Jephian Lin
    • Create new note
    • Create a note from template
      • Sharing URL Link copied
      • /edit
      • View mode
        • Edit mode
        • View mode
        • Book mode
        • Slide mode
        Edit mode View mode Book mode Slide mode
      • Customize slides
      • Note Permission
      • Read
        • Only me
        • Signed-in users
        • Everyone
        Only me Signed-in users Everyone
      • Write
        • Only me
        • Signed-in users
        • Everyone
        Only me Signed-in users Everyone
      • Engagement control Commenting, Suggest edit, Emoji Reply
      • Invitee
    • Publish Note

      Share your work with the world Congratulations! 🎉 Your note is out in the world Publish Note

      Your note will be visible on your profile and discoverable by anyone.
      Your note is now live.
      This note is visible on your profile and discoverable online.
      Everyone on the web can find and read all notes of this public team.
      See published notes
      Unpublish note
      Please check the box to agree to the Community Guidelines.
      View profile
    • Commenting
      Permission
      Disabled Forbidden Owners Signed-in users Everyone
    • Enable
    • Permission
      • Forbidden
      • Owners
      • Signed-in users
      • Everyone
    • Suggest edit
      Permission
      Disabled Forbidden Owners Signed-in users Everyone
    • Enable
    • Permission
      • Forbidden
      • Owners
      • Signed-in users
    • Emoji Reply
    • Enable
    • Versions and GitHub Sync
    • Note settings
    • Engagement control
    • Transfer ownership
    • Delete this note
    • Save as template
    • Insert from template
    • Import from
      • Dropbox
      • Google Drive
      • Gist
      • Clipboard
    • Export to
      • Dropbox
      • Google Drive
      • Gist
    • Download
      • Markdown
      • HTML
      • Raw HTML
Menu Note settings Sharing URL Create Help
Create Create new note Create a note from template
Menu
Options
Versions and GitHub Sync Engagement control Transfer ownership Delete this note
Import from
Dropbox Google Drive Gist Clipboard
Export to
Dropbox Google Drive Gist
Download
Markdown HTML Raw HTML
Back
Sharing URL Link copied
/edit
View mode
  • Edit mode
  • View mode
  • Book mode
  • Slide mode
Edit mode View mode Book mode Slide mode
Customize slides
Note Permission
Read
Only me
  • Only me
  • Signed-in users
  • Everyone
Only me Signed-in users Everyone
Write
Only me
  • Only me
  • Signed-in users
  • Everyone
Only me Signed-in users Everyone
Engagement control Commenting, Suggest edit, Emoji Reply
Invitee
Publish Note

Share your work with the world Congratulations! 🎉 Your note is out in the world Publish Note

Your note will be visible on your profile and discoverable by anyone.
Your note is now live.
This note is visible on your profile and discoverable online.
Everyone on the web can find and read all notes of this public team.
See published notes
Unpublish note
Please check the box to agree to the Community Guidelines.
View profile
Engagement control
Commenting
Permission
Disabled Forbidden Owners Signed-in users Everyone
Enable
Permission
  • Forbidden
  • Owners
  • Signed-in users
  • Everyone
Suggest edit
Permission
Disabled Forbidden Owners Signed-in users Everyone
Enable
Permission
  • Forbidden
  • Owners
  • Signed-in users
Emoji Reply
Enable
Import from Dropbox Google Drive Gist Clipboard
   owned this note    owned this note      
Published Linked with GitHub
Subscribed
  • Any changes
    Be notified of any changes
  • Mention me
    Be notified of mention me
  • Unsubscribe
Subscribe
# 對一個特徵向量化簡 Reduction ![Creative Commons License](https://i.creativecommons.org/l/by/4.0/88x31.png) This work by Jephian Lin is licensed under a [Creative Commons Attribution 4.0 International License](http://creativecommons.org/licenses/by/4.0/). $\newcommand{\trans}{^\top} \newcommand{\adj}{^{\rm adj}} \newcommand{\cof}{^{\rm cof}} \newcommand{\inp}[2]{\left\langle#1,#2\right\rangle} \newcommand{\dunion}{\mathbin{\dot\cup}} \newcommand{\bzero}{\mathbf{0}} \newcommand{\bone}{\mathbf{1}} \newcommand{\ba}{\mathbf{a}} \newcommand{\bb}{\mathbf{b}} \newcommand{\bc}{\mathbf{c}} \newcommand{\bd}{\mathbf{d}} \newcommand{\be}{\mathbf{e}} \newcommand{\bh}{\mathbf{h}} \newcommand{\bp}{\mathbf{p}} \newcommand{\bq}{\mathbf{q}} \newcommand{\br}{\mathbf{r}} \newcommand{\bx}{\mathbf{x}} \newcommand{\by}{\mathbf{y}} \newcommand{\bz}{\mathbf{z}} \newcommand{\bu}{\mathbf{u}} \newcommand{\bv}{\mathbf{v}} \newcommand{\bw}{\mathbf{w}} \newcommand{\tr}{\operatorname{tr}} \newcommand{\nul}{\operatorname{null}} \newcommand{\rank}{\operatorname{rank}} %\newcommand{\ker}{\operatorname{ker}} \newcommand{\range}{\operatorname{range}} \newcommand{\Col}{\operatorname{Col}} \newcommand{\Row}{\operatorname{Row}} \newcommand{\spec}{\operatorname{spec}} \newcommand{\vspan}{\operatorname{span}} \newcommand{\Vol}{\operatorname{Vol}} \newcommand{\sgn}{\operatorname{sgn}} \newcommand{\idmap}{\operatorname{id}} \newcommand{\am}{\operatorname{am}} \newcommand{\gm}{\operatorname{gm}} \newcommand{\mult}{\operatorname{mult}} \newcommand{\iner}{\operatorname{iner}}$ ```python from lingeo import random_int_vec ``` ## Main idea We start with some basic ideas on complex matrices. Let $A$ be a complex matrix. Then the **conjugate transpose** of $A$ is the matirx obtained from $A\trans$ by taking conjugate entrywisely. Recall that if $\bx$ and $\by$ are complex column vectors, then their inner product is $\inp{\bx}{\by} = \by^* \bx$. If a complex matrix $A$ satisfies $A^* A = AA^* = I$, then it is called a **unitary** matrix. In comparison, if a real matrix satisfies $A\trans A = AA\trans = I$, then it is an orthogonal matrix. Let $A$ be an $n\times n$ complex matrix. Then the following are equivalent: - $A$ is a unitary matrix. - $A^{-1} = A^*$. - The columns of $A$ form an orthonormal basis of $\mathbb{C}^n$. - The rows of $A$ form an orthonormal basis of $\mathbb{C}^n$. Let $\bv\in\mathbb{C}^n$ be a nonzero vector. Then one may expand $\bv$ into a basis $\beta$ of $\mathbb{C}^n$ whose first vector is $\bv$. Let $Q$ be the matrix whose columns are the vectors in $\beta$. Then $Q$ is an invertible matrix whose first column is $\bv$. If necessary, one may apply the Gram–Schimdt process to obtain an orthonormal basis of $\mathbb{C}^n$ whose first vector is $\frac{\bv}{\|\bv\|}$. Thus, there is a unitary matrix $Q$ whose first column is $\frac{\bv}{\|\bv\|}$. ##### Reduction lemma Let $A$ be a complex matrix. Suppose $\bv$ is an eigenvector of $A$ with respect to the eigenvalue $\lambda$. Let $Q$ be an invertible matrix whose first column is $\bv$. Then $Q^{-1}AQ$ has the form $$ \begin{bmatrix} \lambda & * \\ \bzero & A_2 \end{bmatrix}. $$ Moreover, $Q$ can be chosen as a unitary matrix whose first column is $\frac{\bv}{\|\bv\|}$. ##### Remark Note that the eigenvalues of a real matrix are not necessarily all real. Suppose $A$ is a real matrix and $\lambda$ is a real eigenvalue of $A$. Then the eigenvector $\bv\in\ker(A - \lambda I)$ can be chosen to be real. Also, the $Q$ matrix in the reduction lemma can be chosen to be orthogonal. However, $A_2$ can still possibly have a non-real eigenvalue. ## Side stories - all-ones vector - cases of real matrices - properties of unitary/orthogonal matrices - discrete Fourier transform matrix ## Experiments ##### Exercise 1 執行以下程式碼。 令 $\beta = \{\bu_1,\ldots,\bu_n\}$ 為 $Q$ 的行向量集合。 <!-- eng start --> Run the code below. Let $\beta = \{\bu_1,\ldots,\bu_n\}$ be the columns of $Q$. <!-- eng end --> ```python ### code set_random_seed(0) print_ans = False n = 4 Q = identity_matrix(n) Q[1:,0] = random_int_vec(n-1, 3) D = matrix(n, random_int_vec(n**2,3)) D[1:,0] = vector([0] * (n-1)) A = Q * D * Q.inverse() print("n =", n) pretty_print(LatexExpr("A ="), A) pretty_print(LatexExpr("Q ="), Q) if print_ans: print("The representation of f_A(u1) with respect to beta is") pretty_print(D[:,0]) pretty_print(LatexExpr("Q^{-1} ="), Q.inverse()) pretty_print(LatexExpr("Q^{-1} A Q ="), Q.inverse() * A * Q) ``` When `seed = 0`, we can get matrices $$ A = \begin{bmatrix} 3 & -3 & -3 & -1\\ -1 & 10 & 7 & 4\\ 23 & -8 & -12 & -5\\ 16 & -2 & -6 & -2\\ \end{bmatrix}, Q = \begin{bmatrix} 1 & 0 & 0 & 0\\ -3 & 1 & 0 & 0\\ 3 & 0 & 1 & 0\\ 1 & 0 & 0 & 1\\ \end{bmatrix}. $$ ##### Exercise 1(a) 求 $[f_A(\bu_1)]_\beta$。 <!-- eng start --> Find $[f_A(\bu_1)]_\beta$. <!-- eng end --> <font color="f000">Ans:</font> $f_A(\bu_1)=A\cdot\bu_1= \begin{bmatrix} 3 & -3 & -3 & -1\\ -1 & 10 & 7 & 4\\ 23 & -8 & -12 & -5\\ 16 & -2 & -6 & -2\\ \end{bmatrix}\cdot\begin{bmatrix} 1\\ -3\\ 3\\ 1\\ \end{bmatrix}$ $=\begin{bmatrix} 2\\ -6\\ 6\\ 2\\ \end{bmatrix}$. And we can know that $[f_A(\bu_1)]_\beta$ is equal to $2\cdot\bu_1+0\cdot\bu_2+0\cdot\bu_3+0\cdot\bu_4$, so $[f_A(\bu_1)]_\beta = \begin{bmatrix} 2\\ 0\\ 0\\ 0\\ \end{bmatrix}$. --- ##### Exercise 1(b) 求 $Q^{-1}$。 <!-- eng start --> Find $Q^{-1}$. <!-- eng end --> <font color="f000">Ans:</font> By calculating the reduced echelon form of$$ \left[\begin{array}{rrrr|rrrrr} 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ -3 & 1 & 0 & 0 & 0 & 1 & 0 & 0 \\ 3 & 0 & 1 & 0 & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\ \end{array}\right]$$ we can get $Q^{-1}$= $\begin{bmatrix} 1 & 0 & 0 & 0\\ 3 & 1 & 0 & 0\\ -3 & 0 & 1 & 0\\ -1 & 0 & 0 & 1\\ \end{bmatrix}$ . --- ##### Exercise 1(c) 求 $[f_A]_\beta^\beta$. <!-- eng start --> Find $[f_A]_\beta^\beta$. <!-- eng end --> <font color="f000">Ans:</font> We can get $Q$ and $Q^{-1}$ respectively from the code and Exercise 1(b) above. $[f_A]_\beta^\beta = Q^{-1}AQ=$ $\begin{bmatrix} 1 & 0 & 0 & 0\\ 3 & 1 & 0 & 0\\ -3 & 0 & 1 & 0\\ -1 & 0 & 0 & 1\\ \end{bmatrix}\begin{bmatrix} 3 & -3 & -3 & -1\\ -1 & 10 & 7 & 4\\ 23 & -8 & -12 & -5\\ 16 & -2 & -6 & -2\\ \end{bmatrix}\begin{bmatrix} 1 & 0 & 0 & 0\\ -3 & 1 & 0 & 0\\ 3 & 0 & 1 & 0\\ 1 & 0 & 0 & 1\\ \end{bmatrix} = \begin{bmatrix} 2 & -3 & -3 & -1\\ 0 & 1 & -2 & 1\\ 0 & 1 & -3 & -2\\ 0 & 1 & -3 & -1\\ \end{bmatrix}.$ :::info What do the experiments try to tell you? (open answer) ... ::: --- ## Exercises ##### Exercise 2 令 $\bone$ 為全一向量。 (其長度將由文意決定。) 已知以下矩陣 $A$ 皆有 $\bone$ 這個特徵向量。 求出 $A$ 的所有特徵值。 <!-- eng start --> Let $\bone$ be the all-ones vector (whose dimension will be clear by the context). It is known that each of the following matrices has $\bone$ as an eigenvector. Find all eigenvalues of $A$. <!-- eng end --> ##### Exercise 2(a) $$ A = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}. $$ <font color="f000">Ans:</font> We can get the eigenvalues of $A$ by solving the characteristic equation: $det(A - λI) = 0$. $$ A-λI = \begin{bmatrix} -λ & 1 & 1 \\ 1 & -λ & 1 \\ 1 & 1 & -λ \end{bmatrix}, $$ so the characteristic polynomial of $A$ is ${-λ^3 + 3λ^2 + 2 =(λ+1)^2(-λ+2) = 0}$, and the eigenvalues are $\{ -1,-1,2\}$. --- ##### Exercise 2(b) $$ A = \begin{bmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{bmatrix}. $$ <font color="f000">Ans:</font> Let $\bv_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \\ \end{bmatrix}$, Expand $\bv_1$ into the basis of $\mathbb{R}^{4}$ $\beta = \{\bv_1,\bv_2,\bv_3,\bv_4\}$, and let it as the basis of $Q$ row vector, we can get $$ Q = \begin{bmatrix} 1 & 0 & 0 & 0\\ 1 & 1 & 0 & 0\\ 1 & 0 & 1 & 0\\ 1 & 0 & 0 & 1 \end{bmatrix} , $$ so $$ [f_A]_\beta^\beta = Q^{-1}AQ = \begin{bmatrix} 1 & 0 & 0 & 0\\ -1 & 1 & 0 & 0\\ -1 & 0 & 1 & 0\\ -1 & 0 & 0 & 1\\ \end{bmatrix}\begin{bmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{bmatrix}\begin{bmatrix} 1 & 0 & 0 & 0\\ 1 & 1 & 0 & 0\\ 1 & 0 & 1 & 0\\ 1 & 0 & 0 & 1\\ \end{bmatrix} = \begin{bmatrix} 3 & 1 & 1 & 1\\ 0 & -1 & 0 & 0\\ 0 & 0 & -1 & 0\\ 0 & 0 & 0 & -1\\ \end{bmatrix}. $$ We can know that there is an eigenvalue from the above formula $\lambda_1 = 3$. And let $A_2 = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0\\ 0 & 0 & -1 \end{bmatrix}$, so $\spec(A_2) = \{-1,-1,-1\}$. We can know $\spec(A) =\{3\}\cup\{-1,-1,-1\} = \{-1,-1,-1,3\}$. --- ##### Exercise 2(c) $$ A = \begin{bmatrix} 1 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 1 \end{bmatrix}. $$ <font color="f000">Ans:</font> let $\bv_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$, Expand $\bv_1$ into $\mathbb{R}^{3}$ basis $\beta = \{\bv_1,\bv_2,\bv_3\}$, and let it as a row vector of $Q$, we can get $$ Q = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}, $$ so $[f_{A}]_\beta^\beta = Q^{-1}AQ = \begin{bmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ -1 & 0 & 1 \\ \end{bmatrix}\begin{bmatrix} 1 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 1 \\ \end{bmatrix}\begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \\ \end{bmatrix} = \begin{bmatrix} 0 & -1 & 0\\ 0 & 3 & -1 \\ 0 & 0 & 1 \end{bmatrix}.$ We can know that there is an eigenvalue from the above formula $\lambda = 0$. Let matrix $A_2 = \begin{bmatrix} 3 & -1 \\ 0 & 1 \\ \end{bmatrix}$,so $\spec(A_2) = \{1,3\}$. We can know $\spec(A) =\{0\}\cup\{1,3\} = \{0,1,3\}$. --- ##### Exercise 2(d) $$ A = \begin{bmatrix} 0.2 & 0.8 & 0 \\ 0.4 & 0.2 & 0.4 \\ 0 & 0.8 & 0.2 \end{bmatrix}. $$ <font color="f000">Ans:</font> Let $\bv_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$, Expand $\bv_1$ to the basis of $\mathbb{R}^{3}$ $\beta = \{\bv_1,\bv_2,\bv_3\}$ , and let it as a row vector of $Q$, we can get $$Q = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix} , $$ so $[f_{A}]_\beta^\beta = Q^{-1}AQ = \begin{bmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ -1 & 0 & 1 \\ \end{bmatrix}\begin{bmatrix} 0.2 & 0.8 & 0 \\ 0.4 & 0.2 & 0.4 \\ 0 & 0.8 & 0.2 \end{bmatrix}\begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \\ \end{bmatrix} = \begin{bmatrix} 1 & 0.8 & 0\\ 0 & -0.6 & 0.4 \\ 0 & 0 & 0.2 \end{bmatrix}.$ We can know that there is an eigenvalue from the above formula $\lambda = 1$. Let matrix $A_2 = \begin{bmatrix} -0.6 & 0.4 \\ 0 & 0.2 \\ \end{bmatrix}$,so $\spec(A_2) = \{-0.6,0.2\}$. We can know $\spec(A) =\{1\}\cup\{-0.6,0.2\} = \{1,-0.6,0.2\}$. --- ##### Exercise 3 令 $$ A = \begin{bmatrix} 0 & 1 & 1 & 1 \\ 1 & 2 & 0 & 0 \\ 1 & 0 & 2 & 0 \\ 1 & 0 & 0 & 2 \\ \end{bmatrix}. $$ 已知 $\bone$ 為 $A$ 的一特徵值。 求 $A$ 的所有特徵值。 提示:將 $A$ 對 $\bone$ 化簡後,再對 $A_2$ 化簡一次。 <!-- eng start --> Let $$ A = \begin{bmatrix} 0 & 1 & 1 & 1 \\ 1 & 2 & 0 & 0 \\ 1 & 0 & 2 & 0 \\ 1 & 0 & 0 & 2 \\ \end{bmatrix}. $$ It is known that $\bone$ is an eigenvector of $A$. Find all eigenvalues of $A$. Hint: Apply the reduction lemma to $A$ and $\bone$ to get $A_2$. Then apply the lemma again to $A_2$. <!-- eng end --> $Ans:$ Let $\bv_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \\ \end{bmatrix}.$ $\beta = \{\bv_1,\bv_2,\bv_3,\bv_4\}$, $$ Q = \begin{bmatrix} 1 & 0 & 0 & 0\\ 1 & 1 & 0 & 0\\ 1 & 0 & 1 & 0\\ 1 & 0 & 0 & 1 \end{bmatrix} $$ Then $[f_A]_\beta^\beta = Q^{-1}AQ = \begin{bmatrix} 1 & 0 & 0 & 0\\ -1 & 1 & 0 & 0\\ -1 & 0 & 1 & 0\\ -1 & 0 & 0 & 1\\ \end{bmatrix}\begin{bmatrix} 0 & 1 & 1 & 1\\ 1 & 2 & 0 & 0\\ 1 & 0 & 2 & 0\\ 1 & 0 & 0 & 2\\ \end{bmatrix}\begin{bmatrix} 1 & 0 & 0 & 0\\ 1 & 1 & 0 & 0\\ 1 & 0 & 1 & 0\\ 1 & 0 & 0 & 1\\ \end{bmatrix} = \begin{bmatrix} 3 & 1 & 1 & 1\\ 0 & 1 & -1 & -1\\ 0 & -1 & 1 & -1\\ 0 & -1 & -1 & 1\\ \end{bmatrix}.$ Since we can get an eigenvalue $\lambda_1 = 3$ 。 Let $A_2 = \begin{bmatrix} 1 & -1 & -1 \\ -1 & 1 & -1\\ -1 & -1 & 1 \\ \end{bmatrix}$, $\bv_2 = \begin{bmatrix} 1 \\ 1 \\ 1 \\ \end{bmatrix}。$ $\beta = \{\bv_1,\bv_2,\bv_3\}$, $$ Q_2 = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \\ \end{bmatrix} $$ Then $[f_{A_2}]_\beta^\beta = Q_2^{-1}A_2Q_2 = \begin{bmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ -1 & 0 & 1 \\ \end{bmatrix}\begin{bmatrix} 1 & -1 & -1 \\ -1 & 1 & -1 \\ -1 & -1 & 1 \\ \end{bmatrix}\begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \\ \end{bmatrix} = \begin{bmatrix} -1 & -1 & -1\\ 0 & 2 & 0 \\ 0 & 0 & 2 \\ \end{bmatrix}.$ We can get $\lambda_2 = -1$ 。 Let matrix $A_3 = \begin{bmatrix} 2 & 0 \\ 0 & 2 \\ \end{bmatrix}$, then $\spec(A_3) = \{2,2\}$。 Thus, $\spec(A) =\{3\}\cup\{-1\}\cup\{2,2\} = \{-1,2,2,3\}$。 ##### Exercise 4 令 $$ A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix}. $$ <!-- eng start --> Let $$ A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix}. $$ <!-- eng end --> ##### Exercise 4(a) 令 $\omega = e^{\frac{2\pi}{3}i}$ 且 $$ \bv = \begin{bmatrix} 1 \\ \omega \\ \omega^2 \end{bmatrix}. $$ 求出 $\bv$ 所對應的特徵值 $\lambda$, 並說明如何找到一個么正矩陣 $Q$ 使得 $$ Q^* AQ = \begin{bmatrix} \lambda & * \\ \bzero & A_2 \end{bmatrix}. $$ <!-- eng start --> Let $\omega = e^{\frac{2\pi}{3}i}$ and $$ \bv = \begin{bmatrix} 1 \\ \omega \\ \omega^2 \end{bmatrix}. $$ Find the eigenvalue $\lambda$ corresponding to $\bv$. Then explain how to find a unitary matrix $Q$ such that $$ Q^* AQ = \begin{bmatrix} \lambda & * \\ \bzero & A_2 \end{bmatrix}. $$ <!-- eng end --> ##### Exercise 4(b) 令 $$ \bv = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}. $$ 求出 $\bv$ 所對應的特徵值 $\lambda$, 並說明如何找到一個實垂直矩陣 $Q$ 使得 $$ Q\trans AQ = \begin{bmatrix} \lambda & * \\ \bzero & A_2 \end{bmatrix}. $$ <!-- eng start --> Let $$ \bv = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}. $$ Find the eigenvalue $\lambda$ corresponding to $\bv$. Then explain how to find a unitary matrix $Q$ such that $$ Q^* AQ = \begin{bmatrix} \lambda & * \\ \bzero & A_2 \end{bmatrix}. $$ <!-- eng end --> ##### Exercise 4(c) 令 $\omega = e^{\frac{2\pi}{3}i}$ 且 $$ \bv = \begin{bmatrix} 1 \\ \omega \\ \omega^2 \end{bmatrix}. $$ 已知 $\bv$ 所對應的特徵值為 $\omega = a + bi$。 令 $\bv = \bx + \by i$,也就是 $\bx$ 和 $\by$ 分別為 $\bv$ 的實部和虛部向量。 驗證 $$ \begin{aligned} A \bx &= a\bx - b\by, \\ A \by &= b\bx + a\by. \end{aligned} $$ 並說明如何找到一個可逆矩陣 $Q$ 使得 $$ Q^{-1} AQ = \begin{bmatrix} a & b & * \\ -b & a & * \\ 0 & 0 & A_2 \end{bmatrix}. $$ <!-- eng start --> Let $\omega = e^{\frac{2\pi}{3}i}$ 且 $$ \bv = \begin{bmatrix} 1 \\ \omega \\ \omega^2 \end{bmatrix}. $$ It is known that $\omega = a + bi$ is the eigenvalue corresponding to $\bv$. Let $\bv = \bx + \by i$ such that $\bx$ and $\by$ are both real vectors. Verify that $$ \begin{aligned} A \bx &= a\bx - b\by, \\ A \by &= b\bx + a\by. \end{aligned} $$ Then find the eigenvalue $\lambda$ corresponding to $\bv$. Then explain how to find a unitary matrix $Q$ such that $$ Q^{-1} AQ = \begin{bmatrix} a & b & * \\ -b & a & * \\ 0 & 0 & A_2 \end{bmatrix}. $$ <!-- eng end --> ##### Exercise 5 令 $Q$ 為一 $n\times n$ 么正矩陣,而 $\bx,\by\in\mathbb{C}^n$。 證明 $\inp{\bx}{\by} = \inp{Q\bx}{Q\by}$。 (上述性質在當 $Q$ 是實垂直矩陣而 $\bx$ 和 $\by$ 為實向量時也對。) 這表示 $\bv\mapsto Q\bv$ 這個動作不會改變 $\bv$ 的長度, 因此么正矩陣和實垂直矩陣常被視為高維度的鏡射和旋轉。 (我們沒有說清楚高維度的鏡射和旋轉是什麼意思。) <!-- eng start --> Let $Q$ be an $n\times n$ unitary matrix and $\bx,\by\in\mathbb{C}^n$. Show that $\inp{\bx}{\by} = \inp{Q\bx}{Q\by}$. (The same statement also holds when $Q$ is a real orthogonal matrix and $\bx$ and $\by$ are real vectors.) Therefore, the mapping $\bv\mapsto Q\bv$ preserves the length of any vector $\bv$, so unitary matrices and real orthogonal matrices are usually viewed as reflections or rotations in higher dimensions. (However, we did not clarify the meaning of reflections and rotations.) <!-- eng end --> <font color="f300">Ans:</font> Since the inverse of $Q$ equals it conjugate transpose, which means that $Q^*Q=I$. We can know that $\inp{\bx}{\by} = \inp{Q^*Q\bx}{Q\by} = \inp{Q\bx}{Q\by}$. --- ##### Exercise 6 固定一個正整數 $n$。 令 $\zeta = e^{\frac{2\pi}{n}i}$, 並令 $Q$ 為一 $n\times n$ 矩陣, 其第 $a,b$-項為 $\zeta^{a-1}{b-1}$。 證明 $Q$ 是一個么正矩陣。 (這個矩陣稱為**離散傅立葉變換矩陣** 。) <!-- eng start --> Fix a positive integer $n$. Let $\zeta = e^{\frac{2\pi}{n}i}$ and $Q$ the $n\times n$ matrix whose $a,b$-entry is $\zeta^{a-1}{b-1}$. Show that $Q$ is a unitary matrix. (The matrix $Q$ is known as the **discrete Fourier transform matrix** .) <!-- eng end --> :::info collaboration: 2 3 problems: 3 - 2ab, 3 extra: 1.5 - 2cd, 5 moderator: 1 qc: 1 :::

Import from clipboard

Paste your markdown or webpage here...

Advanced permission required

Your current role can only read. Ask the system administrator to acquire write and comment permission.

This team is disabled

Sorry, this team is disabled. You can't edit this note.

This note is locked

Sorry, only owner can edit this note.

Reach the limit

Sorry, you've reached the max length this note can be.
Please reduce the content or divide it to more notes, thank you!

Import from Gist

Import from Snippet

or

Export to Snippet

Are you sure?

Do you really want to delete this note?
All users will lose their connection.

Create a note from template

Create a note from template

Oops...
This template has been removed or transferred.
Upgrade
All
  • All
  • Team
No template.

Create a template

Upgrade

Delete template

Do you really want to delete this template?
Turn this template into a regular note and keep its content, versions, and comments.

This page need refresh

You have an incompatible client version.
Refresh to update.
New version available!
See releases notes here
Refresh to enjoy new features.
Your user state has changed.
Refresh to load new user state.

Sign in

Forgot password

or

By clicking below, you agree to our terms of service.

Sign in via Facebook Sign in via Twitter Sign in via GitHub Sign in via Dropbox Sign in with Wallet
Wallet ( )
Connect another wallet

New to HackMD? Sign up

Help

  • English
  • 中文
  • Français
  • Deutsch
  • 日本語
  • Español
  • Català
  • Ελληνικά
  • Português
  • italiano
  • Türkçe
  • Русский
  • Nederlands
  • hrvatski jezik
  • język polski
  • Українська
  • हिन्दी
  • svenska
  • Esperanto
  • dansk

Documents

Help & Tutorial

How to use Book mode

Slide Example

API Docs

Edit in VSCode

Install browser extension

Contacts

Feedback

Discord

Send us email

Resources

Releases

Pricing

Blog

Policy

Terms

Privacy

Cheatsheet

Syntax Example Reference
# Header Header 基本排版
- Unordered List
  • Unordered List
1. Ordered List
  1. Ordered List
- [ ] Todo List
  • Todo List
> Blockquote
Blockquote
**Bold font** Bold font
*Italics font* Italics font
~~Strikethrough~~ Strikethrough
19^th^ 19th
H~2~O H2O
++Inserted text++ Inserted text
==Marked text== Marked text
[link text](https:// "title") Link
![image alt](https:// "title") Image
`Code` Code 在筆記中貼入程式碼
```javascript
var i = 0;
```
var i = 0;
:smile: :smile: Emoji list
{%youtube youtube_id %} Externals
$L^aT_eX$ LaTeX
:::info
This is a alert area.
:::

This is a alert area.

Versions and GitHub Sync
Get Full History Access

  • Edit version name
  • Delete

revision author avatar     named on  

More Less

Note content is identical to the latest version.
Compare
    Choose a version
    No search result
    Version not found
Sign in to link this note to GitHub
Learn more
This note is not linked with GitHub
 

Feedback

Submission failed, please try again

Thanks for your support.

On a scale of 0-10, how likely is it that you would recommend HackMD to your friends, family or business associates?

Please give us some advice and help us improve HackMD.

 

Thanks for your feedback

Remove version name

Do you want to remove this version name and description?

Transfer ownership

Transfer to
    Warning: is a public team. If you transfer note to this team, everyone on the web can find and read this note.

      Link with GitHub

      Please authorize HackMD on GitHub
      • Please sign in to GitHub and install the HackMD app on your GitHub repo.
      • HackMD links with GitHub through a GitHub App. You can choose which repo to install our App.
      Learn more  Sign in to GitHub

      Push the note to GitHub Push to GitHub Pull a file from GitHub

        Authorize again
       

      Choose which file to push to

      Select repo
      Refresh Authorize more repos
      Select branch
      Select file
      Select branch
      Choose version(s) to push
      • Save a new version and push
      • Choose from existing versions
      Include title and tags
      Available push count

      Pull from GitHub

       
      File from GitHub
      File from HackMD

      GitHub Link Settings

      File linked

      Linked by
      File path
      Last synced branch
      Available push count

      Danger Zone

      Unlink
      You will no longer receive notification when GitHub file changes after unlink.

      Syncing

      Push failed

      Push successfully