github contributed by <Diana Ho
>
d0651
sys
Ubuntu 14.04 LTS
從一半(也就是16-bit)嘗試shift right,檢查shift之後的值是否為零,若為零,則shift right的bit數再減少一半,直至不為零;不為零則繼續利用shift right後的值
uint8_t clz(uint32_t x)
{
/* shift upper half down, rest is filled up with 0s */
uint16_t upper = (x >> 16);
// mask upper half away
uint16_t lower = (x & 0xFFFF);
return upper ? clz(upper) : 16 + clz(lower);
}
core dump
原版缺少遞迴終止條件與位移量 shift-bit 錯誤,所以加入一個參數記錄每次要 shift 多少位,每次進入 lower 的遞回就加 shift_len
uint8_t clz_recursive(uint32_t x, int shift_len)
{
if(shift_len == 0)
return 0;
/* shift upper half down, rest is filled up with 0s */
uint16_t upper = (x >> shift_len);
// mask upper half away
uint16_t lower = ( x & (0xFFFF >> (16 - shift_len)) );
return upper ? clz_recursive(upper, shift_len >> 1) :
shift_len + clz_recursive(lower, shift_len >> 1);
}
檢查 leading zero 是否在前 16 bit,若是則擠掉後 16 bit 繼續比。接著依序比 8、4、2…
int clz(uint32_t x) {
int n = 32, c = 16;
do {
uint32_t y = x >> c;
if (y) { n -= c; x = y; }
c >>= 1;
} while (c);
return (n - x);
}
先看 leading zero 可能若在哪個範圍,再進去把前面不需要判斷的 bit 都左移擠掉,再縮小範圍去看。
int clz(uint32_t x) {
if (x == 0) return 32;
int n = 0;
if (x <= 0x0000FFFF) { n += 16; x <<= 16; }
if (x <= 0x00FFFFFF) { n += 8; x <<= 8; }
if (x <= 0x0FFFFFFF) { n += 4; x <<= 4; }
if (x <= 0x3FFFFFFF) { n += 2; x <<= 2; }
if (x <= 0x7FFFFFFF) { n += 1; x <<= 1; }
return n;
}
先判斷 x 的 leading zero 是在哪個範圍,若為後半部,則將前半部 bit 左移擠掉繼續判斷。
n = n - (x >> 31)
為判斷最後 1 bit 用。
int clz(uint32_t x) {
if (x == 0) return 32;
int n = 1;
if ((x >> 16) == 0) { n += 16; x <<= 16; }
if ((x >> 24) == 0) { n += 8; x <<= 8; }
if ((x >> 28) == 0) { n += 4; x <<= 4; }
if ((x >> 30) == 0) { n += 2; x <<= 2; }
n = n - (x >> 31);
return n;
}
這個演算法是拿來算log2,也就是算二進位數字中尾端有幾個0,本來以為算出ctz之後,在用31減掉就是clz,想了一下錯了,要先對原本的數字做reverse之後,再算ctz
uint8_t clz(uint32_t x)
{
static prog_uint8_t const Table[] = {
0xFF, 0, 0xFF, 15, 0xFF, 1, 28, 0xFF,
16, 0xFF, 0xFF, 0xFF, 2, 21, 29, 0xFF,
0xFF, 0xFF, 19, 17, 10, 0xFF, 12, 0xFF,
0xFF, 3, 0xFF, 6, 0xFF, 22, 30, 0xFF,
14, 0xFF, 27, 0xFF, 0xFF, 0xFF, 20, 0xFF,
18, 9, 11, 0xFF, 5, 0xFF, 0xFF, 13,
26, 0xFF, 0xFF, 8, 0xFF, 4, 0xFF, 25,
0xFF, 7, 24, 0xFF, 23, 0xFF, 31, 0xFF,
};
/* Propagate leftmost 1-bit to the right */
x = x | (x >> 1);
x = x | (x >> 2);
x = x | (x >> 4);
x = x | (x >> 8);
x = x | (x >> 16);
/* x = x * 0x6EB14F9 */
x = (x << 3) - x; /* Multiply by 7. */
x = (x << 8) - x; /* Multiply by 255. */
x = (x << 8) - x; /* Again. */
x = (x << 8) - x; /* Again. */
return pgm_read_byte(&Table[x >> 26]);
}
這個 table 是用來判斷 CTZ (最後面有幾個0)
const char table[64] =
{32,31, u,16, u,30, 3, u, 15, u, u, u,29,10, 2, u,
u, u,12,14,21, u,19, u, u,28, u,25, u, 9, 1, u,
17, u, 4, u, u, u,11, u, 13,22,20, u,26, u, u,18,
5, u, u,23, u,27, u, 6, u,24, 7, u, 8, u, 0, u};
u 在 table 中無用,可另外給定任意數字
__builtin_clz()
和各個 clz 版本的結果是否相同。