Jephian Lin
    • Create new note
    • Create a note from template
      • Sharing URL Link copied
      • /edit
      • View mode
        • Edit mode
        • View mode
        • Book mode
        • Slide mode
        Edit mode View mode Book mode Slide mode
      • Customize slides
      • Note Permission
      • Read
        • Only me
        • Signed-in users
        • Everyone
        Only me Signed-in users Everyone
      • Write
        • Only me
        • Signed-in users
        • Everyone
        Only me Signed-in users Everyone
      • Engagement control Commenting, Suggest edit, Emoji Reply
    • Invite by email
      Invitee

      This note has no invitees

    • Publish Note

      Share your work with the world Congratulations! 🎉 Your note is out in the world Publish Note

      Your note will be visible on your profile and discoverable by anyone.
      Your note is now live.
      This note is visible on your profile and discoverable online.
      Everyone on the web can find and read all notes of this public team.
      See published notes
      Unpublish note
      Please check the box to agree to the Community Guidelines.
      View profile
    • Commenting
      Permission
      Disabled Forbidden Owners Signed-in users Everyone
    • Enable
    • Permission
      • Forbidden
      • Owners
      • Signed-in users
      • Everyone
    • Suggest edit
      Permission
      Disabled Forbidden Owners Signed-in users Everyone
    • Enable
    • Permission
      • Forbidden
      • Owners
      • Signed-in users
    • Emoji Reply
    • Enable
    • Versions and GitHub Sync
    • Note settings
    • Note Insights New
    • Engagement control
    • Make a copy
    • Transfer ownership
    • Delete this note
    • Save as template
    • Insert from template
    • Import from
      • Dropbox
      • Google Drive
      • Gist
      • Clipboard
    • Export to
      • Dropbox
      • Google Drive
      • Gist
    • Download
      • Markdown
      • HTML
      • Raw HTML
Menu Note settings Note Insights Versions and GitHub Sync Sharing URL Create Help
Create Create new note Create a note from template
Menu
Options
Engagement control Make a copy Transfer ownership Delete this note
Import from
Dropbox Google Drive Gist Clipboard
Export to
Dropbox Google Drive Gist
Download
Markdown HTML Raw HTML
Back
Sharing URL Link copied
/edit
View mode
  • Edit mode
  • View mode
  • Book mode
  • Slide mode
Edit mode View mode Book mode Slide mode
Customize slides
Note Permission
Read
Only me
  • Only me
  • Signed-in users
  • Everyone
Only me Signed-in users Everyone
Write
Only me
  • Only me
  • Signed-in users
  • Everyone
Only me Signed-in users Everyone
Engagement control Commenting, Suggest edit, Emoji Reply
  • Invite by email
    Invitee

    This note has no invitees

  • Publish Note

    Share your work with the world Congratulations! 🎉 Your note is out in the world Publish Note

    Your note will be visible on your profile and discoverable by anyone.
    Your note is now live.
    This note is visible on your profile and discoverable online.
    Everyone on the web can find and read all notes of this public team.
    See published notes
    Unpublish note
    Please check the box to agree to the Community Guidelines.
    View profile
    Engagement control
    Commenting
    Permission
    Disabled Forbidden Owners Signed-in users Everyone
    Enable
    Permission
    • Forbidden
    • Owners
    • Signed-in users
    • Everyone
    Suggest edit
    Permission
    Disabled Forbidden Owners Signed-in users Everyone
    Enable
    Permission
    • Forbidden
    • Owners
    • Signed-in users
    Emoji Reply
    Enable
    Import from Dropbox Google Drive Gist Clipboard
       Owned this note    Owned this note      
    Published Linked with GitHub
    • Any changes
      Be notified of any changes
    • Mention me
      Be notified of mention me
    • Unsubscribe
    # 行列式值的定義 ![Creative Commons License](https://i.creativecommons.org/l/by/4.0/88x31.png) This work by Jephian Lin is licensed under a [Creative Commons Attribution 4.0 International License](http://creativecommons.org/licenses/by/4.0/). $\newcommand{\trans}{^\top} \newcommand{\adj}{^{\rm adj}} \newcommand{\cof}{^{\rm cof}} \newcommand{\inp}[2]{\left\langle#1,#2\right\rangle} \newcommand{\dunion}{\mathbin{\dot\cup}} \newcommand{\bzero}{\mathbf{0}} \newcommand{\bone}{\mathbf{1}} \newcommand{\ba}{\mathbf{a}} \newcommand{\bb}{\mathbf{b}} \newcommand{\bc}{\mathbf{c}} \newcommand{\bd}{\mathbf{d}} \newcommand{\be}{\mathbf{e}} \newcommand{\bh}{\mathbf{h}} \newcommand{\bp}{\mathbf{p}} \newcommand{\bq}{\mathbf{q}} \newcommand{\br}{\mathbf{r}} \newcommand{\bx}{\mathbf{x}} \newcommand{\by}{\mathbf{y}} \newcommand{\bz}{\mathbf{z}} \newcommand{\bu}{\mathbf{u}} \newcommand{\bv}{\mathbf{v}} \newcommand{\bw}{\mathbf{w}} \newcommand{\tr}{\operatorname{tr}} \newcommand{\nul}{\operatorname{null}} \newcommand{\rank}{\operatorname{rank}} %\newcommand{\ker}{\operatorname{ker}} \newcommand{\range}{\operatorname{range}} \newcommand{\Col}{\operatorname{Col}} \newcommand{\Row}{\operatorname{Row}} \newcommand{\spec}{\operatorname{spec}} \newcommand{\vspan}{\operatorname{span}} \newcommand{\Vol}{\operatorname{Vol}}$ ```python from lingeo import random_int_list ``` ## Main idea For $n\times n$ matrices $A$, the **determinant** $\det(A)$ is defined through the following rules. - $\det(I_n) = 1$. - If $E$ is the elementary matrix of $\rho_i\leftrightarrow\rho_j$, then $\det(EA) = -\det(A)$ and we define $\det(E) = -1$. - If $E$ is the elementary matrix of $\rho_i:\times k$, then $E$ **rescales** the $i$-th row of $A$. Thus, $\det(EA) = k\det(A)$ and we define $\Vol_R(E) = k$. (Note that this statement still holds even when $k = 0$.) - If $E$ is the elementary matrix of $\rho_i:+k\rho_j$, then $E$ **slants** the $i$-th row of $A$ to the direction of $j$-th row. Thus, $\det(EA) = \det(A)$ and we define $\det(E) = 1$. Note that the determinants for $2\times 2$ and $3\times 3$ matrices agree with this definition. As a consequence, if a matrix $A$ is invertible and can be written as the product a sequence of elementary matrices $F_1\cdots F_k$, then $\det(A) = \det(F_1)\cdots\det(F_k)\det(I_n) = \det(F_1)\cdots\det(F_k)$. In contrast, if $A$ is not invertible, then $\det(A) = 0$. In particular, this happens when - $A$ has a zero row, or - $A$ has repeated rows. By definitions, $\det(A) = \Vol_C(A) = \Vol_R(A)$ for any matrix $A$. ##### Remark Thanks to row operations, the definition of $\det(A)$ assigns at least a value to $\det(A)$. However, _maybe_ the rules assigns more than one values to it. That is, the function might not be _well-defined_. A matrix $A$ can be written as the product of different sequences of elementary matrices. For example, one may write $$ A = F_1 \cdots F_k = E_1 \cdots E_h $$ for elementary matrices $F_1,\ldots, F_k$ and $E_1,\ldots, E_h$. However, it is not yet clear by the definition that $\det(F_1) \cdots \det(F_k) = \det(E_1) \cdots \det(E_h)$. We will deal with this issue at the end of this chapter. ## Side stories - well-defined - permutation matrices ## Experiments ##### Exercise 1 執行以下程式碼。 ```python ### code set_random_seed(0) print_ans = False n = 4 while True: A = matrix(n, random_int_list(n^2, 3)) if A.det() != 0: break print("A =") pretty_print(A) if print_ans: print("determinant of A =", A.det()) ``` ##### Exercise 1(a) 將 $A$ 消成最簡階梯形式、 並記錄下每一步的列運算。 :::warning - [x] $\longleftrightarrow$ --> $\leftrightarrow$ - [x] $A \xrightarrow{ \substack{\rho_2 : -1\rho_1 \\ \rho_3 : +3\rho_1 \\ \rho_4 : +3\rho_1} }B$ 學一下原始碼把它疊起來 - [x] $-13A$ 的意思是 $-13$ 乘 $A$,把那些數字拿掉。 ::: $Ans:$ $$ A = \begin{bmatrix} -3 & 3 & 1 & 2 \\ -3 & -3 & -1 & 3 \\ 1 & -2 & 1 & 2 \\ 1 & -3 & -2 & 0 \\ \end{bmatrix}\xrightarrow{\rho_3 \leftrightarrow \rho_1} \begin{bmatrix} 1 & -2 & 1 & 2 \\ -3 & -3 & -1 & 3 \\ -3 & 3 & 1 & 2 \\ 1 & -3 & -2 & 0 \\ \end{bmatrix}\xrightarrow{\rho_2 \leftrightarrow \rho_4} \begin{bmatrix} 1 & -2 & 1 & 2 \\ 1 & -3 & -2 & 0 \\ -3 & 3 & 1 & 2 \\ -3 & -3 & -1 & 3 \\ \end{bmatrix}\xrightarrow{ \substack{\rho_2 : -1\rho_1 \\ \rho_3 : +3\rho_1 \\ \rho_4 : +3\rho_1} } $$ $$ \begin{bmatrix} 1 & -2 & 1 & 2 \\ 0 & -1 & -3 & -2 \\ 0 & -3 & 4 & 8 \\ 0 & -9 & 2 & 9 \\ \end{bmatrix}\xrightarrow{ \substack{\rho_1 : -2\rho_2 \\ \rho_3 : -3\rho_2 \\ \rho_4 : +3\rho_2} } \begin{bmatrix} 1 & 0 & 7 & 6 \\ 0 & -1 & -3 & -2 \\ 0 & 0 & 13 & 14 \\ 0 & 0 & 29 & 27 \\ \end{bmatrix}\xrightarrow{ \substack{\rho_2 : \times(-1)\rho_2 \\ \rho_3 : \times\frac{1}{13} \rho_3} } \begin{bmatrix} 1 & 0 & 7 & 6 \\ 0 & 1 & 3 & 2 \\ 0 & 0 & 1 & \frac{14}{13} \\ 0 & 0 & 29 & 27 \\ \end{bmatrix} $$ $$\xrightarrow{ \substack{\rho_1 : +(-7)\rho_3 \\ \rho_2 : +(-3)\rho_3 \\ \rho_4 : +(-29)\rho_3} } \begin{bmatrix} 1 & 0 & 0 & \frac{-20}{13} \\ 0 & 1 & 0 & \frac{-16}{13} \\ 0 & 0 & 1 & \frac{14}{13} \\ 0 & 0 & 0 & \frac{-55}{13} \\ \end{bmatrix} \xrightarrow{\rho_4 : \times\frac{13}{-55}\rho_4} \begin{bmatrix} 1 & 0 & 0 & \frac{-20}{13} \\ 0 & 1 & 0 & \frac{-16}{13} \\ 0 & 0 & 1 & \frac{14}{13} \\ 0 & 0 & 0 & 1 \\ \end{bmatrix} \xrightarrow{ \substack{\rho_1 : +\frac{20}{13}\rho_4 \\ \rho_2 : +\frac{16}{13}\rho_4 \\ \rho_3 : +\frac{-14}{13}\rho_4} } \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ \end{bmatrix}. $$ ##### Exercise 1(b) 求出 $\det(A)$。 :::warning - [x] $A$ 不會等於 $55I$,把 $55 I$ 拿掉。這題用敘述的就可以了:依照上一題的列運算,$A$ 可以由 $I$ 經過列運算得來,中間的列運算會讓行列式值分別乘上 ... ,所以 ... 。 - [x] 中英數間空格 ::: $Ans:$ 依照上一題的列運算,$A$ 可以由 $I$ 經過列運算得來,中間的列運算會讓行列式值分別乘上 $(-1)、(-1)、(-1)、13、(\frac{-55}{13})$ 所以 $\det(A) = (-1) \times (-1) \times (-1)\times 13\times (\frac{-55}{13}) = 55.$ ## Exercises ##### Exercise 2 對以下矩陣 $A$, 求出 $\det(A)$。 ##### Exercise 2(a) $$ A = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ \end{bmatrix}. $$ :::warning - [x] $\longleftrightarrow$ --> $\leftrightarrow$ - [x] 標點 ::: $Ans:$ 將 $A$ 做列運算 $A = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ \end{bmatrix}\xrightarrow{\rho_3 \leftrightarrow \rho_4} \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ \end{bmatrix}\xrightarrow{\rho_2 \leftrightarrow \rho_3} \begin{bmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ \end{bmatrix}\xrightarrow{\rho_1 \leftrightarrow \rho_2} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ \end{bmatrix}.$ 由此可知,行列式值為 $(-1)\times(-1)\times(-1)=-1$。 ##### Exercise 2(b) $$ A = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ \end{bmatrix}. $$ :::warning - [x] 同上一題 ::: $Ans:$ 將 $A$ 做列運算 $A = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ \end{bmatrix}\xrightarrow{\rho_2 \leftrightarrow \rho_3}\begin{bmatrix} 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ \end{bmatrix}\xrightarrow{\rho_1 \leftrightarrow \rho_2}\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ \end{bmatrix}\xrightarrow{\rho_4 \leftrightarrow \rho_3}\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ \end{bmatrix}$ $\xrightarrow{\rho_2 \leftrightarrow \rho_3}\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ \end{bmatrix}.$ 由此可知,行列式值為 $(-1)\times(-1)\times(-1)\times(-1)=1$ 。 ##### Exercise 2(c) $$ A = \begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ \end{bmatrix}. $$ :::warning - [x] 同上一題 ::: $Ans:$ 將 $A$ 做列運算 $A = \begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ \end{bmatrix}\xrightarrow{\rho_3 \leftrightarrow \rho_4}\begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ \end{bmatrix}\xrightarrow{\rho_2 \leftrightarrow \rho_3}\begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ \end{bmatrix}\xrightarrow{\rho_1 \leftrightarrow \rho_2}\begin{bmatrix} 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ \end{bmatrix}$ $\xrightarrow{\rho_3 \leftrightarrow \rho_4}\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ \end{bmatrix}\xrightarrow{\rho_2 \leftrightarrow \rho_3}\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ \end{bmatrix}\xrightarrow{\rho_3 \leftrightarrow \rho_4}\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ \end{bmatrix}.$ 由此可知,行列式值為 $(-1)\times(-1)\times(-1)\times(-1)\times(-1)\times(-1)=1$ 。 ##### Exercise 2(d) $$ A = \begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 2 & 0 \\ 0 & 3 & 0 & 0 \\ 4 & 0 & 0 & 0 \\ \end{bmatrix}. $$ :::warning - [x] 同上一題 ::: $Ans:$ 將 $A$ 做列運算 $A = \begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 2 & 0 \\ 0 & 3 & 0 & 0 \\ 4 & 0 & 0 & 0 \\ \end{bmatrix}\xrightarrow{\rho_3 \leftrightarrow \rho_4}\begin{bmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 2 & 0 \\ 4 & 0 & 0 & 0 \\ 0 & 3 & 0 & 0 \\ \end{bmatrix}\xrightarrow{\rho_2 \leftrightarrow \rho_3}\begin{bmatrix} 0 & 0 & 0 & 1 \\ 4 & 0 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 3 & 0 & 0 \\ \end{bmatrix}\xrightarrow{\rho_1 \leftrightarrow \rho_2}\begin{bmatrix} 4 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 2 & 0 \\ 0 & 3 & 0 & 0 \\ \end{bmatrix}$ $\xrightarrow{\rho_3 \leftrightarrow \rho_4}\begin{bmatrix} 4 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 3 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ \end{bmatrix}\xrightarrow{\rho_2 \leftrightarrow \rho_3}\begin{bmatrix} 4 & 0 & 0 & 0 \\ 0 & 3 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 2 & 0 \\ \end{bmatrix}\xrightarrow{\rho_3 \leftrightarrow \rho_4}\begin{bmatrix} 4 & 0 & 0 & 0 \\ 0 & 3 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 1 \\ \end{bmatrix}\xrightarrow{\rho_1 : \times\frac{1}{4}}\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 3 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 1 \\ \end{bmatrix}$ $\xrightarrow{\rho_2 : \times\frac{1}{3}}\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 1 \\ \end{bmatrix}\xrightarrow{\rho_3 : \times\frac{1}{2}}\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ \end{bmatrix}.$ 由此可知,行列式值為 $2\times3\times4\times(-1)\times(-1)\times(-1)\times(-1)\times(-1)\times(-1)=24$ 。 ##### Exercise 2(e) $$ A = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 2 \\ 3 & 0 & 0 & 0 \\ 0 & 4 & 0 & 0 \\ \end{bmatrix}. $$ :::warning - [x] 同上一題 ::: $Ans:$ 將 $A$ 做列運算 $A = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 2 \\ 3 & 0 & 0 & 0 \\ 0 & 4 & 0 & 0 \\ \end{bmatrix}\xrightarrow{\rho_2 \leftrightarrow \rho_3}\begin{bmatrix} 0 & 0 & 1 & 0 \\ 3 & 0 & 0 & 0 \\ 0 & 0 & 0 & 2 \\ 0 & 4 & 0 & 0 \\ \end{bmatrix}\xrightarrow{\rho_1 \leftrightarrow \rho_2} \begin{bmatrix} 3 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 2 \\ 0 & 4 & 0 & 0 \\ \end{bmatrix} \xrightarrow{\rho_3 \leftrightarrow \rho_4}\begin{bmatrix} 3 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 4 & 0 & 0 \\ 0 & 0 & 0 & 2 \\ \end{bmatrix}$ $\xrightarrow{\rho_2 \leftrightarrow \rho_3}\begin{bmatrix} 3 & 0 & 0 & 0 \\ 0 & 4 & 0 & 0 \\ 3 & 0 & 1 & 0 \\ 0 & 0 & 0 & 2 \\ \end{bmatrix}\xrightarrow{\rho_1 : \times\frac{1}{3}} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 4 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 2 \\ \end{bmatrix} \xrightarrow{\rho_2 : \times\frac{1}{4}}\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 2 \\ \end{bmatrix} \xrightarrow{\rho_4 : \times\frac{1}{2}}\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ \end{bmatrix}.$ 由此可知,行列式值為 $2\times4\times3\times(-1)\times(-1)\times(-1)\times(-1)=24$ 。 ##### Exercise 3 對以下矩陣 $A$, 求出 $\det(A)$。 ##### Exercise 3(a) $$ A = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & 2 & 2 \\ 1 & 2 & 3 & 3 \\ 1 & 2 & 3 & 4 \end{bmatrix}. $$ :::warning - [x] 有數學沒進數學模式 - [x] 雖然沒錯,但這題實在沒必要用到降階。如果覺得打列運算很麻煩,可以參考 1(a) 的打法,一次做多個列運算。 ::: $Ans:$ $$ \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & 2 & 2 \\ 1 & 2 & 3 & 3 \\ 1 & 2 & 3 & 4 \\ \end{bmatrix}\xrightarrow{ \substack{\rho_2 : \times(-1)\rho_1 \\ \rho_3 : \times(-1)\rho_1 \\ \rho_4 : \times(-1)\rho_1} } \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 1 & 2 & 2 \\ 0 & 1 & 2 & 3 \\ \end{bmatrix}\xrightarrow{ \substack{\rho_1 : \times(-1)\rho_2 \\ \rho_3 : \times(-1)\rho_2 \\ \rho_4 : \times(-1) \rho_2} } \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 2 \\ \end{bmatrix}\xrightarrow{ \substack{\rho_2 : \times(-1)\rho_3 \\ \rho_4 : \times(-1)\rho_3\\} } \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \\ \end{bmatrix}\xrightarrow{ \substack{\rho_4 : \times(-1)\rho_3 \\} } \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ \end{bmatrix}. $$ 因此 $\det(A) =1$。 ##### Exercise 3(b) $$ A = \begin{bmatrix} 1 & 1 & \cdots & 1 \\ 1 & 2 & \cdots & 2 \\ \vdots & \vdots & \ddots & \vdots \\ 1 & 2 & \cdots & n \end{bmatrix}. $$ $Ans:$ 由 3(a) 可知,對 $A$ 做列運算可將 $A$ 化簡為 $$ A = \begin{bmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{bmatrix}. $$ 因此 $\det(A) =1$。 ##### Exercise 4 對以下矩陣 $A$, 求出 $\det(A)$。 ##### Exercise 4(a) $$ A = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & 4 & 8 \\ 1 & 3 & 9 & 27 \\ 1 & 4 & 16 & 64 \end{bmatrix}. $$ :::warning - [x] 參考 1(a) 的排版 - [x] 最後一句在數學模式外全型句點 - [x] 中英數空格 ::: $Ans:$ 將 $A$ 做列運算,運算至上三角矩陣 $$\begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & 4 & 8 \\ 1 & 3 & 9 & 27 \\ 1 & 4 & 16 & 64 \end{bmatrix}\xrightarrow{ \substack{\rho_2 : -1\rho_1 \\ \rho_3 : -1\rho_1 \\ \rho_4 : -1\rho_1}} \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 3 & 7 \\ 0 & 2 & 8 & 26 \\ 0 & 3 & 15 & 63 \end{bmatrix}\xrightarrow{ \substack{\rho_3: -2\rho_2 \\ \rho_4: -3\rho_2}} \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 3 & 7 \\ 0 & 0 & 2 & 12 \\ 0 & 0 & 6 & 42 \end{bmatrix}\xrightarrow{\rho_4: -3\rho_3} \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 3 & 7 \\ 0 & 0 & 2 & 12 \\ 0 & 0 & 0 & 6 \end{bmatrix}. $$ 則 $\det(A)= 1 \times 1 \times 2 \times 6 =12$。 ##### Exercise 4(b) $$ A = \begin{bmatrix} 1 & 1 & 1 & 1 & 1\\ 1 & 2 & 4 & 8 & 16 \\ 1 & 3 & 9 & 27 & 81 \\ 1 & 4 & 16 & 64 & 256 \\ 1 & 5 & 25 & 125 & 625 \end{bmatrix}. $$ :::warning - [x] 參考 1(a) 的排版 - [x] 最後一句在數學模式外全型句點 - [x] 中英數空格 ::: $Ans:$ 將 $A$ 做列運算,運算至上三角矩陣 $$\begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ 1 & 2 & 4 & 8 & 16 \\ 1 & 3 & 9 & 27 & 81 \\ 1 & 4 & 16 & 64 &256 \\ 1 & 5 & 25 & 125 & 625 \end{bmatrix}\xrightarrow{ \substack{\rho_2: -1\rho_1 \\ \rho_3: -1\rho_1 \\ \rho_4: -1\rho_1 \\ \rho_5: -1\rho_1}} \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 3 & 7 & 15 \\ 0 & 2 & 8 & 26 & 80 \\ 0 & 3 & 15 & 63 &255 \\ 0 & 4 & 24 & 124 & 624 \end{bmatrix}\xrightarrow{ \substack{\rho_3: -2\rho_2 \\ \rho_4: -3\rho_2 \\ \rho_5: -4\rho_2}} \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 3 & 7 & 15 \\ 0 & 0 & 2 & 12 & 50 \\ 0 & 0 & 6 & 42 & 210 \\ 0 & 0 & 12 & 96 & 564 \end{bmatrix} $$ $$ \xrightarrow{ \substack{\rho_4: -3\rho_3 \\ \rho_5: -6\rho_3}} \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 3 & 7 & 15 \\ 0 & 0 & 2 & 12 & 50 \\ 0 & 0 & 0 & 6 & 60 \\ 0 & 0 & 0 & 24 & 264 \end{bmatrix}\xrightarrow{\rho_5: -4\rho_4} \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 3 & 7 & 15 \\ 0 & 0 & 2 & 12 & 50 \\ 0 & 0 & 0 & 6 & 60 \\ 0 & 0 & 0 & 0 & 24 \end{bmatrix}. $$ 則 $\det(A)= 1 \times 1 \times 2 \times 6 \times 24 =288$。 ##### Exercise 5 對以下矩陣 $A$, 求出 $\det(A)$。 提示:把所有列加到第一列。 ##### Exercise 5(a) $$ A = \begin{bmatrix} 4 & -1 & -1 & -1 \\ -1 & 4 & -1 & -1 \\ -1 & -1 & 4 & -1 \\ -1 & -1 & -1 & 4 \end{bmatrix}. $$ :::warning - [x] 參考 1(a) 的排版 - [x] 標點 - [x] 中英數空格 ::: $Ans:$ 將 $A$ 做列運算,運算至上三角矩陣 $$ \begin{bmatrix} 4 & -1 & -1 & -1 \\ -1 & 4 & -1 & -1 \\ -1 & -1 & 4 & -1 \\ -1 & -1 & -1 & 4 \end{bmatrix}\xrightarrow{\rho_1: +1\rho_2 +1\rho_3+ 1\rho_4 } \begin{bmatrix} 1 & 1 & 1 & 1 \\ -1 & 4 & -1 & -1 \\ -1 & -1 & 4 & -1 \\ -1 & -1 & -1 & 4 \end{bmatrix}\xrightarrow{ \substack{\rho_2: +1\rho_1 \\ \rho_3: +1\rho_1 \\ \rho_4: +1\rho_1}} \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 5 & 0 & 0 \\ 0 & 0 & 5 & 0 \\ 0 & 0 & 0 & 5 \end{bmatrix}. $$ 則$\det(A)= 1 \times 5 \times 5 \times 5 =125$。 ##### Exercise 5(b) 令 $A$ 為一 $n\times n$ 矩陣 $$ \begin{bmatrix} n & -1 & \cdots & -1 \\ -1 & n & \ddots & \vdots \\ \vdots & \ddots & \ddots & -1 \\ -1 & \cdots & -1 & n \end{bmatrix}. $$ :::warning - [x] 參考 1(a) 的排版 - [x] 標點 - [x] 中英數空格 ::: $Ans:$ 將 $A$ 做列運算,運算至上三角矩陣 $$ \begin{bmatrix} n & -1 & \cdots & -1 \\ -1 & n & \ddots & \vdots \\ \vdots & \ddots & \ddots & -1 \\ -1 & \cdots & -1 & n \end{bmatrix}\xrightarrow{\rho_1: +1\rho_2 +1\rho_3 +\cdots+1\rho_n } \begin{bmatrix} 1 & 1 & \cdots & 1 \\ -1 & n & \ddots & \vdots \\ \vdots & \ddots & \ddots & -1 \\ -1 & \cdots & -1 & n \end{bmatrix}\xrightarrow{ \substack{\rho_2: +1\rho_1 \\ \rho_3: +1\rho_1 \\ \vdots \\ \rho_n: +1\rho_1}} \begin{bmatrix} 1 & 1 & \cdots & 1 \\ 0 & n+1 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & n+1 \end{bmatrix}. $$ 則 $\det(A)= 1 \times (n+1) \times (n+1) \times \cdots \times (n+1) =(n+1)^{(n-1)}$。 ##### Exercise 6 利用 $\det$ 定義中的四條準則,說明以下性質。 ##### Exercise 6(a) 若 $A$ 中有一列為零向量,說明 $\det(A) = 0$。 :::warning - [x] 中英數之間空格 - [x] 用文字敘述清楚:若 $E$ 為列運算 $\rho_i:\times k$ 所對應的基本矩陣 ... - [x] $det$ --> $\det$ - [x] 這題不用消到上三角,參考 403 或 404 相對應的題目。 ::: $Ans:$ 因為 $A$ 中有一列零向量,我們可以使用列運算 $\rho_i:\times k$ 讓這一個零列每項的值乘 $k$ 倍,並令這一個新矩陣為 $B$。然而由於 $0$ 乘上任何數字還是 $0$,故 $A = B$。 另外,從 $\det$ 的定義中得知 $$\det(B) = k\det(A). $$ 然而我們也知道 $A=B$,故 $\det(B) = \det(A)$。因此我們得到 $$ \det(B) = \det(A) = k\det(A), $$ 所以 $\det(A) = 0$。 ##### Exercise 6(b) 若 $A$ 中有兩列向量相等,說明 $\det(A) = 0$。 :::warning - [x] 中英數之間空格 - [x] 用文字敘述清楚:若 $E$ 為列運算 $\rho_i:???$ 所對應的基本矩陣 ... - [x] $det$ --> $\det$ - [x] 這題不用消到上三角,參考 403 或 404 相對應的題目。 - [x] 標點 ::: $Ans:$ 因為 $A$ 中有兩列相等,我們可以使用列運算 $\rho_i\leftrightarrow\rho_j$ 讓這兩列交換,並令這一個新矩陣為 $B$。然而由於兩列相等,交換後並不會有所差別,故 $A = B$。 另外,從 $\det$ 的定義中得知 $$\det(B) = -\det(A). $$ 然而我們也知道 $A=B$,故 $\det(B) = \det(A)$。因此我們得到 $$ \det(B) = \det(A) = -\det(A), $$ 所以 $\det(A) = 0$。 ##### Exercise 6(c) 若 $A$ 中的列向量集合線性相依,說明 $\det(A) = 0$。 :::warning - [x] 中英數之間空格 - [x] 用文字敘述清楚:若 $E$ 為列運算 $\rho_i:???$ 所對應的基本矩陣 ... - [x] $det$ --> $\det$ - [x] 線性相依不見得是 $\rho_1 + \rho_2 = \rho_3$,參考 403 或 404 相對應的題目。 - [x] 標點 ::: $Ans:$ 假設 $A$ 為 $n \times n$ 矩陣,其列向量為 ${\{\ba_1,\ba_2,\cdots,\ba_n}\}$。 則其中一個向量可以寫成其它向量的線性組合,不失一般性,我們假設 $\ba_i$ 可以寫成 $$ \ba_i = c_1\ba_1 + c_2\ba_2 + \cdots + c_n\ba_n,c_1,c_2,\ldots,c_n \in \mathbb R. $$ 那麼我們可以利用列運算 $\rho_i:+(-c_1)\rho_1$、$\rho_i:+(-c_2)\rho_2$ $\cdots$ 等等運算使得第 $i$ 列成為零列,從而得到與上面相同的結論。 所以 $\det(A) = 0$。 :::info 目前分數 = 6.5 :::

    Import from clipboard

    Paste your markdown or webpage here...

    Advanced permission required

    Your current role can only read. Ask the system administrator to acquire write and comment permission.

    This team is disabled

    Sorry, this team is disabled. You can't edit this note.

    This note is locked

    Sorry, only owner can edit this note.

    Reach the limit

    Sorry, you've reached the max length this note can be.
    Please reduce the content or divide it to more notes, thank you!

    Import from Gist

    Import from Snippet

    or

    Export to Snippet

    Are you sure?

    Do you really want to delete this note?
    All users will lose their connection.

    Create a note from template

    Create a note from template

    Oops...
    This template has been removed or transferred.
    Upgrade
    All
    • All
    • Team
    No template.

    Create a template

    Upgrade

    Delete template

    Do you really want to delete this template?
    Turn this template into a regular note and keep its content, versions, and comments.

    This page need refresh

    You have an incompatible client version.
    Refresh to update.
    New version available!
    See releases notes here
    Refresh to enjoy new features.
    Your user state has changed.
    Refresh to load new user state.

    Sign in

    Forgot password

    or

    By clicking below, you agree to our terms of service.

    Sign in via Facebook Sign in via Twitter Sign in via GitHub Sign in via Dropbox Sign in with Wallet
    Wallet ( )
    Connect another wallet

    New to HackMD? Sign up

    Help

    • English
    • 中文
    • Français
    • Deutsch
    • 日本語
    • Español
    • Català
    • Ελληνικά
    • Português
    • italiano
    • Türkçe
    • Русский
    • Nederlands
    • hrvatski jezik
    • język polski
    • Українська
    • हिन्दी
    • svenska
    • Esperanto
    • dansk

    Documents

    Help & Tutorial

    How to use Book mode

    Slide Example

    API Docs

    Edit in VSCode

    Install browser extension

    Contacts

    Feedback

    Discord

    Send us email

    Resources

    Releases

    Pricing

    Blog

    Policy

    Terms

    Privacy

    Cheatsheet

    Syntax Example Reference
    # Header Header 基本排版
    - Unordered List
    • Unordered List
    1. Ordered List
    1. Ordered List
    - [ ] Todo List
    • Todo List
    > Blockquote
    Blockquote
    **Bold font** Bold font
    *Italics font* Italics font
    ~~Strikethrough~~ Strikethrough
    19^th^ 19th
    H~2~O H2O
    ++Inserted text++ Inserted text
    ==Marked text== Marked text
    [link text](https:// "title") Link
    ![image alt](https:// "title") Image
    `Code` Code 在筆記中貼入程式碼
    ```javascript
    var i = 0;
    ```
    var i = 0;
    :smile: :smile: Emoji list
    {%youtube youtube_id %} Externals
    $L^aT_eX$ LaTeX
    :::info
    This is a alert area.
    :::

    This is a alert area.

    Versions and GitHub Sync
    Get Full History Access

    • Edit version name
    • Delete

    revision author avatar     named on  

    More Less

    Note content is identical to the latest version.
    Compare
      Choose a version
      No search result
      Version not found
    Sign in to link this note to GitHub
    Learn more
    This note is not linked with GitHub
     

    Feedback

    Submission failed, please try again

    Thanks for your support.

    On a scale of 0-10, how likely is it that you would recommend HackMD to your friends, family or business associates?

    Please give us some advice and help us improve HackMD.

     

    Thanks for your feedback

    Remove version name

    Do you want to remove this version name and description?

    Transfer ownership

    Transfer to
      Warning: is a public team. If you transfer note to this team, everyone on the web can find and read this note.

        Link with GitHub

        Please authorize HackMD on GitHub
        • Please sign in to GitHub and install the HackMD app on your GitHub repo.
        • HackMD links with GitHub through a GitHub App. You can choose which repo to install our App.
        Learn more  Sign in to GitHub

        Push the note to GitHub Push to GitHub Pull a file from GitHub

          Authorize again
         

        Choose which file to push to

        Select repo
        Refresh Authorize more repos
        Select branch
        Select file
        Select branch
        Choose version(s) to push
        • Save a new version and push
        • Choose from existing versions
        Include title and tags
        Available push count

        Pull from GitHub

         
        File from GitHub
        File from HackMD

        GitHub Link Settings

        File linked

        Linked by
        File path
        Last synced branch
        Available push count

        Danger Zone

        Unlink
        You will no longer receive notification when GitHub file changes after unlink.

        Syncing

        Push failed

        Push successfully