Daira Emma Hopwood
    • Create new note
    • Create a note from template
      • Sharing URL Link copied
      • /edit
      • View mode
        • Edit mode
        • View mode
        • Book mode
        • Slide mode
        Edit mode View mode Book mode Slide mode
      • Customize slides
      • Note Permission
      • Read
        • Only me
        • Signed-in users
        • Everyone
        Only me Signed-in users Everyone
      • Write
        • Only me
        • Signed-in users
        • Everyone
        Only me Signed-in users Everyone
      • Engagement control Commenting, Suggest edit, Emoji Reply
    • Invite by email
      Invitee
    • Publish Note

      Share your work with the world Congratulations! 🎉 Your note is out in the world Publish Note

      Your note will be visible on your profile and discoverable by anyone.
      Your note is now live.
      This note is visible on your profile and discoverable online.
      Everyone on the web can find and read all notes of this public team.
      See published notes
      Unpublish note
      Please check the box to agree to the Community Guidelines.
      View profile
    • Commenting
      Permission
      Disabled Forbidden Owners Signed-in users Everyone
    • Enable
    • Permission
      • Forbidden
      • Owners
      • Signed-in users
      • Everyone
    • Suggest edit
      Permission
      Disabled Forbidden Owners Signed-in users Everyone
    • Enable
    • Permission
      • Forbidden
      • Owners
      • Signed-in users
    • Emoji Reply
    • Enable
    • Versions and GitHub Sync
    • Note settings
    • Engagement control
    • Transfer ownership
    • Delete this note
    • Save as template
    • Insert from template
    • Import from
      • Dropbox
      • Google Drive
      • Gist
      • Clipboard
    • Export to
      • Dropbox
      • Google Drive
      • Gist
    • Download
      • Markdown
      • HTML
      • Raw HTML
Menu Note settings Versions and GitHub Sync Sharing URL Create Help
Create Create new note Create a note from template
Menu
Options
Engagement control Transfer ownership Delete this note
Import from
Dropbox Google Drive Gist Clipboard
Export to
Dropbox Google Drive Gist
Download
Markdown HTML Raw HTML
Back
Sharing URL Link copied
/edit
View mode
  • Edit mode
  • View mode
  • Book mode
  • Slide mode
Edit mode View mode Book mode Slide mode
Customize slides
Note Permission
Read
Only me
  • Only me
  • Signed-in users
  • Everyone
Only me Signed-in users Everyone
Write
Only me
  • Only me
  • Signed-in users
  • Everyone
Only me Signed-in users Everyone
Engagement control Commenting, Suggest edit, Emoji Reply
  • Invite by email
    Invitee
  • Publish Note

    Share your work with the world Congratulations! 🎉 Your note is out in the world Publish Note

    Your note will be visible on your profile and discoverable by anyone.
    Your note is now live.
    This note is visible on your profile and discoverable online.
    Everyone on the web can find and read all notes of this public team.
    See published notes
    Unpublish note
    Please check the box to agree to the Community Guidelines.
    View profile
    Engagement control
    Commenting
    Permission
    Disabled Forbidden Owners Signed-in users Everyone
    Enable
    Permission
    • Forbidden
    • Owners
    • Signed-in users
    • Everyone
    Suggest edit
    Permission
    Disabled Forbidden Owners Signed-in users Everyone
    Enable
    Permission
    • Forbidden
    • Owners
    • Signed-in users
    Emoji Reply
    Enable
    Import from Dropbox Google Drive Gist Clipboard
       owned this note    owned this note      
    Published Linked with GitHub
    Subscribed
    • Any changes
      Be notified of any changes
    • Mention me
      Be notified of mention me
    • Unsubscribe
    Subscribe
    # Nearly full-width variable-base scalar mul [TOC] ECC gadget: https://hackmd.io/KfD81XFQQqqUJI7ZoICk7w Copied from https://github.com/zcash/zcash/issues/3924 (with some variable name changes): > Consider the following algorithm: > > Acc := [2] T > for i from n-1 down to 0 { > U := r_i ? T : −T > Acc := (Acc + U) + Acc > } > > This computes $[2^{n+1} - (2^n - 1) + 2 \cdot r] T = [2^n + 1 + 2 \cdot r] T$. > > Suppose that we actually want to compute $[2^n + k]$ T, where $k < 2^{n+1}$ and $T \neq \mathcal{O}$. Without loss of generality, assume $k$ is odd (if it is even then add one to $k$ and subtract $T$ from the result). Let $k = 1 + 2 \cdot r$, and solve to give $r = (k - 1)/2$. Conveniently, this is equivalent to setting $r = k >> 1$ where $>>$ is the bitwise right-shift operator. > > So the full algorithm is: > > Acc := [2] T > for i from n-1 down to 0 { > U := k_{i+1} ? T : −T > Acc := (Acc + U) + Acc > } > return (k_0 = 0) ? (Acc - T) : Acc In the Orchard circuit we need to check $\mathsf{pk_d} = [\mathsf{ivk}] \mathsf{g_d}$ where $\mathsf{ivk} \in [0, p)$ and the scalar field is $\mathbb{F}_q$ with $p < q$. We have $p = 2^{254} + t_p$ and $q = 2^{254} + t_q$, for $t_p, t_q < 2^{128}$. We're trying to compute $[\alpha] T$ for $\alpha \in [0, q)$. Set $k = t_q + \alpha$ as an integer and $n = 254$. Then we can compute $\begin{align*} [2^{254} + t_q + \alpha] T &= [q + \alpha] T \\ &= [\alpha] T \end{align*}$ provided that $\alpha + t_q \in [0, 2^{n+1})$, i.e. $\alpha < 2^{n+1} - t_q$ which covers the whole range we need because in fact $p - 1 + t_q < 2^{255}$. We will encounter a potential overflow problem when trying to decompose $\alpha + t_q$ into bits. This should be a decomposition in the integer range $[t_q, p + t_q)$; not $[0, p)$. We'll discuss this in more detail below. We'll also find that we need to use complete addition in the last 3 steps. Continuing the analysis of incomplete addition: > It remains to check that the x-coordinates of each pair of points to be added are distinct. > > When adding points in the large prime-order subgroup, we can rely on Theorem 3 from Appendix C of the [Halo paper](https://eprint.iacr.org/2019/1021.pdf), which says that if we have two such points with nonzero indices wrt a given odd-prime order base, where the indices taken in the range $-(q-1)/2..(q-1)/2$ are distinct disregarding sign, then they have different x-coordinates. This is helpful, because it is easier to reason about the indices of points occurring in the scalar multiplication algorithm than it is to reason about their x-coordinates directly. > So, the required check is equivalent to saying that the following "indexed version" of the above algorithm never asserts: > > acc := 2 > for i from n-1 down to 0 { > u = k_{i+1} ? 1 : −1 > assert acc ≠ ± u > assert (acc + u) ≠ acc // X > acc := (acc + u) + acc > assert 0 < acc ≤ (q-1)/2 > } > if k_0 = 0 { > assert acc ≠ 1 > acc := acc - 1 > } The maximum value of $acc$ is: ``` <---n 1s---> 1011111...1111 = 1100000...0000 - 1 ``` = $2^{n+1} + 2^n - 1$ > The assertion labelled X obviously cannot fail because $u \neq 0$. It is possible to see that acc is monotonically increasing except in the last conditional. It reaches its largest value when $k$ is maximal, i.e. $2^{n+1} + 2^n - 1$. So to entirely avoid exceptional cases in addition, we would need $2^{n+1} + 2^n - 1 < (q-1)/2$. But we can use $n$ larger by $c$ if the last $c$ iterations use complete addition. The first $i$ for which the algorithm using **only** incomplete addition fails is going to be $252$, since $2^{252+1} + 2^{252} - 1 > (q - 1)/2$. We need $n = 254$ to make the wraparound technique above work. > sage: q = 0x40000000000000000000000000000000224698fc0994a8dd8c46eb2100000001 sage: 2^253 + 2^252 - 1 < (q-1)//2 False sage: 2^252 + 2^251 - 1 < (q-1)//2 True So the last three iterations of the loop ($i = 2..0$) need to use complete addition, as does the conditional subtraction at the end. Writing this out using ⸭ for incomplete addition (as we do in the spec), we have: Acc := [2] T for i from 253 down to 3 { U := k_{i+1} ? T : −T Acc := (Acc ⸭ U) ⸭ Acc } for i from 2 down to 0 { U := k_{i+1} ? T : −T Acc := (Acc + U) + Acc // complete addition } return (k_0 = 0) ? (Acc + (-T)) : Acc // complete addition ## Algorithm with incomplete addition Let $\mathbf{z}_i = \sum_{h=i}^{n} (\mathbf{k}_{h} \cdot 2^{h-i})$, where $n = 254$. Then we have $\begin{array}{rcl}\hspace{1.5em} \mathbf{z}_{n+1} &=& 0 \\ \mathbf{z}_{i} &=& 2\cdot \mathbf{z}_{i+1} + \mathbf{k}_i, \text{ for } 0 \leq i \leq n \\ \mathbf{z}_0 &=& k \\ &=& \alpha + t_q \text{ (as an integer!)} \end{array}$ Note that since we are witnessing the boolean decomposition of $k = \alpha + t_q$ in big-endian order, the corresponding running sum $\mathbf{z}_{i}$ will also be assigned from $i = n + 1$ down to $0$. Let $k = \sum\limits_{h=0}^{254} \mathbf{k}_h \cdot 2^h$ as an integer. ## Overflow check for variable-base scalar multiplication $\mathbf{z}_i$ cannot overflow for any $i \geq 1$, because it is a weighted sum of bits only up to $2^{n-1} = 2^{253}$, which is smaller than $p$ (and also $q$). However, $\mathbf{z}_0 = \alpha + t_q$ *can* overflow $[0, p)$. Since overflow can only occur in the final step that constrains $\mathbf{z}_0 = 2 \cdot \mathbf{z}_1 + \mathbf{k}_0$, we have $\mathbf{z}_0 = k \pmod{p}$. It is then sufficient to also check that $\mathbf{z}_0 = \alpha + t_q \pmod{p}$ (so that $k = \alpha + t_q \pmod{p}$) and that $k \in [t_q, p + t_q)$. These conditions together imply that $k = \alpha + t_q$ as an integer, and so $2^{254} + k = \alpha \pmod{q}$ as required. > Note: the bits $\mathbf{k}_{254..0}$ do not represent a value reduced modulo $q$, but rather a representation of the unreduced $\alpha + t_q$. ### Optimized check for $k \in [t_q, p + t_q)$ Since $t_p + t_q < 2^{130}$, we have $[t_q, p + t_q) = [t_q, t_q + 2^{130}) \;\cup\; [2^{130}, 2^{254}) \;\cup\; \big([2^{254}, 2^{254} + 2^{130}) \;\cap\; [p + t_q - 2^{130}, p + t_q)\big).$ We may assume that $k = \alpha + t_q \pmod{p}$. Therefore, $\begin{array}{rcl} k \in [t_q, p + t_q) &\Leftrightarrow& \big(k \in [t_q, t_q + 2^{130}) \;\vee\; k \in [2^{130}, 2^{254})\big) \;\vee\; \\ & & \big(k \in [2^{254}, 2^{254} + 2^{130}) \;\wedge\; k \in [p + t_q - 2^{130}, p + t_q)\big) \\ &\Leftrightarrow& \big(\mathbf{k}_{254} = 0 \implies (k \in [t_q, t_q + 2^{130}) \;\vee\; k \in [2^{130}, 2^{254}))\big) \;\wedge \\ & & \big(\mathbf{k}_{254} = 1 \implies (k \in [2^{254}, 2^{254} + 2^{130}) \;\wedge\; k \in [p + t_q - 2^{130}, p + t_q)\big) \\ &\Leftrightarrow& \big(\mathbf{k}_{254} = 0 \implies (\alpha \in [0, 2^{130}) \;\vee\; k \in [2^{130}, 2^{254})\big) \;\wedge \\ & & \big(\mathbf{k}_{254} = 1 \implies (k \in [2^{254}, 2^{254} + 2^{130}) \;\wedge\; (\alpha + 2^{130}) \bmod p \in [0, 2^{130}))\big) \;\;Ⓐ \end{array}$ > Given $k \in [2^{254}, 2^{254} + 2^{130})$, we prove equivalence of $k \in [p + t_q - 2^{130}, p + t_q)$ and $(\alpha + 2^{130}) \bmod p \in [0, 2^{130})$ as follows: > * shift the range by $2^{130} - p - t_q$ to give $k + 2^{130} - p - t_q \in [0, 2^{130})$; > * observe that $k + 2^{130} - p - t_q$ is guaranteed to be in $[2^{130} - t_p - t_q, 2^{131} - t_p - t_q)$ and therefore cannot overflow or underflow modulo $p$; > * using the fact that $k = \alpha + t_q \pmod{p}$, observe that $(k + 2^{130} - p - t_q) \bmod p = (\alpha + t_q + 2^{130} - p - t_q) \bmod p = (\alpha + 2^{130}) \bmod p$. > > (We can see in a different way that this is correct by observing that it checks whether $\alpha \bmod p \in [p - 2^{130}, p)$, so the upper bound is aligned as we would expect.) Now, we can continue optimizing from $Ⓐ$: $\begin{array}{rcl} k \in [t_q, p + t_q) &\Leftrightarrow& \big(\mathbf{k}_{254} = 0 \implies (\alpha \in [0, 2^{130}) \;\vee\; k \in [2^{130}, 2^{254})\big) \;\wedge \\ & & \big(\mathbf{k}_{254} = 1 \implies (k \in [2^{254}, 2^{254} + 2^{130}) \;\wedge\; (\alpha + 2^{130}) \bmod p \in [0, 2^{130}))\big) \\ & & \big(\mathbf{k}_{254} = 0 \implies (\alpha \in [0, 2^{130}) \;\vee\; \mathbf{k}_{253..130} \text{ are not all } 0)\big) \;\wedge \\ & & \big(\mathbf{k}_{254} = 1 \implies (\mathbf{k}_{253..130} \text{ are all } 0 \;\wedge\; (\alpha + 2^{130}) \bmod p \in [0, 2^{130}))\big) \end{array}$ Constraining $\mathbf{k}_{253..130}$ to be all-$0$ or not-all-$0$ can be implemented almost "for free", as follows. Recall that $\mathbf{z}_i = \sum_{h=i}^{n} (\mathbf{k}_{h} \cdot 2^{h-i})$, so we have: $\begin{array}{rcl} \mathbf{z}_{130} &=& \sum_{h=130}^{254} (\mathbf{k}_h \cdot 2^{h-130}) \\ \mathbf{z}_{130} &=& \mathbf{k}_{254} \cdot 2^{254-130} + \sum_{h=130}^{253} (\mathbf{k}_h \cdot 2^{h-130}) \\ \mathbf{z}_{130} - \mathbf{k}_{254} \cdot 2^{124} &=& \sum_{h=130}^{253} (\mathbf{k}_h \cdot 2^{h-130}) \end{array}$ So $\mathbf{k}_{253..130}$ are all $0$ exactly when $\mathbf{z}_{130} = \mathbf{k}_{254} \cdot 2^{124}$. Finally, we can merge the $130$-bit decompositions for the $\mathbf{k}_{254} = 0$ and $\mathbf{k}_{254} = 1$ cases by checking that $(\alpha + \mathbf{k}_{254} \cdot 2^{130}) \bmod p \in [0, 2^{130})$. ### Overflow check constraints Let $s = \alpha + \mathbf{k}_{254} \cdot 2^{130}$. The constraints for the overflow check are: $\mathbf{z}_0 = \alpha + t_q \pmod{p}$ $\mathbf{k}_{254} = 1 \implies \big(\mathbf{z}_{130} = 2^{124} \;\wedge\; s \bmod p \in [0, 2^{130})\big)$. $\mathbf{k}_{254} = 0 \implies \big(\mathbf{z}_{130} \neq 0 \;\vee\; s \bmod p \in [0, 2^{130})\big)$. Define $\mathsf{inv0}(x) = \begin{cases} 0, &\text{if } x = 0 \\ 1/x, &\text{otherwise.} \end{cases}$ Witness $\eta = \mathsf{inv0}(\mathbf{z}_{130})$, and decompose $s \bmod p$ as $\mathbf{s}_{129..0}$. Then the needed gates are: $s = \alpha + \mathbf{k}_{254} \cdot 2^{130}$ $\mathbf{z}_0 = \alpha + t_q \pmod{p}$ $\mathbf{k}_{254} \cdot (\mathbf{z}_{130} - 2^{124}) = 0$ $\mathbf{k}_{254} \cdot (s - \sum\limits_{i=0}^{129} 2^i \cdot \mathbf{s}_i) = 0$ $(1 - \mathbf{k}_{254}) \cdot (1 - \mathbf{z}_{130} \cdot \eta) \cdot (s - \sum\limits_{i=0}^{129} 2^i \cdot \mathbf{s}_i) = 0$ where $\sum\limits_{i=0}^{129} 2^i \cdot \mathbf{s}_i$ can be computed by another running sum. [TODO: be explicit about how to do that.] ## Main constraint system let $(x_T, y_T) = T$. $\mathbf{z}_{255} = 0$ $A_{254} = [2] T$ for $i$ from $254$ down to $4$:     $(\mathbf{k}_i)(\mathbf{k}_i-1) = 0$     $\mathbf{z}_{i} = 2\mathbf{z}_{i+1} + \mathbf{k}_{i}$     $x_{U,i} = x_T$     $y_{U,i} = (2 \mathbf{k}_i - 1) \cdot y_T$ # conditionally negate     $\lambda_{1,i} \cdot (x_{A,i} - x_{U,i}) = y_{A,i} - y_{U,i}$     $\lambda_{1,i}^2 = x_{R,i} + x_{A,i} + x_{U,i}$     $(\lambda_{1,i} + \lambda_{2,i}) \cdot (x_{A,i} - x_{R,i}) = 2 y_{\mathsf{A},i}$     $\lambda_{2,i}^2 = x_{A,i-1} + x_{R,i} + x_{A,i}$     $\lambda_{2,i} \cdot (x_{A,i} - x_{A,i-1}) = y_{A,i} + y_{A,i-1}$ TODO: do the final three bits Output $(x_{A,0}, y_{A,0})$ After substitution of $y_{P,i}$, $x_{R,i}$, $y_{A,i}$, and $y_{A,i+1}$, this becomes: $A_{254} = [2] T$ for $i$ from $254$ down to $4$:     // let $\mathbf{k}_i = \mathbf{z}_{i+1} - 2\mathbf{z}_i$     // let $x_{R,i} = (\lambda_{1,i}^2 - x_{A,i} - x_T)$     // let $y_{A,i} = \frac{(\lambda_{1,i} + \lambda_{2,i}) \cdot (x_{A,i} - (\lambda_{1,i}^2 - x_{A,i} - x_T))\hspace{2em}}{2}$     $(\mathbf{z}_{i+1} - 2\mathbf{z}_i)(\mathbf{z}_{i+1} - 2\mathbf{z}_i - 1) = 0$     $\lambda_{1,i} \cdot (x_{A,i} - x_T) = \frac{(\lambda_{1,i} + \lambda_{2,i}) \cdot (x_{A,i} - (\lambda_{1,i}^2 - x_{A,i} - x_T))\hspace{2em}}{2} - (2 \cdot (\mathbf{z}_{i+1} - 2\mathbf{z}_i) - 1) \cdot y_T$     $\lambda_{2,i}^2 = x_{A,i-1} + (\lambda_{1,i}^2 - x_{A,i} - x_T) + x_{A,i}$     if $i > 3$ then $2 \cdot \lambda_{2,i} \cdot (x_{A,i} - x_{A,i-1}) =$         $(\lambda_{1,i} + \lambda_{2,i}) \cdot (x_{A,i} - (\lambda_{1,i}^2 - x_{A,i} - x_T)) +$         $(\lambda_{1,i-1} + \lambda_{2,i-1}) \cdot (x_{A,i-1} - (\lambda_{1,i-1}^2 - x_{A,i-1} - x_T))$ $\lambda_{2,3} \cdot (x_{A,3} - x_{A,2}) = \frac{(\lambda_{1,3} + \lambda_{2,3}) \cdot (x_{A,3} - (\lambda_{1,3}^2 - x_{A,3} - x_T))\hspace{2em}}{2} + y_{A,2}$ TODO: do the final three bits Output $(x_{A,0}, y_{A,0})$ $(x_T, y_T, \lambda_1, \lambda_2, x_{A,i}, \mathbf{z}_i)$ ### Incomplete addition gate: Let $n = 254$ \begin{array}{|c|c|c|c|c|c|c|c|c|c|} \hline x_P & y_P & z^{hi} & x_A^{hi} & \lambda_1^{hi} & \lambda_2^{hi} & z^{lo} & x_A^{lo} & \lambda_1^{lo} & \lambda_2^{lo} \\\hline & & 0 & 2[T]_x & & & \mathbf{z}_{129} & x_{A,129} & & \\\hline x_P & y_P & \mathbf{z}_{254} & x_{A,254} & \lambda_{1,254} & \lambda_{2,254} & \mathbf{z}_{128} & x_{A,128} & \lambda_{1,128} & \lambda_{2,128} \\\hline \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\\hline x_P & y_P & \mathbf{z}_{130} & x_{A,130} & \lambda_{1,130} & \lambda_{2,130} & \mathbf{z}_4 & x_{A,4} & \lambda_{1,4} & \lambda_{2,4} \\\hline x_P & y_P & \mathbf{z}_{129} & x_{A,129} & \lambda_{1,129} & \lambda_{2,129} & \mathbf{z}_3 & x_{A,3} & \lambda_{1,3} & \lambda_{2,3} \\\hline \end{array} \begin{array}{|c|l|} \hline \text{Degree} & \text{Constraint} \\\hline 2 & q_{ECC,i} \cdot (\mathbf{z}_{i+1} - 2\mathbf{z}_i - \mathbf{k}_i) = 0 \\\hline 3 & q_{ECC,i} \cdot \mathbf{k}_i \cdot (\mathbf{k}_i - 1) = 0 \\\hline 4 & q_{ECC,i} \cdot \left(\lambda_{1,i} \cdot (x_{A,i} - x_{P,i}) - y_{A,i} + (2\mathbf{k}_i - 1) \cdot y_{P,i}\right) = 0 \\\hline 4 & q_{ECC,i} \cdot \left((\lambda_{1,i} + \lambda_{2,i}) \cdot (x_{A,i} - (\lambda_{1,i}^2 - x_{A,i} - x_{P,i})) - 2 y_{A,i}\right) = 0 \\\hline 3 & q_{ECC,i} \cdot \left(\lambda_{2,i}^2 - x_{A,i+1} - (\lambda_{1,i}^2 - x_{A,i} - x_{P,i}) - x_{A,i}\right) = 0 \\\hline 3 & q_{ECC,i} \cdot \left(\lambda_{2,i} \cdot (x_{A,i} - x_{A,i+1}) - y_{A,i} - y_{A,i+1}\right) = 0 \\\hline 2 & q_{ECC,i} \cdot \left(x_{P,i} - x_{P,i-1}\right) = 0 \\\hline 2 & q_{ECC,i} \cdot \left(y_{P,i} - y_{P,i-1}\right) = 0 \\\hline \end{array} ## Implementing complete addition $\begin{array}{rcll} \mathcal{O} &+& \mathcal{O} &= \mathcal{O} ✓\\ \mathcal{O} &+& (x_q, y_q) &= (x_q, y_q) ✓\\ (x_p, y_p) &+& \mathcal{O} &= (x_p, y_p) ✓\\ (x, y) &+& (x, y) &= [2] (x, y) ✓\\ (x, y) &+& (x, -y) &= \mathcal{O} ✓\\ (x_p, y_p) &+& (x_q, y_q) &= (x_p, y_p) \;⸭\; (x_q, y_q), \text{if } x_p \neq x_q ✓ \end{array}$ Suppose that we represent $\mathcal{O}$ as $(0, 0)$. ($0$ is not an $x$-coordinate of a valid point because we would need $y^2 = x^3 + 5$, and $5$ is not square in $\mathbb{F}_q$. Also $0$ is not a $y$-coordinate of a valid point because $-5$ is not a cube in $\mathbb{F}_q$.) $$ \begin{aligned} P + Q &= R\\ (x_p, y_p) + (x_q, y_q) &= (x_r, y_r) \\ \lambda &= \frac{y_q - y_p}{x_q - x_p} \\ x_r &= \lambda^2 - x_p - x_q \\ y_r &= \lambda(x_p - x_r) - y_p \end{aligned} $$ For the doubling case, $\lambda$ has to instead be computed as $\frac{3x^2}{2y}$. Recall that $\mathsf{inv0}(x) = \begin{cases} 0, &\text{if } x = 0 \\ 1/x, &\text{otherwise.} \end{cases}$ Witness $\alpha, \beta, \gamma, \delta, \lambda$ where: * $\alpha = \mathsf{inv0}(x_q - x_p)$ * $\beta = \mathsf{inv0}(x_p)$ * $\gamma = \mathsf{inv0}(x_q)$ * $\delta = \begin{cases} \mathsf{inv0}(y_q + y_p), &\text{if } x_q = x_p \\ 0, &\text{otherwise} \end{cases}$ * $\lambda = \begin{cases} \frac{y_q - y_p}{x_q - x_p}, &\text{if } x_q \neq x_p \\[0.5ex] \frac{3{x_p}^2}{2y_p} &\text{if } x_q = x_p \wedge y_p \neq 0 \\[0.5ex] 0, &\text{otherwise.} \end{cases}$ ### Constraints \begin{array}{|c|rcl|l|} \hline \text{Degree} & \text{Constraint}\hspace{7em} &&& \text{Meaning} \\\hline 4 & q_\mathit{add} \cdot (x_q - x_p) \cdot ((x_q - x_p) \cdot \lambda - (y_q - y_p)) &=& 0 & x_q \neq x_p \implies \lambda = \frac{y_q - y_p}{x_q - x_p} \\\hline 5 & q_\mathit{add} \cdot (1 - (x_q - x_p) \cdot \alpha) \cdot \left(2y_p \cdot \lambda - 3{x_p}^2\right) &=& 0 & \begin{cases} x_q = x_p \wedge y_p \neq 0 \implies \lambda = \frac{3{x_p}^2}{2y_p} \\ x_q = x_p \wedge y_p = 0 \implies x_p = 0 \end{cases} \\\hline 6 & q_\mathit{add} \cdot x_p \cdot x_q \cdot (x_q - x_p) \cdot (\lambda^2 - x_p - x_q - x_r) &=& 0 & x_p \neq 0 \wedge x_q \neq 0 \wedge x_q \neq x_p \implies x_r = \lambda^2 - x_p - x_q \\ 6 & q_\mathit{add} \cdot x_p \cdot x_q \cdot (x_q - x_p) \cdot (\lambda \cdot (x_p - x_r) - y_p - y_r) &=& 0 & x_p \neq 0 \wedge x_q \neq 0 \wedge x_q \neq x_p \implies y_r = \lambda \cdot (x_p - x_r) - y_p \\ 6 & q_\mathit{add} \cdot x_p \cdot x_q \cdot (y_q + y_p) \cdot (\lambda^2 - x_p - x_q - x_r) &=& 0 & x_p \neq 0 \wedge x_q \neq 0 \wedge y_q \neq -y_p \implies x_r = \lambda^2 - x_p - x_q \\ 6 & q_\mathit{add} \cdot x_p \cdot x_q \cdot (y_q + y_p) \cdot (\lambda \cdot (x_p - x_r) - y_p - y_r) &=& 0 & x_p \neq 0 \wedge x_q \neq 0 \wedge y_q \neq -y_p \implies y_r = \lambda \cdot (x_p - x_r) - y_p \\\hline 4 & q_\mathit{add} \cdot (1 - x_p \cdot \beta) \cdot (x_r - x_q) &=& 0 & x_p = 0 \implies x_r = x_q \\ 4 & q_\mathit{add} \cdot (1 - x_p \cdot \beta) \cdot (y_r - y_q) &=& 0 & x_p = 0 \implies y_r = y_q \\\hline 4 & q_\mathit{add} \cdot (1 - x_q \cdot \gamma) \cdot (x_r - x_p) &=& 0 & x_q = 0 \implies x_r = x_p \\ 4 & q_\mathit{add} \cdot (1 - x_q \cdot \gamma) \cdot (y_r - y_p) &=& 0 & x_q = 0 \implies y_r = y_p \\\hline 4 & q_\mathit{add} \cdot (1 - (x_q - x_p) \cdot \alpha - (y_q + y_p) \cdot \delta) \cdot x_r &=& 0 & x_q = x_p \wedge y_q = -y_p \implies x_r = 0 \\ 4 & q_\mathit{add} \cdot (1 - (x_q - x_p) \cdot \alpha - (y_q + y_p) \cdot \delta) \cdot y_r &=& 0 & x_q = x_p \wedge y_q = -y_p \implies y_r = 0 \\\hline \end{array} Max degree: 6 \begin{array}{|c|c|c|c|c|c|} \hline x_p & y_p & x_q & y_q & \lambda & \\\hline \alpha & \beta & x_r & y_r & \gamma & \delta \\\hline \end{array} or \begin{array}{|c|c|c|c|c|c|c|c|c|c|c|} \hline x_p & y_p & x_q & y_q & x_r & y_r & \lambda & \alpha & \beta & \gamma & \delta \\\hline \end{array} or \begin{array}{|c|c|c|c|c|c|c|c|c|c|c|} \hline x_p & y_p & x_q & y_q & \lambda & \alpha & \beta & \gamma & \delta \\\hline & & x_r & y_r & & & & & \\\hline \end{array} ----- ### Old version (buggy! 🐛) Witness $\lambda, \alpha, \beta, \gamma, \delta, A, B, C, D$. \begin{array}{rcl|l} &&& Meaning \\\hline A \cdot (1-A) &=& 0 & A \in \mathbb{B} \\ B \cdot (1-B) &=& 0 & B \in \mathbb{B} \\ C \cdot (1-C) &=& 0 & C \in \mathbb{B} \\ D \cdot (1-D) &=& 0 & D \in \mathbb{B} \\ (x_q - x_p) \cdot \alpha &=& 1-A & x_q = x_p \implies A \\ x_p \cdot \beta &=& 1-B & x_p = 0 \implies B \\ B \cdot x_p &=& 0 & B \implies x_p = 0 \\ x_q \cdot \gamma &=& 1-C & x_q = 0 \implies C \\ C \cdot x_q &=& 0 & C \implies x_q = 0 \\ (y_q + y_p) \cdot \delta &=& 1-D & y_q = -y_p \implies D \\ (x_q - x_p) \cdot ((x_q - x_p) \cdot \lambda - (y_q - y_p)) &=& 0 & x_q \neq x_p \implies \lambda = \frac{y_q - y_p}{x_q - x_p} \\ A \cdot \left(2y_p \cdot \lambda - 3{x_p}^2\right) &=& 0 & A \wedge y_p \neq 0 \implies \lambda = \frac{3{x_p}^2}{2y_p} \\ (1-B) \cdot (1-C) \cdot (\lambda^2 - x_p - x_q - x_r) + B \cdot (x_r - x_q) &=& 0 & (¬B \wedge ¬C \implies x_r = \lambda^2 - x_p - x_q) \wedge (B \implies x_r = x_q) \\ \textsf{^ do we need (1-D) as well? (Ying Tong)} &\\ (1-B) \cdot (1-C) \cdot (\lambda \cdot (x_p - x_r) - y_p - y_r) + B \cdot (y_r - y_q) &=& 0 & (¬B \wedge ¬C \implies y_r = \lambda \cdot (x_p - x_r) - y_p) \wedge (B \implies y_r = y_q) \\ \textsf{^ do we need (1-D) as well? (Ying Tong)} &\\ C \cdot (x_r - x_p) &=& 0 & C \implies x_r = x_p \\ C \cdot (y_r - y_p) &=& 0 & C \implies y_r = y_p \\ D \cdot x_r &=& 0 & D \implies x_r = 0 \\ D \cdot y_r &=& 0 & D \implies y_r = 0 \\ \end{array} Max degree: 4 \begin{array}{|c|c|c|c|c|c|c|c|c|c|} \hline x_P & y_P & x_A & y_A & a & b & c & d & \lambda \\\hline x_p & y_p & x_q & y_q & A & B & C & D & \lambda \\\hline & & x_r & y_r & \alpha & \beta & \gamma & \delta & \\\hline \end{array} #### How was this buggy? As well as the missing $(1-D)$ that Ying Tong points out, this version was incorrectly assuming that the case of adding a point to its negation $(D)$ occurs exactly when $y_q = -y_p$. But this is insufficient because there are multiple points (in fact 3 points, related by the cubic endomorphism) that have the same $y$ but different $x$. Hence the last two constraints above, intended only to cover $(x, y) + (x, -y)$, would also have been incorrectly applied to $(x, y) + (\zeta x, -y)$ and $(x, y) + (\zeta^2 x, -y)$, where $\zeta$ is a cube root of unity in $\mathbb{F}_p$.

    Import from clipboard

    Paste your markdown or webpage here...

    Advanced permission required

    Your current role can only read. Ask the system administrator to acquire write and comment permission.

    This team is disabled

    Sorry, this team is disabled. You can't edit this note.

    This note is locked

    Sorry, only owner can edit this note.

    Reach the limit

    Sorry, you've reached the max length this note can be.
    Please reduce the content or divide it to more notes, thank you!

    Import from Gist

    Import from Snippet

    or

    Export to Snippet

    Are you sure?

    Do you really want to delete this note?
    All users will lose their connection.

    Create a note from template

    Create a note from template

    Oops...
    This template has been removed or transferred.
    Upgrade
    All
    • All
    • Team
    No template.

    Create a template

    Upgrade

    Delete template

    Do you really want to delete this template?
    Turn this template into a regular note and keep its content, versions, and comments.

    This page need refresh

    You have an incompatible client version.
    Refresh to update.
    New version available!
    See releases notes here
    Refresh to enjoy new features.
    Your user state has changed.
    Refresh to load new user state.

    Sign in

    Forgot password

    or

    By clicking below, you agree to our terms of service.

    Sign in via Facebook Sign in via Twitter Sign in via GitHub Sign in via Dropbox Sign in with Wallet
    Wallet ( )
    Connect another wallet

    New to HackMD? Sign up

    Help

    • English
    • 中文
    • Français
    • Deutsch
    • 日本語
    • Español
    • Català
    • Ελληνικά
    • Português
    • italiano
    • Türkçe
    • Русский
    • Nederlands
    • hrvatski jezik
    • język polski
    • Українська
    • हिन्दी
    • svenska
    • Esperanto
    • dansk

    Documents

    Help & Tutorial

    How to use Book mode

    Slide Example

    API Docs

    Edit in VSCode

    Install browser extension

    Contacts

    Feedback

    Discord

    Send us email

    Resources

    Releases

    Pricing

    Blog

    Policy

    Terms

    Privacy

    Cheatsheet

    Syntax Example Reference
    # Header Header 基本排版
    - Unordered List
    • Unordered List
    1. Ordered List
    1. Ordered List
    - [ ] Todo List
    • Todo List
    > Blockquote
    Blockquote
    **Bold font** Bold font
    *Italics font* Italics font
    ~~Strikethrough~~ Strikethrough
    19^th^ 19th
    H~2~O H2O
    ++Inserted text++ Inserted text
    ==Marked text== Marked text
    [link text](https:// "title") Link
    ![image alt](https:// "title") Image
    `Code` Code 在筆記中貼入程式碼
    ```javascript
    var i = 0;
    ```
    var i = 0;
    :smile: :smile: Emoji list
    {%youtube youtube_id %} Externals
    $L^aT_eX$ LaTeX
    :::info
    This is a alert area.
    :::

    This is a alert area.

    Versions and GitHub Sync
    Get Full History Access

    • Edit version name
    • Delete

    revision author avatar     named on  

    More Less

    Note content is identical to the latest version.
    Compare
      Choose a version
      No search result
      Version not found
    Sign in to link this note to GitHub
    Learn more
    This note is not linked with GitHub
     

    Feedback

    Submission failed, please try again

    Thanks for your support.

    On a scale of 0-10, how likely is it that you would recommend HackMD to your friends, family or business associates?

    Please give us some advice and help us improve HackMD.

     

    Thanks for your feedback

    Remove version name

    Do you want to remove this version name and description?

    Transfer ownership

    Transfer to
      Warning: is a public team. If you transfer note to this team, everyone on the web can find and read this note.

        Link with GitHub

        Please authorize HackMD on GitHub
        • Please sign in to GitHub and install the HackMD app on your GitHub repo.
        • HackMD links with GitHub through a GitHub App. You can choose which repo to install our App.
        Learn more  Sign in to GitHub

        Push the note to GitHub Push to GitHub Pull a file from GitHub

          Authorize again
         

        Choose which file to push to

        Select repo
        Refresh Authorize more repos
        Select branch
        Select file
        Select branch
        Choose version(s) to push
        • Save a new version and push
        • Choose from existing versions
        Include title and tags
        Available push count

        Pull from GitHub

         
        File from GitHub
        File from HackMD

        GitHub Link Settings

        File linked

        Linked by
        File path
        Last synced branch
        Available push count

        Danger Zone

        Unlink
        You will no longer receive notification when GitHub file changes after unlink.

        Syncing

        Push failed

        Push successfully