Daira Emma Hopwood
    • Create new note
    • Create a note from template
      • Sharing URL Link copied
      • /edit
      • View mode
        • Edit mode
        • View mode
        • Book mode
        • Slide mode
        Edit mode View mode Book mode Slide mode
      • Customize slides
      • Note Permission
      • Read
        • Only me
        • Signed-in users
        • Everyone
        Only me Signed-in users Everyone
      • Write
        • Only me
        • Signed-in users
        • Everyone
        Only me Signed-in users Everyone
      • Engagement control Commenting, Suggest edit, Emoji Reply
      • Invitee
    • Publish Note

      Share your work with the world Congratulations! 🎉 Your note is out in the world Publish Note

      Your note will be visible on your profile and discoverable by anyone.
      Your note is now live.
      This note is visible on your profile and discoverable online.
      Everyone on the web can find and read all notes of this public team.
      See published notes
      Unpublish note
      Please check the box to agree to the Community Guidelines.
      View profile
    • Commenting
      Permission
      Disabled Forbidden Owners Signed-in users Everyone
    • Enable
    • Permission
      • Forbidden
      • Owners
      • Signed-in users
      • Everyone
    • Suggest edit
      Permission
      Disabled Forbidden Owners Signed-in users Everyone
    • Enable
    • Permission
      • Forbidden
      • Owners
      • Signed-in users
    • Emoji Reply
    • Enable
    • Versions and GitHub Sync
    • Note settings
    • Engagement control
    • Transfer ownership
    • Delete this note
    • Save as template
    • Insert from template
    • Import from
      • Dropbox
      • Google Drive
      • Gist
      • Clipboard
    • Export to
      • Dropbox
      • Google Drive
      • Gist
    • Download
      • Markdown
      • HTML
      • Raw HTML
Menu Note settings Sharing URL Create Help
Create Create new note Create a note from template
Menu
Options
Versions and GitHub Sync Engagement control Transfer ownership Delete this note
Import from
Dropbox Google Drive Gist Clipboard
Export to
Dropbox Google Drive Gist
Download
Markdown HTML Raw HTML
Back
Sharing URL Link copied
/edit
View mode
  • Edit mode
  • View mode
  • Book mode
  • Slide mode
Edit mode View mode Book mode Slide mode
Customize slides
Note Permission
Read
Only me
  • Only me
  • Signed-in users
  • Everyone
Only me Signed-in users Everyone
Write
Only me
  • Only me
  • Signed-in users
  • Everyone
Only me Signed-in users Everyone
Engagement control Commenting, Suggest edit, Emoji Reply
Invitee
Publish Note

Share your work with the world Congratulations! 🎉 Your note is out in the world Publish Note

Your note will be visible on your profile and discoverable by anyone.
Your note is now live.
This note is visible on your profile and discoverable online.
Everyone on the web can find and read all notes of this public team.
See published notes
Unpublish note
Please check the box to agree to the Community Guidelines.
View profile
Engagement control
Commenting
Permission
Disabled Forbidden Owners Signed-in users Everyone
Enable
Permission
  • Forbidden
  • Owners
  • Signed-in users
  • Everyone
Suggest edit
Permission
Disabled Forbidden Owners Signed-in users Everyone
Enable
Permission
  • Forbidden
  • Owners
  • Signed-in users
Emoji Reply
Enable
Import from Dropbox Google Drive Gist Clipboard
   owned this note    owned this note      
Published Linked with GitHub
Subscribed
  • Any changes
    Be notified of any changes
  • Mention me
    Be notified of mention me
  • Unsubscribe
Subscribe
# Nearly full-width variable-base scalar mul [TOC] ECC gadget: https://hackmd.io/KfD81XFQQqqUJI7ZoICk7w Copied from https://github.com/zcash/zcash/issues/3924 (with some variable name changes): > Consider the following algorithm: > > Acc := [2] T > for i from n-1 down to 0 { > U := r_i ? T : −T > Acc := (Acc + U) + Acc > } > > This computes $[2^{n+1} - (2^n - 1) + 2 \cdot r] T = [2^n + 1 + 2 \cdot r] T$. > > Suppose that we actually want to compute $[2^n + k]$ T, where $k < 2^{n+1}$ and $T \neq \mathcal{O}$. Without loss of generality, assume $k$ is odd (if it is even then add one to $k$ and subtract $T$ from the result). Let $k = 1 + 2 \cdot r$, and solve to give $r = (k - 1)/2$. Conveniently, this is equivalent to setting $r = k >> 1$ where $>>$ is the bitwise right-shift operator. > > So the full algorithm is: > > Acc := [2] T > for i from n-1 down to 0 { > U := k_{i+1} ? T : −T > Acc := (Acc + U) + Acc > } > return (k_0 = 0) ? (Acc - T) : Acc In the Orchard circuit we need to check $\mathsf{pk_d} = [\mathsf{ivk}] \mathsf{g_d}$ where $\mathsf{ivk} \in [0, p)$ and the scalar field is $\mathbb{F}_q$ with $p < q$. We have $p = 2^{254} + t_p$ and $q = 2^{254} + t_q$, for $t_p, t_q < 2^{128}$. We're trying to compute $[\alpha] T$ for $\alpha \in [0, q)$. Set $k = t_q + \alpha$ as an integer and $n = 254$. Then we can compute $\begin{align*} [2^{254} + t_q + \alpha] T &= [q + \alpha] T \\ &= [\alpha] T \end{align*}$ provided that $\alpha + t_q \in [0, 2^{n+1})$, i.e. $\alpha < 2^{n+1} - t_q$ which covers the whole range we need because in fact $p - 1 + t_q < 2^{255}$. We will encounter a potential overflow problem when trying to decompose $\alpha + t_q$ into bits. This should be a decomposition in the integer range $[t_q, p + t_q)$; not $[0, p)$. We'll discuss this in more detail below. We'll also find that we need to use complete addition in the last 3 steps. Continuing the analysis of incomplete addition: > It remains to check that the x-coordinates of each pair of points to be added are distinct. > > When adding points in the large prime-order subgroup, we can rely on Theorem 3 from Appendix C of the [Halo paper](https://eprint.iacr.org/2019/1021.pdf), which says that if we have two such points with nonzero indices wrt a given odd-prime order base, where the indices taken in the range $-(q-1)/2..(q-1)/2$ are distinct disregarding sign, then they have different x-coordinates. This is helpful, because it is easier to reason about the indices of points occurring in the scalar multiplication algorithm than it is to reason about their x-coordinates directly. > So, the required check is equivalent to saying that the following "indexed version" of the above algorithm never asserts: > > acc := 2 > for i from n-1 down to 0 { > u = k_{i+1} ? 1 : −1 > assert acc ≠ ± u > assert (acc + u) ≠ acc // X > acc := (acc + u) + acc > assert 0 < acc ≤ (q-1)/2 > } > if k_0 = 0 { > assert acc ≠ 1 > acc := acc - 1 > } The maximum value of $acc$ is: ``` <---n 1s---> 1011111...1111 = 1100000...0000 - 1 ``` = $2^{n+1} + 2^n - 1$ > The assertion labelled X obviously cannot fail because $u \neq 0$. It is possible to see that acc is monotonically increasing except in the last conditional. It reaches its largest value when $k$ is maximal, i.e. $2^{n+1} + 2^n - 1$. So to entirely avoid exceptional cases in addition, we would need $2^{n+1} + 2^n - 1 < (q-1)/2$. But we can use $n$ larger by $c$ if the last $c$ iterations use complete addition. The first $i$ for which the algorithm using **only** incomplete addition fails is going to be $252$, since $2^{252+1} + 2^{252} - 1 > (q - 1)/2$. We need $n = 254$ to make the wraparound technique above work. > sage: q = 0x40000000000000000000000000000000224698fc0994a8dd8c46eb2100000001 sage: 2^253 + 2^252 - 1 < (q-1)//2 False sage: 2^252 + 2^251 - 1 < (q-1)//2 True So the last three iterations of the loop ($i = 2..0$) need to use complete addition, as does the conditional subtraction at the end. Writing this out using ⸭ for incomplete addition (as we do in the spec), we have: Acc := [2] T for i from 253 down to 3 { U := k_{i+1} ? T : −T Acc := (Acc ⸭ U) ⸭ Acc } for i from 2 down to 0 { U := k_{i+1} ? T : −T Acc := (Acc + U) + Acc // complete addition } return (k_0 = 0) ? (Acc + (-T)) : Acc // complete addition ## Algorithm with incomplete addition Let $\mathbf{z}_i = \sum_{h=i}^{n} (\mathbf{k}_{h} \cdot 2^{h-i})$, where $n = 254$. Then we have $\begin{array}{rcl}\hspace{1.5em} \mathbf{z}_{n+1} &=& 0 \\ \mathbf{z}_{i} &=& 2\cdot \mathbf{z}_{i+1} + \mathbf{k}_i, \text{ for } 0 \leq i \leq n \\ \mathbf{z}_0 &=& k \\ &=& \alpha + t_q \text{ (as an integer!)} \end{array}$ Note that since we are witnessing the boolean decomposition of $k = \alpha + t_q$ in big-endian order, the corresponding running sum $\mathbf{z}_{i}$ will also be assigned from $i = n + 1$ down to $0$. Let $k = \sum\limits_{h=0}^{254} \mathbf{k}_h \cdot 2^h$ as an integer. ## Overflow check for variable-base scalar multiplication $\mathbf{z}_i$ cannot overflow for any $i \geq 1$, because it is a weighted sum of bits only up to $2^{n-1} = 2^{253}$, which is smaller than $p$ (and also $q$). However, $\mathbf{z}_0 = \alpha + t_q$ *can* overflow $[0, p)$. Since overflow can only occur in the final step that constrains $\mathbf{z}_0 = 2 \cdot \mathbf{z}_1 + \mathbf{k}_0$, we have $\mathbf{z}_0 = k \pmod{p}$. It is then sufficient to also check that $\mathbf{z}_0 = \alpha + t_q \pmod{p}$ (so that $k = \alpha + t_q \pmod{p}$) and that $k \in [t_q, p + t_q)$. These conditions together imply that $k = \alpha + t_q$ as an integer, and so $2^{254} + k = \alpha \pmod{q}$ as required. > Note: the bits $\mathbf{k}_{254..0}$ do not represent a value reduced modulo $q$, but rather a representation of the unreduced $\alpha + t_q$. ### Optimized check for $k \in [t_q, p + t_q)$ Since $t_p + t_q < 2^{130}$, we have $[t_q, p + t_q) = [t_q, t_q + 2^{130}) \;\cup\; [2^{130}, 2^{254}) \;\cup\; \big([2^{254}, 2^{254} + 2^{130}) \;\cap\; [p + t_q - 2^{130}, p + t_q)\big).$ We may assume that $k = \alpha + t_q \pmod{p}$. Therefore, $\begin{array}{rcl} k \in [t_q, p + t_q) &\Leftrightarrow& \big(k \in [t_q, t_q + 2^{130}) \;\vee\; k \in [2^{130}, 2^{254})\big) \;\vee\; \\ & & \big(k \in [2^{254}, 2^{254} + 2^{130}) \;\wedge\; k \in [p + t_q - 2^{130}, p + t_q)\big) \\ &\Leftrightarrow& \big(\mathbf{k}_{254} = 0 \implies (k \in [t_q, t_q + 2^{130}) \;\vee\; k \in [2^{130}, 2^{254}))\big) \;\wedge \\ & & \big(\mathbf{k}_{254} = 1 \implies (k \in [2^{254}, 2^{254} + 2^{130}) \;\wedge\; k \in [p + t_q - 2^{130}, p + t_q)\big) \\ &\Leftrightarrow& \big(\mathbf{k}_{254} = 0 \implies (\alpha \in [0, 2^{130}) \;\vee\; k \in [2^{130}, 2^{254})\big) \;\wedge \\ & & \big(\mathbf{k}_{254} = 1 \implies (k \in [2^{254}, 2^{254} + 2^{130}) \;\wedge\; (\alpha + 2^{130}) \bmod p \in [0, 2^{130}))\big) \;\;Ⓐ \end{array}$ > Given $k \in [2^{254}, 2^{254} + 2^{130})$, we prove equivalence of $k \in [p + t_q - 2^{130}, p + t_q)$ and $(\alpha + 2^{130}) \bmod p \in [0, 2^{130})$ as follows: > * shift the range by $2^{130} - p - t_q$ to give $k + 2^{130} - p - t_q \in [0, 2^{130})$; > * observe that $k + 2^{130} - p - t_q$ is guaranteed to be in $[2^{130} - t_p - t_q, 2^{131} - t_p - t_q)$ and therefore cannot overflow or underflow modulo $p$; > * using the fact that $k = \alpha + t_q \pmod{p}$, observe that $(k + 2^{130} - p - t_q) \bmod p = (\alpha + t_q + 2^{130} - p - t_q) \bmod p = (\alpha + 2^{130}) \bmod p$. > > (We can see in a different way that this is correct by observing that it checks whether $\alpha \bmod p \in [p - 2^{130}, p)$, so the upper bound is aligned as we would expect.) Now, we can continue optimizing from $Ⓐ$: $\begin{array}{rcl} k \in [t_q, p + t_q) &\Leftrightarrow& \big(\mathbf{k}_{254} = 0 \implies (\alpha \in [0, 2^{130}) \;\vee\; k \in [2^{130}, 2^{254})\big) \;\wedge \\ & & \big(\mathbf{k}_{254} = 1 \implies (k \in [2^{254}, 2^{254} + 2^{130}) \;\wedge\; (\alpha + 2^{130}) \bmod p \in [0, 2^{130}))\big) \\ & & \big(\mathbf{k}_{254} = 0 \implies (\alpha \in [0, 2^{130}) \;\vee\; \mathbf{k}_{253..130} \text{ are not all } 0)\big) \;\wedge \\ & & \big(\mathbf{k}_{254} = 1 \implies (\mathbf{k}_{253..130} \text{ are all } 0 \;\wedge\; (\alpha + 2^{130}) \bmod p \in [0, 2^{130}))\big) \end{array}$ Constraining $\mathbf{k}_{253..130}$ to be all-$0$ or not-all-$0$ can be implemented almost "for free", as follows. Recall that $\mathbf{z}_i = \sum_{h=i}^{n} (\mathbf{k}_{h} \cdot 2^{h-i})$, so we have: $\begin{array}{rcl} \mathbf{z}_{130} &=& \sum_{h=130}^{254} (\mathbf{k}_h \cdot 2^{h-130}) \\ \mathbf{z}_{130} &=& \mathbf{k}_{254} \cdot 2^{254-130} + \sum_{h=130}^{253} (\mathbf{k}_h \cdot 2^{h-130}) \\ \mathbf{z}_{130} - \mathbf{k}_{254} \cdot 2^{124} &=& \sum_{h=130}^{253} (\mathbf{k}_h \cdot 2^{h-130}) \end{array}$ So $\mathbf{k}_{253..130}$ are all $0$ exactly when $\mathbf{z}_{130} = \mathbf{k}_{254} \cdot 2^{124}$. Finally, we can merge the $130$-bit decompositions for the $\mathbf{k}_{254} = 0$ and $\mathbf{k}_{254} = 1$ cases by checking that $(\alpha + \mathbf{k}_{254} \cdot 2^{130}) \bmod p \in [0, 2^{130})$. ### Overflow check constraints Let $s = \alpha + \mathbf{k}_{254} \cdot 2^{130}$. The constraints for the overflow check are: $\mathbf{z}_0 = \alpha + t_q \pmod{p}$ $\mathbf{k}_{254} = 1 \implies \big(\mathbf{z}_{130} = 2^{124} \;\wedge\; s \bmod p \in [0, 2^{130})\big)$. $\mathbf{k}_{254} = 0 \implies \big(\mathbf{z}_{130} \neq 0 \;\vee\; s \bmod p \in [0, 2^{130})\big)$. Define $\mathsf{inv0}(x) = \begin{cases} 0, &\text{if } x = 0 \\ 1/x, &\text{otherwise.} \end{cases}$ Witness $\eta = \mathsf{inv0}(\mathbf{z}_{130})$, and decompose $s \bmod p$ as $\mathbf{s}_{129..0}$. Then the needed gates are: $s = \alpha + \mathbf{k}_{254} \cdot 2^{130}$ $\mathbf{z}_0 = \alpha + t_q \pmod{p}$ $\mathbf{k}_{254} \cdot (\mathbf{z}_{130} - 2^{124}) = 0$ $\mathbf{k}_{254} \cdot (s - \sum\limits_{i=0}^{129} 2^i \cdot \mathbf{s}_i) = 0$ $(1 - \mathbf{k}_{254}) \cdot (1 - \mathbf{z}_{130} \cdot \eta) \cdot (s - \sum\limits_{i=0}^{129} 2^i \cdot \mathbf{s}_i) = 0$ where $\sum\limits_{i=0}^{129} 2^i \cdot \mathbf{s}_i$ can be computed by another running sum. [TODO: be explicit about how to do that.] ## Main constraint system let $(x_T, y_T) = T$. $\mathbf{z}_{255} = 0$ $A_{254} = [2] T$ for $i$ from $254$ down to $4$:     $(\mathbf{k}_i)(\mathbf{k}_i-1) = 0$     $\mathbf{z}_{i} = 2\mathbf{z}_{i+1} + \mathbf{k}_{i}$     $x_{U,i} = x_T$     $y_{U,i} = (2 \mathbf{k}_i - 1) \cdot y_T$ # conditionally negate     $\lambda_{1,i} \cdot (x_{A,i} - x_{U,i}) = y_{A,i} - y_{U,i}$     $\lambda_{1,i}^2 = x_{R,i} + x_{A,i} + x_{U,i}$     $(\lambda_{1,i} + \lambda_{2,i}) \cdot (x_{A,i} - x_{R,i}) = 2 y_{\mathsf{A},i}$     $\lambda_{2,i}^2 = x_{A,i-1} + x_{R,i} + x_{A,i}$     $\lambda_{2,i} \cdot (x_{A,i} - x_{A,i-1}) = y_{A,i} + y_{A,i-1}$ TODO: do the final three bits Output $(x_{A,0}, y_{A,0})$ After substitution of $y_{P,i}$, $x_{R,i}$, $y_{A,i}$, and $y_{A,i+1}$, this becomes: $A_{254} = [2] T$ for $i$ from $254$ down to $4$:     // let $\mathbf{k}_i = \mathbf{z}_{i+1} - 2\mathbf{z}_i$     // let $x_{R,i} = (\lambda_{1,i}^2 - x_{A,i} - x_T)$     // let $y_{A,i} = \frac{(\lambda_{1,i} + \lambda_{2,i}) \cdot (x_{A,i} - (\lambda_{1,i}^2 - x_{A,i} - x_T))\hspace{2em}}{2}$     $(\mathbf{z}_{i+1} - 2\mathbf{z}_i)(\mathbf{z}_{i+1} - 2\mathbf{z}_i - 1) = 0$     $\lambda_{1,i} \cdot (x_{A,i} - x_T) = \frac{(\lambda_{1,i} + \lambda_{2,i}) \cdot (x_{A,i} - (\lambda_{1,i}^2 - x_{A,i} - x_T))\hspace{2em}}{2} - (2 \cdot (\mathbf{z}_{i+1} - 2\mathbf{z}_i) - 1) \cdot y_T$     $\lambda_{2,i}^2 = x_{A,i-1} + (\lambda_{1,i}^2 - x_{A,i} - x_T) + x_{A,i}$     if $i > 3$ then $2 \cdot \lambda_{2,i} \cdot (x_{A,i} - x_{A,i-1}) =$         $(\lambda_{1,i} + \lambda_{2,i}) \cdot (x_{A,i} - (\lambda_{1,i}^2 - x_{A,i} - x_T)) +$         $(\lambda_{1,i-1} + \lambda_{2,i-1}) \cdot (x_{A,i-1} - (\lambda_{1,i-1}^2 - x_{A,i-1} - x_T))$ $\lambda_{2,3} \cdot (x_{A,3} - x_{A,2}) = \frac{(\lambda_{1,3} + \lambda_{2,3}) \cdot (x_{A,3} - (\lambda_{1,3}^2 - x_{A,3} - x_T))\hspace{2em}}{2} + y_{A,2}$ TODO: do the final three bits Output $(x_{A,0}, y_{A,0})$ $(x_T, y_T, \lambda_1, \lambda_2, x_{A,i}, \mathbf{z}_i)$ ### Incomplete addition gate: Let $n = 254$ \begin{array}{|c|c|c|c|c|c|c|c|c|c|} \hline x_P & y_P & z^{hi} & x_A^{hi} & \lambda_1^{hi} & \lambda_2^{hi} & z^{lo} & x_A^{lo} & \lambda_1^{lo} & \lambda_2^{lo} \\\hline & & 0 & 2[T]_x & & & \mathbf{z}_{129} & x_{A,129} & & \\\hline x_P & y_P & \mathbf{z}_{254} & x_{A,254} & \lambda_{1,254} & \lambda_{2,254} & \mathbf{z}_{128} & x_{A,128} & \lambda_{1,128} & \lambda_{2,128} \\\hline \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\\hline x_P & y_P & \mathbf{z}_{130} & x_{A,130} & \lambda_{1,130} & \lambda_{2,130} & \mathbf{z}_4 & x_{A,4} & \lambda_{1,4} & \lambda_{2,4} \\\hline x_P & y_P & \mathbf{z}_{129} & x_{A,129} & \lambda_{1,129} & \lambda_{2,129} & \mathbf{z}_3 & x_{A,3} & \lambda_{1,3} & \lambda_{2,3} \\\hline \end{array} \begin{array}{|c|l|} \hline \text{Degree} & \text{Constraint} \\\hline 2 & q_{ECC,i} \cdot (\mathbf{z}_{i+1} - 2\mathbf{z}_i - \mathbf{k}_i) = 0 \\\hline 3 & q_{ECC,i} \cdot \mathbf{k}_i \cdot (\mathbf{k}_i - 1) = 0 \\\hline 4 & q_{ECC,i} \cdot \left(\lambda_{1,i} \cdot (x_{A,i} - x_{P,i}) - y_{A,i} + (2\mathbf{k}_i - 1) \cdot y_{P,i}\right) = 0 \\\hline 4 & q_{ECC,i} \cdot \left((\lambda_{1,i} + \lambda_{2,i}) \cdot (x_{A,i} - (\lambda_{1,i}^2 - x_{A,i} - x_{P,i})) - 2 y_{A,i}\right) = 0 \\\hline 3 & q_{ECC,i} \cdot \left(\lambda_{2,i}^2 - x_{A,i+1} - (\lambda_{1,i}^2 - x_{A,i} - x_{P,i}) - x_{A,i}\right) = 0 \\\hline 3 & q_{ECC,i} \cdot \left(\lambda_{2,i} \cdot (x_{A,i} - x_{A,i+1}) - y_{A,i} - y_{A,i+1}\right) = 0 \\\hline 2 & q_{ECC,i} \cdot \left(x_{P,i} - x_{P,i-1}\right) = 0 \\\hline 2 & q_{ECC,i} \cdot \left(y_{P,i} - y_{P,i-1}\right) = 0 \\\hline \end{array} ## Implementing complete addition $\begin{array}{rcll} \mathcal{O} &+& \mathcal{O} &= \mathcal{O} ✓\\ \mathcal{O} &+& (x_q, y_q) &= (x_q, y_q) ✓\\ (x_p, y_p) &+& \mathcal{O} &= (x_p, y_p) ✓\\ (x, y) &+& (x, y) &= [2] (x, y) ✓\\ (x, y) &+& (x, -y) &= \mathcal{O} ✓\\ (x_p, y_p) &+& (x_q, y_q) &= (x_p, y_p) \;⸭\; (x_q, y_q), \text{if } x_p \neq x_q ✓ \end{array}$ Suppose that we represent $\mathcal{O}$ as $(0, 0)$. ($0$ is not an $x$-coordinate of a valid point because we would need $y^2 = x^3 + 5$, and $5$ is not square in $\mathbb{F}_q$. Also $0$ is not a $y$-coordinate of a valid point because $-5$ is not a cube in $\mathbb{F}_q$.) $$ \begin{aligned} P + Q &= R\\ (x_p, y_p) + (x_q, y_q) &= (x_r, y_r) \\ \lambda &= \frac{y_q - y_p}{x_q - x_p} \\ x_r &= \lambda^2 - x_p - x_q \\ y_r &= \lambda(x_p - x_r) - y_p \end{aligned} $$ For the doubling case, $\lambda$ has to instead be computed as $\frac{3x^2}{2y}$. Recall that $\mathsf{inv0}(x) = \begin{cases} 0, &\text{if } x = 0 \\ 1/x, &\text{otherwise.} \end{cases}$ Witness $\alpha, \beta, \gamma, \delta, \lambda$ where: * $\alpha = \mathsf{inv0}(x_q - x_p)$ * $\beta = \mathsf{inv0}(x_p)$ * $\gamma = \mathsf{inv0}(x_q)$ * $\delta = \begin{cases} \mathsf{inv0}(y_q + y_p), &\text{if } x_q = x_p \\ 0, &\text{otherwise} \end{cases}$ * $\lambda = \begin{cases} \frac{y_q - y_p}{x_q - x_p}, &\text{if } x_q \neq x_p \\[0.5ex] \frac{3{x_p}^2}{2y_p} &\text{if } x_q = x_p \wedge y_p \neq 0 \\[0.5ex] 0, &\text{otherwise.} \end{cases}$ ### Constraints \begin{array}{|c|rcl|l|} \hline \text{Degree} & \text{Constraint}\hspace{7em} &&& \text{Meaning} \\\hline 4 & q_\mathit{add} \cdot (x_q - x_p) \cdot ((x_q - x_p) \cdot \lambda - (y_q - y_p)) &=& 0 & x_q \neq x_p \implies \lambda = \frac{y_q - y_p}{x_q - x_p} \\\hline 5 & q_\mathit{add} \cdot (1 - (x_q - x_p) \cdot \alpha) \cdot \left(2y_p \cdot \lambda - 3{x_p}^2\right) &=& 0 & \begin{cases} x_q = x_p \wedge y_p \neq 0 \implies \lambda = \frac{3{x_p}^2}{2y_p} \\ x_q = x_p \wedge y_p = 0 \implies x_p = 0 \end{cases} \\\hline 6 & q_\mathit{add} \cdot x_p \cdot x_q \cdot (x_q - x_p) \cdot (\lambda^2 - x_p - x_q - x_r) &=& 0 & x_p \neq 0 \wedge x_q \neq 0 \wedge x_q \neq x_p \implies x_r = \lambda^2 - x_p - x_q \\ 6 & q_\mathit{add} \cdot x_p \cdot x_q \cdot (x_q - x_p) \cdot (\lambda \cdot (x_p - x_r) - y_p - y_r) &=& 0 & x_p \neq 0 \wedge x_q \neq 0 \wedge x_q \neq x_p \implies y_r = \lambda \cdot (x_p - x_r) - y_p \\ 6 & q_\mathit{add} \cdot x_p \cdot x_q \cdot (y_q + y_p) \cdot (\lambda^2 - x_p - x_q - x_r) &=& 0 & x_p \neq 0 \wedge x_q \neq 0 \wedge y_q \neq -y_p \implies x_r = \lambda^2 - x_p - x_q \\ 6 & q_\mathit{add} \cdot x_p \cdot x_q \cdot (y_q + y_p) \cdot (\lambda \cdot (x_p - x_r) - y_p - y_r) &=& 0 & x_p \neq 0 \wedge x_q \neq 0 \wedge y_q \neq -y_p \implies y_r = \lambda \cdot (x_p - x_r) - y_p \\\hline 4 & q_\mathit{add} \cdot (1 - x_p \cdot \beta) \cdot (x_r - x_q) &=& 0 & x_p = 0 \implies x_r = x_q \\ 4 & q_\mathit{add} \cdot (1 - x_p \cdot \beta) \cdot (y_r - y_q) &=& 0 & x_p = 0 \implies y_r = y_q \\\hline 4 & q_\mathit{add} \cdot (1 - x_q \cdot \gamma) \cdot (x_r - x_p) &=& 0 & x_q = 0 \implies x_r = x_p \\ 4 & q_\mathit{add} \cdot (1 - x_q \cdot \gamma) \cdot (y_r - y_p) &=& 0 & x_q = 0 \implies y_r = y_p \\\hline 4 & q_\mathit{add} \cdot (1 - (x_q - x_p) \cdot \alpha - (y_q + y_p) \cdot \delta) \cdot x_r &=& 0 & x_q = x_p \wedge y_q = -y_p \implies x_r = 0 \\ 4 & q_\mathit{add} \cdot (1 - (x_q - x_p) \cdot \alpha - (y_q + y_p) \cdot \delta) \cdot y_r &=& 0 & x_q = x_p \wedge y_q = -y_p \implies y_r = 0 \\\hline \end{array} Max degree: 6 \begin{array}{|c|c|c|c|c|c|} \hline x_p & y_p & x_q & y_q & \lambda & \\\hline \alpha & \beta & x_r & y_r & \gamma & \delta \\\hline \end{array} or \begin{array}{|c|c|c|c|c|c|c|c|c|c|c|} \hline x_p & y_p & x_q & y_q & x_r & y_r & \lambda & \alpha & \beta & \gamma & \delta \\\hline \end{array} or \begin{array}{|c|c|c|c|c|c|c|c|c|c|c|} \hline x_p & y_p & x_q & y_q & \lambda & \alpha & \beta & \gamma & \delta \\\hline & & x_r & y_r & & & & & \\\hline \end{array} ----- ### Old version (buggy! 🐛) Witness $\lambda, \alpha, \beta, \gamma, \delta, A, B, C, D$. \begin{array}{rcl|l} &&& Meaning \\\hline A \cdot (1-A) &=& 0 & A \in \mathbb{B} \\ B \cdot (1-B) &=& 0 & B \in \mathbb{B} \\ C \cdot (1-C) &=& 0 & C \in \mathbb{B} \\ D \cdot (1-D) &=& 0 & D \in \mathbb{B} \\ (x_q - x_p) \cdot \alpha &=& 1-A & x_q = x_p \implies A \\ x_p \cdot \beta &=& 1-B & x_p = 0 \implies B \\ B \cdot x_p &=& 0 & B \implies x_p = 0 \\ x_q \cdot \gamma &=& 1-C & x_q = 0 \implies C \\ C \cdot x_q &=& 0 & C \implies x_q = 0 \\ (y_q + y_p) \cdot \delta &=& 1-D & y_q = -y_p \implies D \\ (x_q - x_p) \cdot ((x_q - x_p) \cdot \lambda - (y_q - y_p)) &=& 0 & x_q \neq x_p \implies \lambda = \frac{y_q - y_p}{x_q - x_p} \\ A \cdot \left(2y_p \cdot \lambda - 3{x_p}^2\right) &=& 0 & A \wedge y_p \neq 0 \implies \lambda = \frac{3{x_p}^2}{2y_p} \\ (1-B) \cdot (1-C) \cdot (\lambda^2 - x_p - x_q - x_r) + B \cdot (x_r - x_q) &=& 0 & (¬B \wedge ¬C \implies x_r = \lambda^2 - x_p - x_q) \wedge (B \implies x_r = x_q) \\ \textsf{^ do we need (1-D) as well? (Ying Tong)} &\\ (1-B) \cdot (1-C) \cdot (\lambda \cdot (x_p - x_r) - y_p - y_r) + B \cdot (y_r - y_q) &=& 0 & (¬B \wedge ¬C \implies y_r = \lambda \cdot (x_p - x_r) - y_p) \wedge (B \implies y_r = y_q) \\ \textsf{^ do we need (1-D) as well? (Ying Tong)} &\\ C \cdot (x_r - x_p) &=& 0 & C \implies x_r = x_p \\ C \cdot (y_r - y_p) &=& 0 & C \implies y_r = y_p \\ D \cdot x_r &=& 0 & D \implies x_r = 0 \\ D \cdot y_r &=& 0 & D \implies y_r = 0 \\ \end{array} Max degree: 4 \begin{array}{|c|c|c|c|c|c|c|c|c|c|} \hline x_P & y_P & x_A & y_A & a & b & c & d & \lambda \\\hline x_p & y_p & x_q & y_q & A & B & C & D & \lambda \\\hline & & x_r & y_r & \alpha & \beta & \gamma & \delta & \\\hline \end{array} #### How was this buggy? As well as the missing $(1-D)$ that Ying Tong points out, this version was incorrectly assuming that the case of adding a point to its negation $(D)$ occurs exactly when $y_q = -y_p$. But this is insufficient because there are multiple points (in fact 3 points, related by the cubic endomorphism) that have the same $y$ but different $x$. Hence the last two constraints above, intended only to cover $(x, y) + (x, -y)$, would also have been incorrectly applied to $(x, y) + (\zeta x, -y)$ and $(x, y) + (\zeta^2 x, -y)$, where $\zeta$ is a cube root of unity in $\mathbb{F}_p$.

Import from clipboard

Paste your markdown or webpage here...

Advanced permission required

Your current role can only read. Ask the system administrator to acquire write and comment permission.

This team is disabled

Sorry, this team is disabled. You can't edit this note.

This note is locked

Sorry, only owner can edit this note.

Reach the limit

Sorry, you've reached the max length this note can be.
Please reduce the content or divide it to more notes, thank you!

Import from Gist

Import from Snippet

or

Export to Snippet

Are you sure?

Do you really want to delete this note?
All users will lose their connection.

Create a note from template

Create a note from template

Oops...
This template has been removed or transferred.
Upgrade
All
  • All
  • Team
No template.

Create a template

Upgrade

Delete template

Do you really want to delete this template?
Turn this template into a regular note and keep its content, versions, and comments.

This page need refresh

You have an incompatible client version.
Refresh to update.
New version available!
See releases notes here
Refresh to enjoy new features.
Your user state has changed.
Refresh to load new user state.

Sign in

Forgot password

or

By clicking below, you agree to our terms of service.

Sign in via Facebook Sign in via Twitter Sign in via GitHub Sign in via Dropbox Sign in with Wallet
Wallet ( )
Connect another wallet

New to HackMD? Sign up

Help

  • English
  • 中文
  • Français
  • Deutsch
  • 日本語
  • Español
  • Català
  • Ελληνικά
  • Português
  • italiano
  • Türkçe
  • Русский
  • Nederlands
  • hrvatski jezik
  • język polski
  • Українська
  • हिन्दी
  • svenska
  • Esperanto
  • dansk

Documents

Help & Tutorial

How to use Book mode

Slide Example

API Docs

Edit in VSCode

Install browser extension

Contacts

Feedback

Discord

Send us email

Resources

Releases

Pricing

Blog

Policy

Terms

Privacy

Cheatsheet

Syntax Example Reference
# Header Header 基本排版
- Unordered List
  • Unordered List
1. Ordered List
  1. Ordered List
- [ ] Todo List
  • Todo List
> Blockquote
Blockquote
**Bold font** Bold font
*Italics font* Italics font
~~Strikethrough~~ Strikethrough
19^th^ 19th
H~2~O H2O
++Inserted text++ Inserted text
==Marked text== Marked text
[link text](https:// "title") Link
![image alt](https:// "title") Image
`Code` Code 在筆記中貼入程式碼
```javascript
var i = 0;
```
var i = 0;
:smile: :smile: Emoji list
{%youtube youtube_id %} Externals
$L^aT_eX$ LaTeX
:::info
This is a alert area.
:::

This is a alert area.

Versions and GitHub Sync
Get Full History Access

  • Edit version name
  • Delete

revision author avatar     named on  

More Less

Note content is identical to the latest version.
Compare
    Choose a version
    No search result
    Version not found
Sign in to link this note to GitHub
Learn more
This note is not linked with GitHub
 

Feedback

Submission failed, please try again

Thanks for your support.

On a scale of 0-10, how likely is it that you would recommend HackMD to your friends, family or business associates?

Please give us some advice and help us improve HackMD.

 

Thanks for your feedback

Remove version name

Do you want to remove this version name and description?

Transfer ownership

Transfer to
    Warning: is a public team. If you transfer note to this team, everyone on the web can find and read this note.

      Link with GitHub

      Please authorize HackMD on GitHub
      • Please sign in to GitHub and install the HackMD app on your GitHub repo.
      • HackMD links with GitHub through a GitHub App. You can choose which repo to install our App.
      Learn more  Sign in to GitHub

      Push the note to GitHub Push to GitHub Pull a file from GitHub

        Authorize again
       

      Choose which file to push to

      Select repo
      Refresh Authorize more repos
      Select branch
      Select file
      Select branch
      Choose version(s) to push
      • Save a new version and push
      • Choose from existing versions
      Include title and tags
      Available push count

      Pull from GitHub

       
      File from GitHub
      File from HackMD

      GitHub Link Settings

      File linked

      Linked by
      File path
      Last synced branch
      Available push count

      Danger Zone

      Unlink
      You will no longer receive notification when GitHub file changes after unlink.

      Syncing

      Push failed

      Push successfully