Jephian Lin
    • Create new note
    • Create a note from template
      • Sharing URL Link copied
      • /edit
      • View mode
        • Edit mode
        • View mode
        • Book mode
        • Slide mode
        Edit mode View mode Book mode Slide mode
      • Customize slides
      • Note Permission
      • Read
        • Only me
        • Signed-in users
        • Everyone
        Only me Signed-in users Everyone
      • Write
        • Only me
        • Signed-in users
        • Everyone
        Only me Signed-in users Everyone
      • Engagement control Commenting, Suggest edit, Emoji Reply
    • Invite by email
      Invitee

      This note has no invitees

    • Publish Note

      Share your work with the world Congratulations! 🎉 Your note is out in the world Publish Note

      Your note will be visible on your profile and discoverable by anyone.
      Your note is now live.
      This note is visible on your profile and discoverable online.
      Everyone on the web can find and read all notes of this public team.
      See published notes
      Unpublish note
      Please check the box to agree to the Community Guidelines.
      View profile
    • Commenting
      Permission
      Disabled Forbidden Owners Signed-in users Everyone
    • Enable
    • Permission
      • Forbidden
      • Owners
      • Signed-in users
      • Everyone
    • Suggest edit
      Permission
      Disabled Forbidden Owners Signed-in users Everyone
    • Enable
    • Permission
      • Forbidden
      • Owners
      • Signed-in users
    • Emoji Reply
    • Enable
    • Versions and GitHub Sync
    • Note settings
    • Note Insights
    • Engagement control
    • Transfer ownership
    • Delete this note
    • Save as template
    • Insert from template
    • Import from
      • Dropbox
      • Google Drive
      • Gist
      • Clipboard
    • Export to
      • Dropbox
      • Google Drive
      • Gist
    • Download
      • Markdown
      • HTML
      • Raw HTML
Menu Note settings Versions and GitHub Sync Note Insights Sharing URL Create Help
Create Create new note Create a note from template
Menu
Options
Engagement control Transfer ownership Delete this note
Import from
Dropbox Google Drive Gist Clipboard
Export to
Dropbox Google Drive Gist
Download
Markdown HTML Raw HTML
Back
Sharing URL Link copied
/edit
View mode
  • Edit mode
  • View mode
  • Book mode
  • Slide mode
Edit mode View mode Book mode Slide mode
Customize slides
Note Permission
Read
Only me
  • Only me
  • Signed-in users
  • Everyone
Only me Signed-in users Everyone
Write
Only me
  • Only me
  • Signed-in users
  • Everyone
Only me Signed-in users Everyone
Engagement control Commenting, Suggest edit, Emoji Reply
  • Invite by email
    Invitee

    This note has no invitees

  • Publish Note

    Share your work with the world Congratulations! 🎉 Your note is out in the world Publish Note

    Your note will be visible on your profile and discoverable by anyone.
    Your note is now live.
    This note is visible on your profile and discoverable online.
    Everyone on the web can find and read all notes of this public team.
    See published notes
    Unpublish note
    Please check the box to agree to the Community Guidelines.
    View profile
    Engagement control
    Commenting
    Permission
    Disabled Forbidden Owners Signed-in users Everyone
    Enable
    Permission
    • Forbidden
    • Owners
    • Signed-in users
    • Everyone
    Suggest edit
    Permission
    Disabled Forbidden Owners Signed-in users Everyone
    Enable
    Permission
    • Forbidden
    • Owners
    • Signed-in users
    Emoji Reply
    Enable
    Import from Dropbox Google Drive Gist Clipboard
       owned this note    owned this note      
    Published Linked with GitHub
    Subscribed
    • Any changes
      Be notified of any changes
    • Mention me
      Be notified of mention me
    • Unsubscribe
    Subscribe
    # 矩陣的行空間 ![Creative Commons License](https://i.creativecommons.org/l/by/4.0/88x31.png) This work by Jephian Lin is licensed under a [Creative Commons Attribution 4.0 International License](http://creativecommons.org/licenses/by/4.0/). {%hackmd 5xqeIJ7VRCGBfLtfMi0_IQ %} ```python from lingeo import random_int_list, draw_span ``` ## Main idea ##### Matrix-vector multiplication (by column) Let $$A = \begin{bmatrix} | & ~ & | \\ {\bf u}_1 & \cdots & {\bf u}_n \\ | & ~ & | \\ \end{bmatrix}$$ be an $m\times n$ matrix and $${\bf v} = \begin{bmatrix} c_1 \\ \vdots \\ c_n \end{bmatrix}$$ a vector in $\mathbb{R}^n$. Then $$A{\bf v} = c_1{\bf u}_1 + \cdots + c_n{\bf u}_n. $$ Thus, $$\{A{\bf v}: {\bf v}\in\mathbb{R}^n\} = \operatorname{span}(\{{\bf u}_1, \ldots, {\bf u}_n\}), $$ which is called the **column space** $\operatorname{Col}(A)$ of $A$. Therefore, the equation $A{\bf v} = {\bf b}$ has a solution if and only if ${\bf b}\in\operatorname{Col}(A)$. ## Side stories - redundant vectors for span - `A \ b` ## Experiments ##### Exercise 1 執行下方程式碼。 令 ${\bf u}_1$ 及 ${\bf u}_2$ 為 $A$ 的行向量。 原點為橘色點、 從原點延伸出去的紅色向量和淡藍色向量分別為 ${\bf u}_1$ 和 ${\bf u}_2$。 黑色向量為 ${\bf b}$。 問 $A{\bf v} = {\bf b}$ 的 ${\bf v}$ 是否有解? 若有解﹐求 ${\bf v}$。 :::warning - [x] 補一下你們用的 seed 和題給的數字 - [x] $v$ --> $\bv$, $u_1$ --> $\bu_1$, $u_2$ --> $\bu_2$ 向量盡量用粗體 - [x] [B01](https://sagelabtw.github.io/LA-Tea/style.html) 有句子沒句點 - [x] 方程式的部份改用以下打法將等號對齊,同樣更改 $\bv = ...$ 的部份 $$ \left\{ \begin{aligned} -4x+3y &= -14, \\ -5x-5y &= 0, \\ 3x-3y &= 12, \end{aligned} \right. $$ 其中 $x,y \in\mathbb{R}$。 - [x] "第一項+第三項:" --> "由於第一項加第三項為" - [x] 除非要換新段落,否則用兩個空格來換行 - [x] 幫忙在每個回答前加個 **答:**,記得後面要加兩個空格換行 ::: 答: 題目給的是 `seed=0`、 $A=\begin{bmatrix} -4&3\\ -5&-5\\ 3&-3 \end{bmatrix}$、 ${\bf b}=\begin{bmatrix} -14\\ 0\\ 12 \end{bmatrix}$。 $A\bv = \bb$ 的 $\bv$ 有解,因爲黑色線的的確確落在 $\bu_1,\bu_2$ 所張開成的平面上。 $$ \left\{ \begin{aligned} -4x+3y &= -14, \\ -5x-5y &= 0, \\ 3x-3y &= 12, \end{aligned} \right. $$ 其中 $x,y \in \mathbb{R}$ 。 由於第一項加第三項為 $-x=-2$ ,所以 $x=2$ 。 代入第一項 $-8+3y=-14$ ,所以 $y=-2$ 。 故 $$\bv = \left\{ \begin{aligned} x &=2,\\ y &=-2. \end{aligned} \right. $$ ```python ### code set_random_seed(0) print_ans = True while True: l = random_int_list(9) Ae = matrix(3, l) if Ae.det() != 0: break u1 = vector(Ae[:,0]) u2 = vector(Ae[:,1]) u3 = vector(Ae[:,2]) A = Ae[:,:2] inside = choice([0,1,1]) coefs = random_int_list(2, 2) if inside: b = coefs[0]*u1 + coefs[1]*u2 else: b = coefs[0]*u1 + coefs[1]*u2 + 3*u3 print("A =") print(A) print("b =", b) pic = draw_span([u1,u2]) pic += arrow((0,0,0), b, width=5, color="black") show(pic) if print_ans: if inside: print("It has a solution v = %s."%coefs[:2]) else: print("It has no solution.") ``` ## Exercises ##### Exercise 2(a) 令 $$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}\text{ and } {\bf b} = \begin{bmatrix}3\\9\\15\end{bmatrix}. $$ 判斷 ${\bf b}$ 是否在 $\operatorname{Col}(A)$ 中、 並給出說明。 :::warning - [x] 向量粗體 - [x] 有句子沒句點 - [x] "$Av=b$ 可看成坐標系中的" --> "方程式 $Av=b$ 可看成坐標系中的" (沒必要換行) - [x] `cases` --> `aligned` - [x] $Col$ --> $\Col$ - [ ] 第 2 題的其它小題一樣 - [x] 坐標系中的 --> 方程式; ::: 答: 令 ${\bf v}=\begin{bmatrix} x\\ y\\ z \end{bmatrix}$。 $A{\bf v}={\bf b}$ 可看成方程式 $$ \left\{ \begin{aligned} x+2y+3z &= 3, \\ 4x+5y+6z &= 9,\\ 7x+8y+9z &= 15, \end{aligned} \right. $$ 其中 $x,y,z \in \mathbb{R}$ 。 此方程組有解 $$ \left\{ \begin{aligned} x&=1+t, \\ y&=1-2t, \\ z&=t, \\ \end{aligned} \right. $$ 其中 $t \in\mathbb{R}$。 故 ${\bf b}$ 屬於 $\Col(A)$ 中。 ##### Exercise 2(b) 令 $$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}\text{ and } {\bf b} = \begin{bmatrix}1\\1\\1\end{bmatrix}. $$ 判斷 ${\bf b}$ 是否在 $\operatorname{Col}(A)$ 中、 並給出說明。 答: 令 ${\bf v}=\begin{bmatrix} x\\ y\\ z \end{bmatrix}$ $A{\bf v=b}$ 可看成方程式 $$ \left\{ \begin{aligned} x+2y+3z&=1, \\ 4x+5y+6z&=1, \\ 7x+8y+9z&=1, \end{aligned} \right. $$ 其中 $x,y,z \in \mathbb{R}$ 。 此方程組有解 $$\left\{ \begin{aligned} x &= t, \\ y &= -1-2t, \\ z &= 1+t, \end{aligned} \right. $$ 其中 $t \in \mathbb{R}$。 故 $\bb$ 屬於 $\Col(A)$ 中。 ##### Exercise 2(c) 令 $$A = \begin{bmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ \end{bmatrix}\text{ and } {\bf b} = \begin{bmatrix}2\\2\\2\\2\end{bmatrix}. $$ 判斷 ${\bf b}$ 是否在 $\operatorname{Col}(A)$ 中、 並給出說明。 答: 令 $\bv = \begin{bmatrix} x\\ y\\ z\\ r \end{bmatrix}$ 。 $A{\bf v=b}$ 可改寫成方程式 $$\left\{ \begin{aligned} y+r &= 2, \\ x+z &= 2, \\ y+r &= 2, \\ x+z &= 2, \end{aligned} \right.$$ 其中 $x,y,z,r \in \mathbb{R}$ 。 此方程組有解 $$\left\{ \begin{aligned} x &= 1+t, \\ y &= 1+k, \\ z &= 1-t, \\ r &= 1-k, \end{aligned} \right.$$ 其中 $t,k \in \mathbb{R}$ 。 故 ${\bf b}$ 屬於 $\Col(A)$ 中。 ##### Exercise 3(a) 令 $$A = \begin{bmatrix} 1 & 2 \\ 1 & 2 \\ \end{bmatrix}\text{ and } {\bf b} = \begin{bmatrix}3\\4\end{bmatrix}. $$ 給出一些直覺的敘述﹐說明 ${\bf b}\notin\operatorname{Col}(A)$。 :::warning 直不直覺是主觀的概念,所以沒有要改的(除了格式以外)。 原本題目期待的是類似以下的回答: 令 $\bu_1$ 和 $\bu_2$ 為 $A$ 的兩個行。 我們會發現 $\bu_2 = 2\bu_1$,而且**任何** $\{\bu_1,\bu_2\}$ 的線性組合都是 $$\begin{bmatrix} k \\ k \end{bmatrix}$$ 的形式。 因此我們可以判定 $\bb$ 不是 $\{\bu_1,\bu_2\}$ 的線性組合, 也就是說 $\bb\notin\Col(A)$。 ::: 答: 可改寫成方程式 $$\left\{ \begin{aligned} x+2y & =3 \\ x+2y & =4 \end{aligned} \right.$$ 其中 $x,y \in \mathbb{R}$ 。 此方程組無解,故 ${\bf b}$ 不屬於 $\Col(A)$ 中 。 ##### Exercise 3(b) 令 $$A = \begin{bmatrix} 1 & 1 \\ 1 & 1 \\ -1 & -1 \\ -1 & -1 \\ \end{bmatrix}\text{ and } {\bf b} = \begin{bmatrix}0\\0\\1\\2\end{bmatrix}. $$ 給出一些直覺的敘述﹐說明 ${\bf b}\notin\operatorname{Col}(A)$。 :::warning 試一下用 3(a) 的說法。 ::: 答: 可改寫成方程式 $$ \left\{\begin{aligned} x+y &= 0, \\ x+y &= 0, \\ -x-y &= 1, \\ -x-y &= 2, \end{aligned}\right. $$ 其中 $x,y\in\mathbb{R}$。 此方程組無解,故 ${\bf b}$ 不屬於 $\Col(A)$ 中 令 $\bu_1,\bu_2,\bu_3,\bu_4$ 為 $A$ 的四個行。 我們會發現 $\bu_1 = \bu_2=-\bu_3=-\bu_4$,而且**任何** ${\bu_1,\bu_2\,\bu_3,\bu_4}$ 的線性組合 $$\begin{bmatrix} k \\ k \\-k\\-k \end{bmatrix}$$ 的形式。 因此我們可以判定 $\bb$ 不是 $\bu_1,\bu_2\,\bu_3,\bu_4$ 的線性組合, 也就是說 $\bb\notin\Col(A)$ 。 ##### Exercise 3(c) 令 $$A = \begin{bmatrix} -1 & -1 & -1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ \end{bmatrix}\text{ and } {\bf b} = \begin{bmatrix}-4\\1\\1\\1\end{bmatrix}. $$ 給出一些直覺的敘述﹐說明 ${\bf b}\notin\operatorname{Col}(A)$。 :::warning 試一下用 3(a) 的說法。 ::: 答: 可改寫成方程式 $$\left\{ \begin{aligned} -x-y-z&=(-4) \\ x &=1 \\ y &=1 \\ z &=1 \end{aligned} \right.$$ 其中 $x,y \in \mathbb{R}$。 此方程組無解,故 $\bb$ 不屬於 $\Col(A)$ 中。 ##### Exercise 4 以下的小題探討哪些向量刪除以後不會影響生成出來的子空間。 令 $$A = \begin{bmatrix} 1 & -1 & -1 & 0 \\ 1 & 1 & 0 & -1 \\ 1 & 0 & 1 & 1 \\ \end{bmatrix} $$ 且 $S = \{{\bf u}_1,\ldots,{\bf u}_4\}$ 為 $A$ 的所有行向量。 ##### Exercise 4(a) 對 $S$ 中的每一個 ${\bf u}_i$ 逐個檢查﹐ 哪一個 ${\bf u}_i \in \operatorname{span}(S\setminus\{{\bf u}_i\})$。 根據上一節的練習, 如果扣掉一個這樣的 ${\bf u}_i$ 並不會影響生成出來的子空間。 :::warning - [x] 向量粗體 - [x] 有句子沒句點 - [x] $span$ --> $\vspan$ - [x] 由題目知 $u_i$ 屬於 ${span}(S\setminus\{{\bf u}_i\})$ ,且刪除此向量並不會影響生成出來的子空間 <-- 這句話不知道在講什麼。是不是少了 如果 ... 則 ...? - [x] 說明為什麼 $\bu_2 + \bu_4 = \bu_3$ 可以知道 $\bu_2\in\vspan(\{\bu_3,\bu_4\})$, $\bu_3\in\vspan(\{\bu_2,\bu_4\})$, 以及 $\bu_4\in\vspan(\{\bu_2,\bu_3\})$ ::: 答: 令 $\bu_1 = (1,1,1), \bu_2 = (-1,1,0),\bu_3(1,0,-1), \bu_4 = (0,-1,1)$ 。 我們可以解 $\bu_1 = c_2\bu_2 + c_3\bu_3 + c_4\bu_4$, 由於 $c_2,c_3,c_4$ 無解,所以 $\bu_1$ 不在 $\vspan(S\setminus\{{\bf u}_1\})$ 中。 <!-- 由題目知 ${\bf u}_i \in {\vspan}(S\setminus\{{\bf u}_i\})$ ,且刪除此向量並不會影響生成出來的子空間,則 ${\bf u}_i$ 可由其他三組向量組合而成, ${\bf u}_i$ 可能為 $\bu_2,\bu_3,\bu_4$ 。 --> 由於 $\bu_2+\bu_4=\bu_3$, 可得 $$ \begin{aligned} \bu_2 &= 0\bu_1 +\bu_3-\bu_4, \\ \bu_3 &= 0\bu_1 +\bu_2+\bu_4, \\ \bu_4 &= 0\bu_1-\bu_2+\bu_3, \end{aligned} $$ 因此對於 $i = 2,3,4$,都有 $\bu_i\in\vspan(S\setminus\{{\bf u}_i\})$ 。 ##### Exercise 4(b) 經過計算 $$A \begin{bmatrix}0\\1\\-1\\1\end{bmatrix} = {\bf 0}. $$ 也就是 $1{\bf u}_2 + 1{\bf u}_4 = 1{\bf u}_3$。 用這個等式來說明 ${\bf u}_2, {\bf u}_3, {\bf u}_4$ 中刪掉任何一個都不會影響生成出來的子空間。 答: **[由朱帝林同學提供]** 對 $A$ 中的 ${\bf u}_2$ 做檢查, 希望可以把 $\bu_2$ 寫成 $c_1\bu_1 + c_2\bu_3 + c_3\bu_4$ 的形式, 由題目條件 $1{\bf u}_2 + 1{\bf u}_4 = 1{\bf u}_3$ 得知, 當 $c_1 = 0,c_2 = 1,c_3 = -1$ 時, $\bu_2 = 0\bu_1 + 1\bu_3 - 1\bu_4$ 等式恆成立, 所以 $\bu_2$ 在 $\vspan(S\setminus\{{\bf u}_2\})$ 中。 對 $A$ 中的 ${\bf u}_3$ 做檢查, 希望可以把 $\bu_3$ 寫成 $d_1\bu_1 + d_2\bu_2 + d_3\bu_4$ 的形式, 由題目條件 $1{\bf u}_2 + 1{\bf u}_4 = 1{\bf u}_3$ 得知, 當 $d_1 = 0,d_2 = 1,d_3 = 1$ 時, $\bu_3 = 0\bu_1 + 1\bu_2 + 1\bu_4$ 等式恆成立, 所以 $\bu_3$ 在 $\vspan(S\setminus\{{\bf u}_3\})$ 中。 對 $A$ 中的 ${\bf u}_4$ 做檢查, 希望可以把 $\bu_4$ 寫成 $e_1\bu_1 + e_2\bu_2 + e_3\bu_3$ 的形式, 由題目條件 $1{\bf u}_2 + 1{\bf u}_4 = 1{\bf u}_3$ 得知, 當 $e_1 = 0,e_2 = -1,e_3 = 1$ 時, $\bu_4 = 0\bu_1 - 1e_2\bu_2 + 1\bu_3$ 所以 $\bu_4$ 在 $\vspan(S\setminus\{{\bf u}_4\})$ 中。 由上述得知 ${\bf u}_2, {\bf u}_3, {\bf u}_4$ 中刪掉任何一個都不會影響生成出來的子空間。 ##### Exercise 4(c) 令 $A'$ 為 $A$ 的前三行組成的矩陣。 我們己知 $\operatorname{Col}(A') = \operatorname{Col}(A)$。 經過解方程式的計算可以發現 $\operatorname{ker}(A') = \{{\bf 0}\}$。 利用這個性質說明 $A'$ 的行之中 沒辦法再拿掉任何一行 但同時保持行空間。 **[由林柏仰同學提供]** 若將 $A'$ 的前三行表示成 $\bu_1,\bu_2,\bu_3$ 三個向量,則 $A'{\bf x} = {\bf 0}$ 可表示成 $$ \begin{bmatrix} | & | & | \\ \bu_1 & \bu_2 & \bu_3 \\ | & | & | \\ \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \bzero. $$ 透過此矩陣乘法我們可知 $x_1\bu_1 + x_2\bu_2 + x_3\bu_3 = {\bf 0}$ 而 $\ker(A')$ 為所有可以使此等式成立的 $x_1,x_2,x_3$ 所組成的向量 ${\bf x_1,x_2,x_3}$。 若 $\bu_1\in\vspan(\{\bu_2,\bu_3\})$,我們可以找到 $c_2,c_3\in\mathbb{R}$ 使得 $\bu_1 = c_2\bu_2 + c_3\bu_3$。 這表示 $1\bu_1 - c_2\bu_2 - c_3\bu_3 = \bzero$ 且 $(1, -c_2, -c_3)\in\ker(A)$。 由於題目假設 $\ker(A') = \{\bzero\}$,所以 $\bu_1\notin\vspan(\{\bu_2,\bu_3\})$。 類似的論證可以得到 $\bu_2\notin\vspan(\{\bu_1,\bu_3\})$ 且 $\bu_3\notin\vspan(\{\bu_1,\bu_2\})$。 由此可知,去掉 $\bu_1,\bu_2,\bu_3$ 其中任何一個,行空間皆會改變。 另解(對一般的矩陣 $A'$,若 $\ker(A') = \{\bzero\}$,則對任何 $\bu_i\in S$ 都有 $\vspan(S \setminus \{ {\bf u}_i \} ) \neq \vspan(S)$。) **[由廖緯程同學提供]** **分析**: 沒辦法從 $A'$ 的行中拿掉任何一行,但同時保持行空間。 用定義解釋就是,對於所有 ${\bf u}_i \in S,\operatorname{span}(S \setminus \{ {\bf u}_i \} ) \neq \operatorname{span}(S)。$ 所以題目相當於證明,當 $$ \operatorname{ker}(A') = \{ {\bf 0} \}, $$ 則對任何 $\bu_i\in S$ 都有 $$ \operatorname{span}(S \setminus \{ {\bf u}_i \} ) \neq \operatorname{span}(S)。 $$ **證明**: 假設 ${\bf u}_i \in \operatorname{span}(S \setminus \{ {\bf u}_i \})$,則存在一些 $c_1,\ldots,c_{i-1},c_{i+1},\ldots,c_n \in \mathbb{R}$ 使得 $$ {\bf u}_i = c_1{\bf u}_1 + \cdots + c_{i - 1}{\bf u}_{i - 1} + c_{i + 1}{\bf u}_{i + 1} + \cdots + c_n{\bf u}_n. $$ 這個等式可以看成 $$ A'\begin{bmatrix} c_1\\ \vdots\\ c_{i-1}\\ -1\\ c_{i+1}\\ \vdots\\ c_n \end{bmatrix} ={\bf 0}. $$ 根據 $\operatorname{ker}(A')$ 的定義 $$ \begin{bmatrix} c_1\\ \vdots\\ c_{i-1}\\ -1\\ c_{i+1}\\ \vdots\\ c_n \end{bmatrix} \in \operatorname{ker}(A') $$ 但這與 $\operatorname{ker}(A') = \{ {\bf 0} \}$ 矛盾。 所以 ${\bf u}_i \not\in \operatorname{span}(S \setminus \{ {\bf u}_i \}),$ 但 ${\bf u}_i \in \operatorname{span}(S)$ 得證,當 $$ \operatorname{ker}(A') = \{ {\bf 0} \}, $$ 則對任何 $\bu_i\in S$ 都有 $$ \operatorname{span}(S \setminus \{ {\bf u}_i \} ) \neq \operatorname{span}(S)。 $$ ##### Exercise 4(d) 令 $A$ 為任一矩陣且 $S = \{{\bf u}_1,\ldots,{\bf u}_n\}$ 為其所有行向量。 證明以下敘述等價: 1. $\operatorname{ker}(A) = \{{\bf 0}\}$. 2. $\operatorname{span}(S\setminus{\bf u}_i) \subsetneq \operatorname{span}(S)$ for all $i=1, \ldots, n$. **[由黃立帆同學提供]** **1 $\Rightarrow$ 2** Claim: $\bu_n$ $\notin$ $\vspan(S \setminus$ $\bu_n$). Assume $\bu_n\in\vspan(S \setminus\bu_n)$. Then there are $c_1, \dots , c_{n-1} \in F$ such that $\bu_n = c_1\bu_1+\dots+c_{n-1}\bu_{n-1}.$ In other words, $c_1\bu_1+\dots+c_{n-1}\bu_{n-1}-\bu_n= \bzero$. That means $$\left[\begin{matrix} \bu_1 &\cdots& \bu_n \\ \end{matrix}\right]\left[\begin{matrix} c_1\\ \vdots \\ c_{n-1} \\ -1\\ \end{matrix}\right]= \bzero. $$ So, we get $\left[\begin{matrix} c_1\\ \vdots \\ c_{n-1} \\ -1\\ \end{matrix}\right] \in \ker(A)$. This is a contradition with $\ker(A) = \lbrace \bzero\rbrace$. Finally, we have $\bu_n \notin \vspan(S \setminus \bu_n)$. Through similar arguments, we know $\vspan(S \setminus\bu_i)\subseteq\vspan(S)$ for all $i=1, \ldots ,n$. **2 $\Rightarrow$ 1** Claim : $\ker(A) \neq \lbrace \bzero\rbrace$ implies $\vspan(S\setminus\bu_i)=\vspan(S)$ for some $i$=1, $\dots$ n. Because $\ker(A) \neq \lbrace \bzero\rbrace$, we can find at least an $\bx$ = $\left[\begin{matrix} c_1\\ \vdots \\ c_n\\ \end{matrix}\right]$ $\in$ $\ker(A)$, $\bx$ $\neq\bzero$. In other words, $c_1\bu_1+\dots+c_{n}\bu_{n}=\bzero.$ Let $c_i \neq 0$, for some $i$. Then $$\bu_i = \frac{c_1\bu_1+\dots+c_{i-1}\bu_{i-1}+c_{i+1}\bu_{i+1}+\dots+c_n\bu_n}{c_i} \in \vspan(S\setminus \bu_i). $$ We can get $\vspan(S\setminus\bu_i)=\vspan(S)$. Then we can conclude $\vspan(S\setminus \bu_i) = \vspan(S)$, for some $i$. That means $\vspan(S\setminus \bu_i) \subsetneq \vspan(S)$ implies $\ker(A) = \lbrace \bzero\rbrace$. $\blacksquare$ 另解 **[由廖緯程同學提供]** **分析**: 自然地,$\operatorname{span}(S\setminus{\bf u}_i) \subset \operatorname{span}(S)$ 所以 $1 \implies 2$ 相當於 Exercise 4(c),我們只要證明 $2 \implies 1,$ 即證明 當 $$ \operatorname{span}(S\setminus{\bf u}_i) \subsetneq \operatorname{span}(S),i=1, \ldots, n $$ 有 $$ \operatorname{ker}(A) = \{{\bf 0}\}. $$ 而它的否逆命題是,當 $$ \ker(A) \neq \{ {\bf 0} \} $$ 有 $$ \vspan(S \setminus \bu_i) = \vspan(S) $$ **證明**: 因為 $\ker(A) \neq \{ {\bf 0} \}$,所以存在無限多組 $\bc = (c_1, \ldots , c_n) \in \mathbb{R},\bc \neq \bzero$,使得 $$ c_1\bu_1 + \cdots + c_n\bu_n = {\bf 0} $$ 移項得到 $$ -\frac{c_1}{c_i}\bu_1 - \cdots - \frac{c_{i-1}}{c_i}\bu_{i-1} - \frac{c_{i+1}}{c_i}\bu_{i+1} - \cdots - \frac{c_n}{c_i}\bu_n = \bu_i $$ 可以看出 $\bu_i$ 是 $S \setminus \bu_i$ 的線性組合,所以 $\bu_i \in \vspan(S \setminus \bu_i),\vspan(S \setminus \bu_i)=\vspan(S)$。 否逆命題為真,所以 $\vspan(S\setminus{\bf u}_i) \subsetneq \vspan(S)$ 等價於 $\ker(A) = \{{\bf 0}\}$。 ##### Exercise 5(a) 令 $A = \begin{bmatrix} a & b \\ c & d \\ \end{bmatrix}$。 定義 $\det(A) = ad - bc$。 說明若 $\det(A) \neq 0$﹐則 $\operatorname{Col}(A) = \mathbb{R}^2$ 。 :::warning - [x] $v_2$ --> $\bv$, $b^2$ --> $\bb$;好像沒必要給上下標 - [x] $Av_2=b^2$ --> 並考慮方程式 $Av_2=b^2$。 - [x] 可看成 --> 此方程式可看成 - [x] `cases` --> `aligned` - [x] $det$ --> $\det$ - [x] 其中解為 $b^2$ --> 其中解為 $\bv$ - [x] $Col$ --> $\Col$ - [x] ,故 $Col(A)$ 屬於實數的2乘1的矩陣 --> 。由於 $\bb$ 可以是 $\mathbb{R}^2$ 中的任何向量,因此得知 $A\bv = \bb$ 對於任何 $\bb\in\mathbb{R}^2$ 都有解,也就是任何 $\bb\in\mathbb{R}^2$ 都在 $\Col(A)$ 中。因此 $\Col(A) = \mathbb{R}^2$。 - [x] 下一題一樣改法 另外可以想一下如果不用克拉瑪公式要怎麼辦? ::: 答: 令 $\bv =\begin{bmatrix} x\\ y \end{bmatrix},\bb =\begin{bmatrix} b_1\\ b_2 \end{bmatrix}$, 並考慮方程 $A\bv=\bb$。 此方程式可看成 $$\left\{ \begin{aligned} ax+by=b_1\\ cx+dy=b_2 \end{aligned} \right.$$ 其中 $x,y \in \mathbb{R}$ 。 題目可知 $\det(A)≠0$,由克拉瑪公式知,此方程組必有解,其中解為 $\bv$。由於 $\bb$ 可以是 $\mathbb{R}^2$ 中的任何向量,因此得知 $A\bv = \bb$ 對於任何 $\bb\in\mathbb{R}^2$ 都有解,也就是任何 $\bb\in\mathbb{R}^2$ 都在 $\Col(A)$ 中。因此 $\Col(A) = \mathbb{R}^2$。 ##### Exercise 5(b) 令 $A = \begin{bmatrix} a & b & c \\ d & e & f \\ i & j & k \\ \end{bmatrix}$。 定義 $\det(A) = aek + bfi + cdj - cei - dbk - afj$。 說明若 $\det(A) \neq 0$﹐則 $\operatorname{Col}(A) = \mathbb{R}^3$ 。 答: 令 $\bv =\begin{bmatrix} x\\ y\\ z \end{bmatrix},\bb =\begin{bmatrix} b_1\\ b_2\\ b_3 \end{bmatrix}$,並考慮方程 $A\bv=\bb$ 此方程式可看成 $$\left\{ \begin{aligned} ax+by+cz&=b_1\\ dx+ey+fz&=b_2 \\ ix+jy+kz&=b_3 \end{aligned} \right.$$ 其中 $x,y,z \in \mathbb{R}$。 題目可知 $\det(A)≠0$,由克拉瑪公式知,此方程組必有解,其中解為 $\bv$。由於 $\bb$ 可以是 $\mathbb{R}^3$ 中的任何向量,因此得知 $A\bv = \bb$ 對於任何 $\bb\in\mathbb{R}^3$ 都有解,也就是任何 $\bb\in\mathbb{R}^3$ 都在 $\Col(A)$ 中。因此 $\Col(A) = \mathbb{R}^3$。 :::warning 格式以外正確:10/13 目前分數:4 :::

    Import from clipboard

    Paste your markdown or webpage here...

    Advanced permission required

    Your current role can only read. Ask the system administrator to acquire write and comment permission.

    This team is disabled

    Sorry, this team is disabled. You can't edit this note.

    This note is locked

    Sorry, only owner can edit this note.

    Reach the limit

    Sorry, you've reached the max length this note can be.
    Please reduce the content or divide it to more notes, thank you!

    Import from Gist

    Import from Snippet

    or

    Export to Snippet

    Are you sure?

    Do you really want to delete this note?
    All users will lose their connection.

    Create a note from template

    Create a note from template

    Oops...
    This template has been removed or transferred.
    Upgrade
    All
    • All
    • Team
    No template.

    Create a template

    Upgrade

    Delete template

    Do you really want to delete this template?
    Turn this template into a regular note and keep its content, versions, and comments.

    This page need refresh

    You have an incompatible client version.
    Refresh to update.
    New version available!
    See releases notes here
    Refresh to enjoy new features.
    Your user state has changed.
    Refresh to load new user state.

    Sign in

    Forgot password

    or

    By clicking below, you agree to our terms of service.

    Sign in via Facebook Sign in via Twitter Sign in via GitHub Sign in via Dropbox Sign in with Wallet
    Wallet ( )
    Connect another wallet

    New to HackMD? Sign up

    Help

    • English
    • 中文
    • Français
    • Deutsch
    • 日本語
    • Español
    • Català
    • Ελληνικά
    • Português
    • italiano
    • Türkçe
    • Русский
    • Nederlands
    • hrvatski jezik
    • język polski
    • Українська
    • हिन्दी
    • svenska
    • Esperanto
    • dansk

    Documents

    Help & Tutorial

    How to use Book mode

    Slide Example

    API Docs

    Edit in VSCode

    Install browser extension

    Contacts

    Feedback

    Discord

    Send us email

    Resources

    Releases

    Pricing

    Blog

    Policy

    Terms

    Privacy

    Cheatsheet

    Syntax Example Reference
    # Header Header 基本排版
    - Unordered List
    • Unordered List
    1. Ordered List
    1. Ordered List
    - [ ] Todo List
    • Todo List
    > Blockquote
    Blockquote
    **Bold font** Bold font
    *Italics font* Italics font
    ~~Strikethrough~~ Strikethrough
    19^th^ 19th
    H~2~O H2O
    ++Inserted text++ Inserted text
    ==Marked text== Marked text
    [link text](https:// "title") Link
    ![image alt](https:// "title") Image
    `Code` Code 在筆記中貼入程式碼
    ```javascript
    var i = 0;
    ```
    var i = 0;
    :smile: :smile: Emoji list
    {%youtube youtube_id %} Externals
    $L^aT_eX$ LaTeX
    :::info
    This is a alert area.
    :::

    This is a alert area.

    Versions and GitHub Sync
    Get Full History Access

    • Edit version name
    • Delete

    revision author avatar     named on  

    More Less

    Note content is identical to the latest version.
    Compare
      Choose a version
      No search result
      Version not found
    Sign in to link this note to GitHub
    Learn more
    This note is not linked with GitHub
     

    Feedback

    Submission failed, please try again

    Thanks for your support.

    On a scale of 0-10, how likely is it that you would recommend HackMD to your friends, family or business associates?

    Please give us some advice and help us improve HackMD.

     

    Thanks for your feedback

    Remove version name

    Do you want to remove this version name and description?

    Transfer ownership

    Transfer to
      Warning: is a public team. If you transfer note to this team, everyone on the web can find and read this note.

        Link with GitHub

        Please authorize HackMD on GitHub
        • Please sign in to GitHub and install the HackMD app on your GitHub repo.
        • HackMD links with GitHub through a GitHub App. You can choose which repo to install our App.
        Learn more  Sign in to GitHub

        Push the note to GitHub Push to GitHub Pull a file from GitHub

          Authorize again
         

        Choose which file to push to

        Select repo
        Refresh Authorize more repos
        Select branch
        Select file
        Select branch
        Choose version(s) to push
        • Save a new version and push
        • Choose from existing versions
        Include title and tags
        Available push count

        Pull from GitHub

         
        File from GitHub
        File from HackMD

        GitHub Link Settings

        File linked

        Linked by
        File path
        Last synced branch
        Available push count

        Danger Zone

        Unlink
        You will no longer receive notification when GitHub file changes after unlink.

        Syncing

        Push failed

        Push successfully