or
or
By clicking below, you agree to our terms of service.
New to HackMD? Sign up
Syntax | Example | Reference | |
---|---|---|---|
# Header | Header | 基本排版 | |
- Unordered List |
|
||
1. Ordered List |
|
||
- [ ] Todo List |
|
||
> Blockquote | Blockquote |
||
**Bold font** | Bold font | ||
*Italics font* | Italics font | ||
~~Strikethrough~~ | |||
19^th^ | 19th | ||
H~2~O | H2O | ||
++Inserted text++ | Inserted text | ||
==Marked text== | Marked text | ||
[link text](https:// "title") | Link | ||
 | Image | ||
`Code` | Code |
在筆記中貼入程式碼 | |
```javascript var i = 0; ``` |
|
||
:smile: | ![]() |
Emoji list | |
{%youtube youtube_id %} | Externals | ||
$L^aT_eX$ | LaTeX | ||
:::info This is a alert area. ::: |
This is a alert area. |
On a scale of 0-10, how likely is it that you would recommend HackMD to your friends, family or business associates?
Please give us some advice and help us improve HackMD.
Do you want to remove this version name and description?
Syncing
xxxxxxxxxx
矩陣的列空間
This work by Jephian Lin is licensed under a Creative Commons Attribution 4.0 International License.
\(\newcommand{\trans}{^\top} \newcommand{\adj}{^{\rm adj}} \newcommand{\cof}{^{\rm cof}} \newcommand{\inp}[2]{\left\langle#1,#2\right\rangle} \newcommand{\dunion}{\mathbin{\dot\cup}} \newcommand{\bzero}{\mathbf{0}} \newcommand{\bone}{\mathbf{1}} \newcommand{\ba}{\mathbf{a}} \newcommand{\bb}{\mathbf{b}} \newcommand{\bc}{\mathbf{c}} \newcommand{\bd}{\mathbf{d}} \newcommand{\be}{\mathbf{e}} \newcommand{\bh}{\mathbf{h}} \newcommand{\bp}{\mathbf{p}} \newcommand{\bq}{\mathbf{q}} \newcommand{\br}{\mathbf{r}} \newcommand{\bx}{\mathbf{x}} \newcommand{\by}{\mathbf{y}} \newcommand{\bz}{\mathbf{z}} \newcommand{\bu}{\mathbf{u}} \newcommand{\bv}{\mathbf{v}} \newcommand{\bw}{\mathbf{w}} \newcommand{\tr}{\operatorname{tr}} \newcommand{\nul}{\operatorname{null}} \newcommand{\rank}{\operatorname{rank}} %\newcommand{\ker}{\operatorname{ker}} \newcommand{\range}{\operatorname{range}} \newcommand{\Col}{\operatorname{Col}} \newcommand{\Row}{\operatorname{Row}} \newcommand{\spec}{\operatorname{spec}} \newcommand{\vspan}{\operatorname{span}} \newcommand{\Vol}{\operatorname{Vol}} \newcommand{\sgn}{\operatorname{sgn}} \newcommand{\idmap}{\operatorname{id}} \newcommand{\am}{\operatorname{am}} \newcommand{\gm}{\operatorname{gm}} \newcommand{\mult}{\operatorname{mult}} \newcommand{\iner}{\operatorname{iner}}\)
Main idea
Matrix-vector multiplication (by row)
\[ A = \begin{bmatrix} - & {\bf r}_1 & - \\ ~ & \vdots & ~ \\ - & {\bf r}_m & - \\ \end{bmatrix} \] be an \(m\times n\) matrix and \({\bf v}\) a vector in \(\mathbb{R}^n\).
Then the \(i\)-th entry of \(A{\bf v}\) is
\[(A{\bf v})_i = \langle{\bf r}_i, {\bf v}\rangle.\]
A set in \(\mathbb{R}^n\) of the form \[\{ {\bf v}\in\mathbb{R}^n : \langle{\bf r}, {\bf v}\rangle = b \}\]
for some vector \({\bf r}\) and scalar \(b\)
is called a hyperplane,
where \({\bf r}\) is its normal vector.
Therefore, if
\[{\bf b} = \begin{bmatrix} b_1 \\ \vdots \\ b_m \end{bmatrix},\]
then the solution set of \(A{\bf v} = {\bf b}\) is
the intersections of the hyperplanes given by \(\langle{\bf r}_i, {\bf v}\rangle = b_i\) for \(i = 1,\ldots m\).
A hyperplane is a subspace if and only if it contains the origin \({\bf 0}\),
which is equivalent to the corresponding \(b\) is \(0\).
The row space of \(A\) is defined as
\[\operatorname{Row}(A) = \operatorname{span}(\{{\bf r}_1, \ldots, {\bf r}_m\}).\]
Let \(V\) be a subspace in \(\mathbb{R}^n\).
The orthogonal complement of \(V\) is defined as
\[V^\perp = \{{\bf w}\in\mathbb{R}^n : \langle{\bf w},{\bf v}\rangle = 0 \text{ for all }{\bf v}\in V\}. \]
Thus, \(\operatorname{ker}(A) = \operatorname{Row}(A)^\perp\) for any matrix \(A\).
Side stories
Experiments
Exercise 1
執行下方程式碼。
紅色、藍色、綠色的平面分別為 \(\langle{\bf r}_i,{\bf v}\rangle = b_i\) 畫出來的超平面。
Exercise 1(a)
設定一些
r1, r2, r3
及b1, b2, b3
使得三個超平面的交集為一直線。Exercise 1(b)
設定一些
r1, r2, r3
及b1, b2, b3
使得三個超平面的交集為一平面。Exercise 1©
設定一些
r1, r2, r3
及b1, b2, b3
使得三個超平面的交集為空集合。Exercises
Exercise 2 寫得很好!
Exercise 2
超平面的基本性質。
Exercise 2(a)
找兩個向量 \({\bf u}_1, {\bf u}_2\)
使得 \(\left\{\begin{bmatrix}x\\y\\z\end{bmatrix} : x + y + z = 0\right\} = \operatorname{span}(\{{\bf u}_1, {\bf u}_2\})\)。
(可以令 \(y = c_1\) 及 \(z = c_2\) 來算出解的參數式。)
這讓我們更確定一個通過原點的超平面是一個子空間。
答:
令 \(y = c_1\) 及 \(z = c_2\),則 \(x = - c_1 - c_2\),
此時
\[\begin{bmatrix}x\\y\\z\end{bmatrix} = \begin{bmatrix}- c_1 - c_2\\c_1\\c_2\end{bmatrix}, \]
可改寫成
\[\begin{bmatrix}x\\y\\z\end{bmatrix} = c_1\begin{bmatrix}- 1\\1\\0\end{bmatrix} + c_2\begin{bmatrix}- 1\\0\\1\end{bmatrix}. \]
其中
\[{\bf u}_1 = \begin{bmatrix}- 1\\1\\0\end{bmatrix} , {\bf u}_2 = \begin{bmatrix}- 1\\0\\1\end{bmatrix}. \]
即為所求。
Exercise 2(b)
說明如果一個超平面沒有通過原點則不是一個子空間。
答:
子空間必通過原點,若一個超平面未通過原點,即一子空間加上一平移向量,稱為仿射子空間。
Exercise 2©
實際上﹐每個齊次線性方程組(\(A{\bf v} = {\bf 0}\))
的解都可以用參數式表達。
找兩個向量 \({\bf u}_1, {\bf u}_2\)
使得 \(\left\{\begin{bmatrix}x\\y\\z\\w\end{bmatrix} : \begin{array}{ccccc} x & +y & & +w & =0 \\ & & z & +w &= 0 \\ \end{array}\right\} = \operatorname{span}(\{{\bf u}_1, {\bf u}_2\})\)。
(可以令 \(y = c_1\) 及 \(w = c_2\) 來算出解的參數式。)
答:
令 \(y = c_1\) 及 \(w = c_2\),則 \(x = - c_1 - c_2\),\(z = - c_2\),
此時
\[\begin{bmatrix}x\\y\\z\\w\end{bmatrix} = \begin{bmatrix}- c_1 - c_2\\c_1\\- c_2\\c_2\end{bmatrix}, \]
可改寫成
\[\begin{bmatrix}x\\y\\z\\w\end{bmatrix} = c_1\begin{bmatrix}- 1\\1\\0\\0\end{bmatrix} + c_2\begin{bmatrix}-1\\0\\- 1\\1\end{bmatrix}. \]
其中
\[{\bf u}_1 = \begin{bmatrix}- 1\\1\\0\\0\end{bmatrix} , {\bf u}_2 = \begin{bmatrix}-1\\0\\- 1\\1\end{bmatrix}. \]
即為所求。
Exercise 3
證明 \(\operatorname{ker}(A) = \operatorname{Row}(A)^\perp\)。
Sample:
Let \({\bf r}_1, \ldots, {\bf r}_m\) be the rows of \(A\).
"\(\subseteq\)"
If \({\bf v}\in\operatorname{ker}(A)\), then …
…
Therefore, \({\bf v}\in\operatorname{Row}(A)^\perp\).
"\(\supseteq\)"
If \({\bf v}\in\operatorname{Row}(A)^\perp\), then …
…
Therefore, \({\bf v}\in\operatorname{ker}(A)\).
檢討前請先回顧一下 \(\ker(A)\)、\(\Row(A)\)、還有 \(V^\perp\) 的定義。檢討的時候可以再討論更正。
用中英文寫都可以,重點是邏輯正確且該解釋到的有解釋到。
證明: [由鄭子安同學提供]
Let \(A\) be an \(m\times n\) matrix, and let \({\bf r}_1, \ldots, {\bf r}_m\) be the rows of \(A\). Then \(\ker(A)\) is the same as \[ \{\bv\in\mathbb{R}^n: \inp{\bv}{{\bf r}_i} \text{ for } i = 1, \ldots, m\} \] by definition.
1. Claim: \(\ker(A) \subseteq \Row(A)^\perp\)。
Let \({\bf v}\in\operatorname{ker}(A)\).
Then \(\langle{\bv},{\bf r}_i\rangle = 0\) for all \(i = 1 , 2 , \ldots , m\).
This implies that \({\bf v} \perp {\bf r}_1 , \ldots , {\bf r}_m\).
Then, we have \[\begin{aligned} \langle{\bv},c_1{\bf r}_1 + \cdots + c_m{\bf r}_m\rangle &= \langle{\bv},c_1{\br}_1\rangle + \cdots + \langle{\bv},c_m{\br}_m\rangle \\ &= c_1\langle{\bv},{\bf r}_1\rangle + \cdots + c_m\langle{\bv},{\bf r}_m\rangle \\ &= 0 \end{aligned} \] for all constants \(c_1 , \cdots , c_m \in\mathbb{R}\).
In other words, \(\langle{\bv},{\bf r}\rangle = 0\) for all \({\bf r} \in \operatorname{Row}(A)\).
Therefore, \({\bf v}\in\operatorname{Row}(A)^\perp\).
2. Claim: \(\ker(A) \supseteq \Row(A)^\perp\)。
Let \({\bf v}\in\operatorname{Row}(A)^\perp\).
Then \(\langle{\bv},c_1{\bf r}_1 + \cdots + c_m{\bf r}_m\rangle = 0\) for all \(c_1 , \ldots , c_m\) \(\in\) \(\mathbb{R}\).
This implies that \({\bf v}\) \(\perp\) \(c_1{\bf r}_1 + \ldots + c_m{\bf r}_m\).
By taking \(c_1 = 1 , c_2 = \cdots = c_m = 0\),
we have \({\bf v}\) \(\perp\) \({\bf r}_1\).
Similarly, \({\bf v}\) \(\perp\) \({\bf r}_i\) for \(i = 1 , \ldots , m\).
Therefore, \({\bf v}\in\operatorname{ker}(A)\).
3. In summary,
by Claims 1. and 2.
we conclude that \(\operatorname{ker}(A) = \operatorname{Row}(A)^\perp\).
Q.E.D.
Exercise 4
一個超平面會把 \(\mathbb{R}^n\) 分割成兩部份。
更精確來說﹐
給定法量向 \({\bf r}\) 和偏移量 \(b\)﹐
整個 空間會被分成三部份
正部︰\(\{{\bf v}: \langle{\bf r},{\bf v}\rangle > b\}\)、
負部︰\(\{{\bf v}: \langle{\bf r},{\bf v}\rangle < b\}\)、
邊界︰\(\{{\bf v}: \langle{\bf r},{\bf v}\rangle = b\}\)(超平面本身)。
Exercise 4(a)
考慮法向量 \({\bf r} = (1,1,1)\) 和偏移量 \(b = 5\) 所定義出來的超平面。
問點
\({\bf v}_1 = (0,2,3)\)、
\({\bf v}_2 = (1,0,1)\)、
\({\bf v}_3 = (3,2,1)\)
分別落在超平面的正部、負部、或是邊界?
答:
將 \({\bf v}_1\) 、 \({\bf v}_2\) 和 \({\bf v}_3\) 帶入,
可知
\(\langle{\bf r},{\bf v}_1\rangle = 0 + 2 + 3 = b,\) 所以 \({\bf v}_1\) 落在邊界,
\(\langle{\bf r},{\bf v}_2\rangle = 1 + 0 + 1 = 2 < b,\) 所以 \({\bf v}_2\) 落在負部,
\(\langle{\bf r},{\bf v}_3\rangle = 3 + 2 + 1 = 6 > b,\) 所以 \({\bf v}_3\) 落在正部。
Exercise 4(b)
給定以下點
\({\bf v}_1 = (3,4,5,6)\)、
\({\bf v}_2 = (2,3,6,7)\)、
\({\bf v}_3 = (3,1,8,6)\)、
\({\bf v}_4 = (5,5,5,3)\)、
\({\bf v}_5 = (0,0,0,0)\)、
\({\bf v}_6 = (1,1,2,2)\)、
\({\bf v}_7 = (1,3,-1,-2)\)、
\({\bf v}_8 = (1,2,3,4)\)、
找一組法向量以及偏移量使得
其定義出來的超平面讓
\({\bf v}_1, {\bf v}_2, {\bf v}_3, {\bf v}_4\) 落在正部、
\({\bf v}_5, {\bf v}_6, {\bf v}_7, {\bf v}_8\) 落在負部。
灣得否!
答:
取法向量 \({\bf r} = (1,1,1,1)\) 和偏移量 \(b = 11\) 所定義出來的超平面,
即可滿足上述條件。
除了 Exercise 3 以外數學全部正確,格式也沒太多要改的。
目前得分 4/5