operatorname{id}} \newcommand{\am}{\operatorname{am}} \newcommand{\gm}{\operatorname{gm}} \newcommand{\mult}{\operatorname{mult}} \newcommand{\iner}{\operatorname{iner}}$ ```python from lingeo import random_int_list ``` ## Main idea Let $A$ be an $n\times n$ matrix and $f_A : \mathbb{R}^n\rightarrow\mathbb{R}^n$ the corresponding linear function defined by $f(\bv) = A\bv$. Let $\mathcal{E}_n$ be the standard basis of $\mathbb{R}^n$. Then $[f_A] = [f_A]_{\mathcal{E}_n}^{\mathcal{E}_n} = A$. Let $\beta$ be another basis of $\mathcal{R}^n$ and $Q = [\idmap]_\beta^{\mathcal{E}_n}$. Then $[f_A]_\beta^\beta = Q^{-1}AQ$. ##### Spectral theorem (vector version) Let $A$ be an $n\times n$ symmetric matrix. Then there is an orthonormal basis $\beta$ of $\mathbb{R}^n$ such that $[f_A]_\beta^\beta = D$ is a diagonal matrix. That is, there is an orthogonal matrix $Q$ such that $Q\trans AQ = D$ is a diagonal matrix. Let $\beta = \{ \bv_1, \ldots, \bv_n \}$ be the basis in the spectral theorem. Then $Q$ is the matrix whose columns are vectors in $\beta$. Since $\beta$ is orthonormal, $Q$ is orthogonal and $Q^{-1} = Q\trans$. Suppose the $D$ matrix in the spectral theorem is $$ \begin{bmatrix} \lambda_1 & ~ & ~ \\ ~ & \ddots & ~ \\ ~ & ~ & \lambda_n \\ \end{bmatrix}. $$ By examining $AQ = QD$, we have $$ AQ = A\begin{bmatrix} | & ~ & | \\ \bv_1 & \cdots & \bv_n \\ | & ~ & | \end{bmatrix} = QD = \begin{bmatrix} | & ~ & | \\ \bv_1 & \cdots & \bv_n \\ | & ~ & | \end{bmatrix} \begin{bmatrix} \lambda_1 & ~ & ~ \\ ~ & \ddots & ~ \\ ~ & ~ & \lambda_n \end{bmatrix} = \begin{bmatrix} | & ~ & | \\ \lambda_1\bv_1 & \cdots & \lambda_n\bv_n \\ | & ~ & | \end{bmatrix}. $$ Therefore, $A\bv_i = \lambda_i \bv_i$ for $i = 1,\ldots, n$. If a nonzero vector $\bv$ satisfies $A\bv = \lambda\bv$ for some scalar $\lambda$, then $\bv$ is called an **eigenvector** of $A$ and $\lambda$ is called an **eigenvalue** of $A$. On the other hand, we may write $A = QDQ\trans$. Thus, $$ A = QDQ\trans = \begin{bmatrix} | & ~ & | \\ \bv_1 & \cdots & \bv_n \\ | & ~ & | \end{bmatrix} \begin{bmatrix} \lambda_1 & ~ & ~ \\ ~ & \ddots & ~ \\ ~ & ~ & \lambda_n \\ \end{bmatrix} \begin{bmatrix} - & \bv_1\trans & - \\ ~ & \vdots & ~\\ - & \bv_n\trans & - \end{bmatrix} = \sum_{i = 1}^n \lambda_i \bv_i\bv_i\trans. $$ Suppose $\{\lambda_1,\ldots,\lambda_n\}$ only has $q$ distinct values $\{\mu_1,\ldots, \mu_q\}$. For each $j = 1,\ldots, q$, we may let $\displaystyle P_j = \sum_{\lambda_i = \mu_j} \bv_i\bv_i\trans$. Thus, we have the following. ##### Spectral theorem (projection version) Let $A$ be an $n\times n$ symmetric matrix. Then there are $q$ distinct values $\mu_1,\ldots, \mu_q$ and $q$ projection matrices $P_1,\ldots, P_q$ such that - $A = \sum_{j=1}^q \mu_j P_j$, - $P_i^2 = P_i$ for any $i$, - $P_iP_j = O$ for any $i$ and $j$, and - $\sum_{j=1}^q P_j = I_n$. ## Side stories - quadratic form - differential equation - diagonalization for general matrices ## Experiments ##### Exercise 1 執行以下程式碼。 <!-- eng start --> Run the code below. <!-- eng end --> ```python ### code set_random_seed(0) print_ans = False n = 3 Q = matrix([ [1 / sqrt(3), 1 / sqrt(2), 1 / sqrt(6)], [1 / sqrt(3), -1 / sqrt(2), 1 / sqrt(6)], [1 / sqrt(3), 0, -2 / sqrt(6)] ]) v = random_int_list(n) D = diagonal_matrix(v) A = Q * D * Q.transpose() cs = random_int_list(n) print("A =") show(A) for i in range(n): print("v%s ="%(i+1), Q.column(i)) print("b = " + " + ".join("%s v%s"%(cs[i], i+1) for i in range(n))) if print_ans: for i in range(n): print("A v%s = %s v%s"%(i+1, v[i], i+1)) print("A b = " + " + ".join("%s v%s"%(cs[i]*v[i], i+1) for i in range(n))) print("Q =") show(Q) print("D =") show(D) ``` ##### Exercise 1(a) 驗證 $\bv_1, \ldots, \bv_3$ 是 $A$ 的特徵向量﹐並找出相對應的特徵值。 <!-- eng start --> Verify that $\bv_1, \ldots, \bv_3$ are eigenvectors of $A$ and find the corresponding eigenvalues. <!-- eng end --> ##### Exercise 1(b) 把 $A\bb$ 寫成 $\{\bv_1, \ldots, \bv_3\}$ 的線性組合。 <!-- eng start --> Write $A\bb$ as a linear combination of $\{\bv_1, \ldots, \bv_3\}$. <!-- eng end --> ##### Exercise 1(c) 找出一個垂直矩陣 $Q$ 和一個對角矩陣 $D$ 使得 $D = Q\trans AQ$。 <!-- eng start --> Find an orthogonal matrix $Q$ and a diagonal matrix $D$ such that $D = Q\trans AQ$. <!-- eng end --> ## Exercises ##### Exercise 2 令 $A$ 為一 $3\times 3$ 矩陣而 $\beta = \{ \bv_1,\ldots,\bv_3 \}$ 為 $\mathbb{R}^3$ 的一組基底。 已知 $$ [f_A]_\beta^\beta = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 5 \\ \end{bmatrix}. $$ 將 $A\bv_1$、$A\bv_2$、$A\bv_3$、及 $A(\bv_1 + \bv_2 + \bv_3)$ 分別寫成 $\beta$ 的線性組合。 <!-- eng start --> Let $A$ be a $3\times 3$ matrix and $\beta = \{ \bv_1,\ldots,\bv_3 \}$ a basis of $\mathbb{R}^3$. Suppose $$ [f_A]_\beta^\beta = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 5 \\ \end{bmatrix}. $$ Write $A\bv_1$, $A\bv_2$, $A\bv_3$, and $A(\bv_1 + \bv_2 + \bv_3)$ as linear combinations of $\beta$. <!-- eng end --> ##### Exercise 3 令 $$ A = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \\ \end{bmatrix} $$ 且 $\beta = \{ \bv_1, \ldots, \bv_3 \}$ 為 $$ \begin{bmatrix} \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{3}} & 0 & -\frac{2}{\sqrt{6}} \\ \end{bmatrix} $$ 的行向量集合。 <!-- eng start --> Let $$ A = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \\ \end{bmatrix} $$ and $\beta = \{ \bv_1, \ldots, \bv_3 \}$ the columns of $$ \begin{bmatrix} \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{3}} & 0 & -\frac{2}{\sqrt{6}} \\ \end{bmatrix}. $$ <!-- eng end --> ##### Exercise 3(a) 寫出 $[f_A]_\beta^\beta$ 並說明 $f_A$ 的作用。 <!-- eng start --> Find $[f_A]_\beta^\beta$ and describe the effect of $f_A$. <!-- eng end --> ##### Exercise 3(b) 找出一個垂直矩陣 $Q$ 和一個對角矩陣 $D$ 使得 $D = Q\trans AQ$。 <!-- eng start --> Find an orthogonal matrix $Q$ and a diagonal matrix $D$ such that $D = Q\trans AQ$. <!-- eng end --> ##### Exercise 3(c) 令 $P_1$ 為投影到 $\vspan(\{\bv_1\})$ 的投影矩陣、 $P_2$ 為投影到 $\vspan(\{\bv_2, \bv_3\})$ 的投影矩陣。 說明 $P_1 = \bv_1\bv_1\trans$ 且 $P_2 = \bv_2\bv_2\trans + \bv_3\bv_3\trans$。 <!-- eng start --> Let $P_1$ be the projection matrix onto $\vspan(\{\bv_1\})$ and $P_2$ the projection matrix onto $\vspan(\{\bv_2, \bv_3\})$. Show that $P_1 = \bv_1\bv_1\trans$ and $P_2 = \bv_2\bv_2\trans + \bv_3\bv_3\trans$. <!-- eng end --> ##### Exercise 3(d) 將 $A$ 寫成一些投影矩陣的線性組合﹐並再次說明 $f_A$ 的作用﹐看看是否和第一小題一致。 <!-- eng start --> Write $A$ as a linear combination of some projection matrices. Use this representation to describe again the effect of $f_A$. Is it the same as 3(a)? <!-- eng end --> ##### Exercise 4 令 $$ A = \begin{bmatrix} 1 & 2 \\ 2 & 4 \\ \end{bmatrix}. $$ <!-- eng start --> Let $$ A = \begin{bmatrix} 1 & 2 \\ 2 & 4 \\ \end{bmatrix}. $$ <!-- eng end --> ##### Exercise 4(a) 說明要找一個非零向量 $\bv$ 使得 $A\bv = \lambda\bv$﹐ 等同於在 $(A - \lambda I)\bv = \bzero$ 中找非零解。 <!-- eng start --> Let $\lambda$ be a given number. Show that finding a nonzero vector $\bv$ with $A\bv = \lambda\bv$ is equivalent to finding a nonzero solution to $(A - \lambda I)\bv = \bzero$. <!-- eng end --> ##### Exercise 4(b) 方程式 $(A - \lambda I)\bv = \bzero$ 有非零解只會發生在 $\det(A - \lambda I) = 0$ 的時候。 利用這個性質找出所有可能的 $\lambda$。 <!-- eng start --> The equation $(A - \lambda I)\bv = \bzero$ has a nonzero solution only when $\det(A - \lambda I) = 0$. Use this fact to find all possible $\lambda$. <!-- eng end --> ##### Exercise 4(c) 對每一個 $\lambda$ 解出相對應的 $\bv$。 向量 $\bv$ 的選擇可能很多﹐把它的長度縮為 $1$。 <!-- eng start --> For a given number $\lambda$, there might be many choices of $\bv$. Find one with length $1$. <!-- eng end --> ##### Exercise 4(d) 找出一個垂直矩陣 $Q$ 和一個對角矩陣 $D$ 使得 $D = Q\trans AQ$。 <!-- eng start --> Find an orthogonal matrix $Q$ and a diagonal matrix $D$ such that $D = Q\trans AQ$. <!-- eng end --> ##### Exercise 5 令 $$ A = \begin{bmatrix} 1 & 2 \\ 2 & 1 \\ \end{bmatrix}, Q = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & - \frac{1}{\sqrt{2}} \\ \end{bmatrix}, D = \begin{bmatrix} 3 & 0 \\ 0 & -1 \\ \end{bmatrix}. $$ <!-- eng start --> Let $$ A = \begin{bmatrix} 1 & 2 \\ 2 & 1 \\ \end{bmatrix}, Q = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & - \frac{1}{\sqrt{2}} \\ \end{bmatrix}, D = \begin{bmatrix} 3 & 0 \\ 0 & -1 \\ \end{bmatrix}. $$ <!-- eng end --> ##### Exercise 5(a) 驗證 $Q\trans AQ = D$。 <!-- eng start --> Verify that $Q\trans AQ = D$. <!-- eng end --> ##### Exercise 5(b) 令 $p(x,y) = x^2 + 4xy + y^2$。 找一些係數 $a,b,c,d$ 並令 $\hat{x} = a x + b y$、 $\hat{y} = c x + D y$﹐ 使得 $p(x,y) = 3\hat{x}^2 - \hat{y}^2$。 藉此說明 $p(x,y) = 1$ 的圖形是雙曲線。 <!-- eng start --> Let $p(x,y) = x^2 + 4xy + y^2$. Find some coefficients $a, b, c, d$ and define $\hat{x} = a x + b y$ and $\hat{y} = c x + D y$ such that $p(x,y) = 3\hat{x}^2 - \hat{y}^2$. Use this fact to show that $p(x,y) = 1$ is a hyperbola. <!-- eng end --> ##### Exercise 5(c) 令 $x(t), y(t)$ 為以 $t$ 為變數的函數。 令 $x'(t), y'(t)$ 為其對 $t$ 的微分。 考慮微分方程 $$ \begin{aligned} x' &= x + 2y, \\ y' &= 2x + y. \end{aligned} $$ 找一些係數 $a,b,c,d$ 並令 $\hat{x} = a x + b y$、 $\hat{y} = c x + D y$﹐ 使得原方程可以改寫為 $\hat{x}' = 3\hat{x}$、 $\hat{y}' = -\hat{y}$。 (此方程的解為 $\hat{x} = C_1e^{3t}$、 $\hat{y} = C_2e^{-t}$﹐ 其中 $C_1$ 和 $C_2$ 是任意常數。) 解原方程。 <!-- eng start --> Let $x(t)$ and $y(t)$ be functions on variable $t$. Let $x'(t)$ and $y'(t)$ their derivative with respect to $t$. Consider the system of differential equations $$ \begin{aligned} x' &= x + 2y, \\ y' &= 2x + y. \end{aligned} $$ Find some coefficients $a, b, c, d$ and define $\hat{x} = a x + b y$ and $\hat{y} = c x + D y$ so that the original system becomes $$ \begin{aligned} \hat{x}' &= 3\hat{x}, \\ \hat{y}' &= -\hat{y}. \end{aligned} $$ Note that the solutions to this system is $\hat{x} = C_1e^{3t}$ and $\hat{y} = C_2e^{-t}$, where $C_1$ and $C_2$ can be any constants. <!-- eng end --> ##### Exercise 6 以下例題說明並非對稱矩陣才能表示成對角矩陣。 然而其所用的基底不再是垂直的。 (也有可能這樣的基底找不到。) 令 $$ A = \begin{bmatrix} 1 & 2 \\ 1 & 2 \\ \end{bmatrix}. $$ <!-- eng start --> The following examples indicate that not only the symmetric matrices can be transformed into a diagonal matrices by using a different basis. However, the basis might not be orthogonal. (It is also possible that such a basis does not exist.) Let $$ A = \begin{bmatrix} 1 & 2 \\ 1 & 2 \\ \end{bmatrix}. $$ <!-- eng end --> ##### Exercise 6(a) 說明要找一個非零向量 $\bv$ 使得 $A\bv = \lambda\bv$﹐ 等同於在 $(A - \lambda I)\bv = \bzero$ 中找非零解。 <!-- eng start --> Let $\lambda$ be a given number. Show that finding a nonzero vector $\bv$ with $A\bv = \lambda\bv$ is equivalent to finding a nonzero solution to $(A - \lambda I)\bv = \bzero$. <!-- eng end --> ##### Exercise 6(b) 方程式 $(A - \lambda I)\bv = \bzero$ 有非零解只會發生在 $\det(A - \lambda I) = 0$ 的時候。 利用這個性質找出所有可能的 $\lambda$。 <!-- eng start --> The equation $(A - \lambda I)\bv = \bzero$ has a nonzero solution only when $\det(A - \lambda I) = 0$. Use this fact to find all possible $\lambda$. <!-- eng end --> ##### Exercise 6(c) 對每一個 $\lambda$ 解出相對應的 $\bv$。 向量 $\bv$ 的選擇可能很多﹐把它的長度縮為 $1$。 <!-- eng start --> For a given number $\lambda$, there might be many choices of $\bv$. Find one with length $1$. <!-- eng end --> ##### Exercise 6(d) 找出一個可逆矩陣 $Q$ 和一個對角矩陣使得 $D = Q^{-1} AQ$。 <!-- eng start --> Find an invertibile matrix $Q$ and a diagonal matrix $D$ such that $D = Q^{-1} AQ$. <!-- eng end -->

    Import from clipboard

    Paste your markdown or webpage here...

    Advanced permission required

    Your current role can only read. Ask the system administrator to acquire write and comment permission.

    This team is disabled

    Sorry, this team is disabled. You can't edit this note.

    This note is locked

    Sorry, only owner can edit this note.

    Reach the limit

    Sorry, you've reached the max length this note can be.
    Please reduce the content or divide it to more notes, thank you!

    Import from Gist

    Import from Snippet

    or

    Export to Snippet

    Are you sure?

    Do you really want to delete this note?
    All users will lose their connection.

    Create a note from template

    Create a note from template

    Oops...
    This template has been removed or transferred.
    Upgrade
    All
    • All
    • Team
    No template.

    Create a template

    Upgrade

    Delete template

    Do you really want to delete this template?
    Turn this template into a regular note and keep its content, versions, and comments.

    This page need refresh

    You have an incompatible client version.
    Refresh to update.
    New version available!
    See releases notes here
    Refresh to enjoy new features.
    Your user state has changed.
    Refresh to load new user state.

    Sign in

    Forgot password

    or

    By clicking below, you agree to our terms of service.

    Sign in via Facebook Sign in via Twitter Sign in via GitHub Sign in via Dropbox Sign in with Wallet
    Wallet ( )
    Connect another wallet

    New to HackMD? Sign up

    Help

    • English
    • 中文
    • Français
    • Deutsch
    • 日本語
    • Español
    • Català
    • Ελληνικά
    • Português
    • italiano
    • Türkçe
    • Русский
    • Nederlands
    • hrvatski jezik
    • język polski
    • Українська
    • हिन्दी
    • svenska
    • Esperanto
    • dansk

    Documents

    Help & Tutorial

    How to use Book mode

    Slide Example

    API Docs

    Edit in VSCode

    Install browser extension

    Contacts

    Feedback

    Discord

    Send us email

    Resources

    Releases

    Pricing

    Blog

    Policy

    Terms

    Privacy

    Cheatsheet

    Syntax Example Reference
    # Header Header 基本排版
    - Unordered List
    • Unordered List
    1. Ordered List
    1. Ordered List
    - [ ] Todo List
    • Todo List
    > Blockquote
    Blockquote
    **Bold font** Bold font
    *Italics font* Italics font
    ~~Strikethrough~~ Strikethrough
    19^th^ 19th
    H~2~O H2O
    ++Inserted text++ Inserted text
    ==Marked text== Marked text
    [link text](https:// "title") Link
    ![image alt](https:// "title") Image
    `Code` Code 在筆記中貼入程式碼
    ```javascript
    var i = 0;
    ```
    var i = 0;
    :smile: :smile: Emoji list
    {%youtube youtube_id %} Externals
    $L^aT_eX$ LaTeX
    :::info
    This is a alert area.
    :::

    This is a alert area.

    Versions and GitHub Sync
    Get Full History Access

    • Edit version name
    • Delete

    revision author avatar     named on  

    More Less

    Note content is identical to the latest version.
    Compare
      Choose a version
      No search result
      Version not found
    Sign in to link this note to GitHub
    Learn more
    This note is not linked with GitHub
     

    Feedback

    Submission failed, please try again

    Thanks for your support.

    On a scale of 0-10, how likely is it that you would recommend HackMD to your friends, family or business associates?

    Please give us some advice and help us improve HackMD.

     

    Thanks for your feedback

    Remove version name

    Do you want to remove this version name and description?

    Transfer ownership

    Transfer to
      Warning: is a public team. If you transfer note to this team, everyone on the web can find and read this note.

        Link with GitHub

        Please authorize HackMD on GitHub
        • Please sign in to GitHub and install the HackMD app on your GitHub repo.
        • HackMD links with GitHub through a GitHub App. You can choose which repo to install our App.
        Learn more  Sign in to GitHub

        Push the note to GitHub Push to GitHub Pull a file from GitHub

          Authorize again
         

        Choose which file to push to

        Select repo
        Refresh Authorize more repos
        Select branch
        Select file
        Select branch
        Choose version(s) to push
        • Save a new version and push
        • Choose from existing versions
        Include title and tags
        Available push count

        Pull from GitHub

         
        File from GitHub
        File from HackMD

        GitHub Link Settings

        File linked

        Linked by
        File path
        Last synced branch
        Available push count

        Danger Zone

        Unlink
        You will no longer receive notification when GitHub file changes after unlink.

        Syncing

        Push failed

        Push successfully