白皮書1.3v與1.4v差異 === [1.3v與1.4v白皮書差異](https://www.diffchecker.com/wUNN1WPb) 白皮書內容主要的差異是數學式 # 1.3v數學式 ${dH(t)\over dt} \approx {2\lambda\over L_0}K(t-h) \\ \approx {1\over h \space exp\bigl(W({1\over 2})\bigl)}exp\bigl(W({1\over 2}){t\over h}\bigl) \\ = {W({1\over 2})\over h}exp\bigl(W({1\over 2}){t\over h}\bigl)$ $H(t) \approx exp\bigl(W({1\over 2}){t\over h}\bigl) \approx exp\bigl(0.352{t\over h}\bigl)$ # 1.4v數學式 ${dH(t)\over dt} \approx {2\lambda\over L_0}K(t-h) \\ \approx {1\over h \space exp\bigl(W({1\over 2})\bigl)}exp\bigl(W({1\over 2}){t\over h}\bigl) \\ = {2W({1\over 2})\over h}exp\bigl(W({1\over 2}){t\over h}\bigl)$ $H(t) \approx 2 \space exp\bigl(W({1\over 2}){t\over h}\bigl) \approx 2 \space exp\bigl(0.352{t\over h}\bigl)$ # 分析 整個微分方程的估算 , 是利用下列關係式 $1. \space 2\lambda h=L_0 \\ 2.\space K(t)=exp\bigl(W({1\over 2}){t\over h}\bigl) \\ 3. \space {c\over h}exp\bigl(c{t\over h}\bigl) \approx {1\over 2h}exp\bigl(c{t\over h}-c\bigl)$ 先把下列關係式 , 右邊用上列1,2代換掉 ${dH(t)\over dt} \approx {2\lambda\over L_0}K(t-h)$ 可以得到 ${dH(t)\over dt} \approx {{L_0\over h}\over L_0}exp\bigl(W({1\over 2}){t-h\over h}\bigl)$ 整理一下 , 得到 ${dH(t)\over dt} \approx {1\over h}exp\bigl(W({1\over 2}){t\over h}-W({1\over 2}){h\over h}\bigl) \\ = {1\over h}exp\bigl(W({1\over 2}){t\over h}-W({1\over 2})\bigl)$ 由指數律 , 得到 ${dH(t)\over dt} \approx {1\over h \ast exp\bigl(W({1\over 2})\bigl)}exp\bigl(W({1\over 2}){t\over h}\bigl)$ 用指數律合併 , 在分號上下各乘以2 , 過程如下 ${1\over h \ast exp\bigl(W({1\over 2})\bigl)}exp\bigl(W({1\over 2}){t\over h}\bigl) \\ ={1\over h}exp\bigl(W({1\over 2}){t\over h}-W({1\over 2})\bigl) \\ ={2\ast 1\over 2\ast h}exp\bigl(W({1\over 2}){t\over h}-W({1\over 2})\bigl) \\ =2\ast {1\over 2h}exp\bigl(W({1\over 2}){t\over h}-W({1\over 2})\bigl)$ 再由3的關係式 , 有 $2\ast {1\over 2h}exp\bigl(W({1\over 2}){t\over h}-W({1\over 2})\bigl) \\ \approx 2\ast {W({1\over 2})\over h}exp\bigl(W({1\over 2}){t\over h}\bigl) \\ ={2W({1\over 2})\over h}exp\bigl(W({1\over 2}){t\over h}\bigl) \\ \approx {dH(t)\over dt}$ 這是1.4v的權重增長式子 所以$H(t)$積分後 , 就有 $H(t) \approx 2 \space exp\bigl(W({1\over 2}){t\over h}\bigl) \approx 2 \space exp\bigl(0.352{t\over h}\bigl)$ # 結論 1.4v的權重增長公式修正了1.3v增長公式的計算錯誤 ###### tags: `IOTA`
×
Sign in
Email
Password
Forgot password
or
By clicking below, you agree to our
terms of service
.
Sign in via Facebook
Sign in via Twitter
Sign in via GitHub
Sign in via Dropbox
Sign in with Wallet
Wallet (
)
Connect another wallet
New to HackMD?
Sign up