Jephian Lin
    • Create new note
    • Create a note from template
      • Sharing URL Link copied
      • /edit
      • View mode
        • Edit mode
        • View mode
        • Book mode
        • Slide mode
        Edit mode View mode Book mode Slide mode
      • Customize slides
      • Note Permission
      • Read
        • Only me
        • Signed-in users
        • Everyone
        Only me Signed-in users Everyone
      • Write
        • Only me
        • Signed-in users
        • Everyone
        Only me Signed-in users Everyone
      • Engagement control Commenting, Suggest edit, Emoji Reply
    • Invite by email
      Invitee

      This note has no invitees

    • Publish Note

      Share your work with the world Congratulations! 🎉 Your note is out in the world Publish Note

      Your note will be visible on your profile and discoverable by anyone.
      Your note is now live.
      This note is visible on your profile and discoverable online.
      Everyone on the web can find and read all notes of this public team.
      See published notes
      Unpublish note
      Please check the box to agree to the Community Guidelines.
      View profile
    • Commenting
      Permission
      Disabled Forbidden Owners Signed-in users Everyone
    • Enable
    • Permission
      • Forbidden
      • Owners
      • Signed-in users
      • Everyone
    • Suggest edit
      Permission
      Disabled Forbidden Owners Signed-in users Everyone
    • Enable
    • Permission
      • Forbidden
      • Owners
      • Signed-in users
    • Emoji Reply
    • Enable
    • Versions and GitHub Sync
    • Note settings
    • Note Insights New
    • Engagement control
    • Transfer ownership
    • Delete this note
    • Save as template
    • Insert from template
    • Import from
      • Dropbox
      • Google Drive
      • Gist
      • Clipboard
    • Export to
      • Dropbox
      • Google Drive
      • Gist
    • Download
      • Markdown
      • HTML
      • Raw HTML
Menu Note settings Note Insights Versions and GitHub Sync Sharing URL Create Help
Create Create new note Create a note from template
Menu
Options
Engagement control Transfer ownership Delete this note
Import from
Dropbox Google Drive Gist Clipboard
Export to
Dropbox Google Drive Gist
Download
Markdown HTML Raw HTML
Back
Sharing URL Link copied
/edit
View mode
  • Edit mode
  • View mode
  • Book mode
  • Slide mode
Edit mode View mode Book mode Slide mode
Customize slides
Note Permission
Read
Only me
  • Only me
  • Signed-in users
  • Everyone
Only me Signed-in users Everyone
Write
Only me
  • Only me
  • Signed-in users
  • Everyone
Only me Signed-in users Everyone
Engagement control Commenting, Suggest edit, Emoji Reply
  • Invite by email
    Invitee

    This note has no invitees

  • Publish Note

    Share your work with the world Congratulations! 🎉 Your note is out in the world Publish Note

    Your note will be visible on your profile and discoverable by anyone.
    Your note is now live.
    This note is visible on your profile and discoverable online.
    Everyone on the web can find and read all notes of this public team.
    See published notes
    Unpublish note
    Please check the box to agree to the Community Guidelines.
    View profile
    Engagement control
    Commenting
    Permission
    Disabled Forbidden Owners Signed-in users Everyone
    Enable
    Permission
    • Forbidden
    • Owners
    • Signed-in users
    • Everyone
    Suggest edit
    Permission
    Disabled Forbidden Owners Signed-in users Everyone
    Enable
    Permission
    • Forbidden
    • Owners
    • Signed-in users
    Emoji Reply
    Enable
    Import from Dropbox Google Drive Gist Clipboard
       Owned this note    Owned this note      
    Published Linked with GitHub
    • Any changes
      Be notified of any changes
    • Mention me
      Be notified of mention me
    • Unsubscribe
    # 對一個特徵向量化簡 Reduction ![Creative Commons License](https://i.creativecommons.org/l/by/4.0/88x31.png) This work by Jephian Lin is licensed under a [Creative Commons Attribution 4.0 International License](http://creativecommons.org/licenses/by/4.0/). $\newcommand{\trans}{^\top} \newcommand{\adj}{^{\rm adj}} \newcommand{\cof}{^{\rm cof}} \newcommand{\inp}[2]{\left\langle#1,#2\right\rangle} \newcommand{\dunion}{\mathbin{\dot\cup}} \newcommand{\bzero}{\mathbf{0}} \newcommand{\bone}{\mathbf{1}} \newcommand{\ba}{\mathbf{a}} \newcommand{\bb}{\mathbf{b}} \newcommand{\bc}{\mathbf{c}} \newcommand{\bd}{\mathbf{d}} \newcommand{\be}{\mathbf{e}} \newcommand{\bh}{\mathbf{h}} \newcommand{\bp}{\mathbf{p}} \newcommand{\bq}{\mathbf{q}} \newcommand{\br}{\mathbf{r}} \newcommand{\bx}{\mathbf{x}} \newcommand{\by}{\mathbf{y}} \newcommand{\bz}{\mathbf{z}} \newcommand{\bu}{\mathbf{u}} \newcommand{\bv}{\mathbf{v}} \newcommand{\bw}{\mathbf{w}} \newcommand{\tr}{\operatorname{tr}} \newcommand{\nul}{\operatorname{null}} \newcommand{\rank}{\operatorname{rank}} %\newcommand{\ker}{\operatorname{ker}} \newcommand{\range}{\operatorname{range}} \newcommand{\Col}{\operatorname{Col}} \newcommand{\Row}{\operatorname{Row}} \newcommand{\spec}{\operatorname{spec}} \newcommand{\vspan}{\operatorname{span}} \newcommand{\Vol}{\operatorname{Vol}} \newcommand{\sgn}{\operatorname{sgn}} \newcommand{\idmap}{\operatorname{id}} \newcommand{\am}{\operatorname{am}} \newcommand{\gm}{\operatorname{gm}} \newcommand{\mult}{\operatorname{mult}} \newcommand{\iner}{\operatorname{iner}}$ ```python from lingeo import random_int_vec ``` ## Main idea We start with some basic ideas on complex matrices. Let $A$ be a complex matrix. Then the **conjugate transpose** of $A$ is the matirx obtained from $A\trans$ by taking conjugate entrywisely. Recall that if $\bx$ and $\by$ are complex column vectors, then their inner product is $\inp{\bx}{\by} = \by^* \bx$. If a complex matrix $A$ satisfies $A^* A = AA^* = I$, then it is called a **unitary** matrix. In comparison, if a real matrix satisfies $A\trans A = AA\trans = I$, then it is an orthogonal matrix. Let $A$ be an $n\times n$ complex matrix. Then the following are equivalent: - $A$ is a unitary matrix. - $A^{-1} = A^*$. - The columns of $A$ form an orthonormal basis of $\mathbb{C}^n$. - The rows of $A$ form an orthonormal basis of $\mathbb{C}^n$. Let $\bv\in\mathbb{C}^n$ be a nonzero vector. Then one may expand $\bv$ into a basis $\beta$ of $\mathbb{C}^n$ whose first vector is $\bv$. Let $Q$ be the matrix whose columns are the vectors in $\beta$. Then $Q$ is an invertible matrix whose first column is $\bv$. If necessary, one may apply the Gram–Schimdt process to obtain an orthonormal basis of $\mathbb{C}^n$ whose first vector is $\frac{\bv}{\|\bv\|}$. Thus, there is a unitary matrix $Q$ whose first column is $\frac{\bv}{\|\bv\|}$. ##### Reduction lemma Let $A$ be a complex matrix. Suppose $\bv$ is an eigenvector of $A$ with respect to the eigenvalue $\lambda$. Let $Q$ be an invertible matrix whose first column is $\bv$. Then $Q^{-1}AQ$ has the form $$ \begin{bmatrix} \lambda & * \\ \bzero & A_2 \end{bmatrix}. $$ Moreover, $Q$ can be chosen as a unitary matrix whose first column is $\frac{\bv}{\|\bv\|}$. ##### Remark Note that the eigenvalues of a real matrix are not necessarily all real. Suppose $A$ is a real matrix and $\lambda$ is a real eigenvalue of $A$. Then the eigenvector $\bv\in\ker(A - \lambda I)$ can be chosen to be real. Also, the $Q$ matrix in the reduction lemma can be chosen to be orthogonal. However, $A_2$ can still possibly have a non-real eigenvalue. ## Side stories - all-ones vector - cases of real matrices - properties of unitary/orthogonal matrices - discrete Fourier transform matrix ## Experiments ##### Exercise 1 執行以下程式碼。 令 $\beta = \{\bu_1,\ldots,\bu_n\}$ 為 $Q$ 的行向量集合。 <!-- eng start --> Run the code below. Let $\beta = \{\bu_1,\ldots,\bu_n\}$ be the columns of $Q$. <!-- eng end --> ```python ### code set_random_seed(0) print_ans = False n = 4 Q = identity_matrix(n) Q[1:,0] = random_int_vec(n-1, 3) D = matrix(n, random_int_vec(n**2,3)) D[1:,0] = vector([0] * (n-1)) A = Q * D * Q.inverse() print("n =", n) pretty_print(LatexExpr("A ="), A) pretty_print(LatexExpr("Q ="), Q) if print_ans: print("The representation of f_A(u1) with respect to beta is") pretty_print(D[:,0]) pretty_print(LatexExpr("Q^{-1} ="), Q.inverse()) pretty_print(LatexExpr("Q^{-1} A Q ="), Q.inverse() * A * Q) ``` When `seed = 0`, we can get matrices $$ A = \begin{bmatrix} 3 & -3 & -3 & -1\\ -1 & 10 & 7 & 4\\ 23 & -8 & -12 & -5\\ 16 & -2 & -6 & -2\\ \end{bmatrix}, Q = \begin{bmatrix} 1 & 0 & 0 & 0\\ -3 & 1 & 0 & 0\\ 3 & 0 & 1 & 0\\ 1 & 0 & 0 & 1\\ \end{bmatrix}. $$ ##### Exercise 1(a) 求 $[f_A(\bu_1)]_\beta$。 <!-- eng start --> Find $[f_A(\bu_1)]_\beta$. <!-- eng end --> <font color="f000">Ans:</font> $f_A(\bu_1)=A\cdot\bu_1= \begin{bmatrix} 3 & -3 & -3 & -1\\ -1 & 10 & 7 & 4\\ 23 & -8 & -12 & -5\\ 16 & -2 & -6 & -2\\ \end{bmatrix}\cdot\begin{bmatrix} 1\\ -3\\ 3\\ 1\\ \end{bmatrix}$ $=\begin{bmatrix} 2\\ -6\\ 6\\ 2\\ \end{bmatrix}$. And we can know that $[f_A(\bu_1)]_\beta$ is equal to $2\cdot\bu_1+0\cdot\bu_2+0\cdot\bu_3+0\cdot\bu_4$, so $[f_A(\bu_1)]_\beta = \begin{bmatrix} 2\\ 0\\ 0\\ 0\\ \end{bmatrix}$. --- ##### Exercise 1(b) 求 $Q^{-1}$。 <!-- eng start --> Find $Q^{-1}$. <!-- eng end --> <font color="f000">Ans:</font> By calculating the reduced echelon form of$$ \left[\begin{array}{rrrr|rrrrr} 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ -3 & 1 & 0 & 0 & 0 & 1 & 0 & 0 \\ 3 & 0 & 1 & 0 & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\ \end{array}\right]$$ we can get $Q^{-1}$= $\begin{bmatrix} 1 & 0 & 0 & 0\\ 3 & 1 & 0 & 0\\ -3 & 0 & 1 & 0\\ -1 & 0 & 0 & 1\\ \end{bmatrix}$ . --- ##### Exercise 1(c) 求 $[f_A]_\beta^\beta$. <!-- eng start --> Find $[f_A]_\beta^\beta$. <!-- eng end --> <font color="f000">Ans:</font> We can get $Q$ and $Q^{-1}$ respectively from the code and Exercise 1(b) above. $[f_A]_\beta^\beta = Q^{-1}AQ=$ $\begin{bmatrix} 1 & 0 & 0 & 0\\ 3 & 1 & 0 & 0\\ -3 & 0 & 1 & 0\\ -1 & 0 & 0 & 1\\ \end{bmatrix}\begin{bmatrix} 3 & -3 & -3 & -1\\ -1 & 10 & 7 & 4\\ 23 & -8 & -12 & -5\\ 16 & -2 & -6 & -2\\ \end{bmatrix}\begin{bmatrix} 1 & 0 & 0 & 0\\ -3 & 1 & 0 & 0\\ 3 & 0 & 1 & 0\\ 1 & 0 & 0 & 1\\ \end{bmatrix} = \begin{bmatrix} 2 & -3 & -3 & -1\\ 0 & 1 & -2 & 1\\ 0 & 1 & -3 & -2\\ 0 & 1 & -3 & -1\\ \end{bmatrix}.$ :::info What do the experiments try to tell you? (open answer) ... ::: --- ## Exercises ##### Exercise 2 令 $\bone$ 為全一向量。 (其長度將由文意決定。) 已知以下矩陣 $A$ 皆有 $\bone$ 這個特徵向量。 求出 $A$ 的所有特徵值。 <!-- eng start --> Let $\bone$ be the all-ones vector (whose dimension will be clear by the context). It is known that each of the following matrices has $\bone$ as an eigenvector. Find all eigenvalues of $A$. <!-- eng end --> ##### Exercise 2(a) $$ A = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}. $$ <font color="f000">Ans:</font> We can get the eigenvalues of $A$ by solving the characteristic equation: $det(A - λI) = 0$. $$ A-λI = \begin{bmatrix} -λ & 1 & 1 \\ 1 & -λ & 1 \\ 1 & 1 & -λ \end{bmatrix}, $$ so the characteristic polynomial of $A$ is ${-λ^3 + 3λ^2 + 2 =(λ+1)^2(-λ+2) = 0}$, and the eigenvalues are $\{ -1,-1,2\}$. --- ##### Exercise 2(b) $$ A = \begin{bmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{bmatrix}. $$ <font color="f000">Ans:</font> Let $\bv_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \\ \end{bmatrix}$, Expand $\bv_1$ into the basis of $\mathbb{R}^{4}$ $\beta = \{\bv_1,\bv_2,\bv_3,\bv_4\}$, and let it as the basis of $Q$ row vector, we can get $$ Q = \begin{bmatrix} 1 & 0 & 0 & 0\\ 1 & 1 & 0 & 0\\ 1 & 0 & 1 & 0\\ 1 & 0 & 0 & 1 \end{bmatrix} , $$ so $$ [f_A]_\beta^\beta = Q^{-1}AQ = \begin{bmatrix} 1 & 0 & 0 & 0\\ -1 & 1 & 0 & 0\\ -1 & 0 & 1 & 0\\ -1 & 0 & 0 & 1\\ \end{bmatrix}\begin{bmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{bmatrix}\begin{bmatrix} 1 & 0 & 0 & 0\\ 1 & 1 & 0 & 0\\ 1 & 0 & 1 & 0\\ 1 & 0 & 0 & 1\\ \end{bmatrix} = \begin{bmatrix} 3 & 1 & 1 & 1\\ 0 & -1 & 0 & 0\\ 0 & 0 & -1 & 0\\ 0 & 0 & 0 & -1\\ \end{bmatrix}. $$ We can know that there is an eigenvalue from the above formula $\lambda_1 = 3$. And let $A_2 = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0\\ 0 & 0 & -1 \end{bmatrix}$, so $\spec(A_2) = \{-1,-1,-1\}$. We can know $\spec(A) =\{3\}\cup\{-1,-1,-1\} = \{-1,-1,-1,3\}$. --- ##### Exercise 2(c) $$ A = \begin{bmatrix} 1 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 1 \end{bmatrix}. $$ <font color="f000">Ans:</font> let $\bv_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$, Expand $\bv_1$ into $\mathbb{R}^{3}$ basis $\beta = \{\bv_1,\bv_2,\bv_3\}$, and let it as a row vector of $Q$, we can get $$ Q = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}, $$ so $[f_{A}]_\beta^\beta = Q^{-1}AQ = \begin{bmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ -1 & 0 & 1 \\ \end{bmatrix}\begin{bmatrix} 1 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 1 \\ \end{bmatrix}\begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \\ \end{bmatrix} = \begin{bmatrix} 0 & -1 & 0\\ 0 & 3 & -1 \\ 0 & 0 & 1 \end{bmatrix}.$ We can know that there is an eigenvalue from the above formula $\lambda = 0$. Let matrix $A_2 = \begin{bmatrix} 3 & -1 \\ 0 & 1 \\ \end{bmatrix}$,so $\spec(A_2) = \{1,3\}$. We can know $\spec(A) =\{0\}\cup\{1,3\} = \{0,1,3\}$. --- ##### Exercise 2(d) $$ A = \begin{bmatrix} 0.2 & 0.8 & 0 \\ 0.4 & 0.2 & 0.4 \\ 0 & 0.8 & 0.2 \end{bmatrix}. $$ <font color="f000">Ans:</font> Let $\bv_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$, Expand $\bv_1$ to the basis of $\mathbb{R}^{3}$ $\beta = \{\bv_1,\bv_2,\bv_3\}$ , and let it as a row vector of $Q$, we can get $$Q = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix} , $$ so $[f_{A}]_\beta^\beta = Q^{-1}AQ = \begin{bmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ -1 & 0 & 1 \\ \end{bmatrix}\begin{bmatrix} 0.2 & 0.8 & 0 \\ 0.4 & 0.2 & 0.4 \\ 0 & 0.8 & 0.2 \end{bmatrix}\begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \\ \end{bmatrix} = \begin{bmatrix} 1 & 0.8 & 0\\ 0 & -0.6 & 0.4 \\ 0 & 0 & 0.2 \end{bmatrix}.$ We can know that there is an eigenvalue from the above formula $\lambda = 1$. Let matrix $A_2 = \begin{bmatrix} -0.6 & 0.4 \\ 0 & 0.2 \\ \end{bmatrix}$,so $\spec(A_2) = \{-0.6,0.2\}$. We can know $\spec(A) =\{1\}\cup\{-0.6,0.2\} = \{1,-0.6,0.2\}$. --- ##### Exercise 3 令 $$ A = \begin{bmatrix} 0 & 1 & 1 & 1 \\ 1 & 2 & 0 & 0 \\ 1 & 0 & 2 & 0 \\ 1 & 0 & 0 & 2 \\ \end{bmatrix}. $$ 已知 $\bone$ 為 $A$ 的一特徵值。 求 $A$ 的所有特徵值。 提示:將 $A$ 對 $\bone$ 化簡後,再對 $A_2$ 化簡一次。 <!-- eng start --> Let $$ A = \begin{bmatrix} 0 & 1 & 1 & 1 \\ 1 & 2 & 0 & 0 \\ 1 & 0 & 2 & 0 \\ 1 & 0 & 0 & 2 \\ \end{bmatrix}. $$ It is known that $\bone$ is an eigenvector of $A$. Find all eigenvalues of $A$. Hint: Apply the reduction lemma to $A$ and $\bone$ to get $A_2$. Then apply the lemma again to $A_2$. <!-- eng end --> $Ans:$ Let $\bv_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \\ \end{bmatrix}.$ $\beta = \{\bv_1,\bv_2,\bv_3,\bv_4\}$, $$ Q = \begin{bmatrix} 1 & 0 & 0 & 0\\ 1 & 1 & 0 & 0\\ 1 & 0 & 1 & 0\\ 1 & 0 & 0 & 1 \end{bmatrix} $$ Then $[f_A]_\beta^\beta = Q^{-1}AQ = \begin{bmatrix} 1 & 0 & 0 & 0\\ -1 & 1 & 0 & 0\\ -1 & 0 & 1 & 0\\ -1 & 0 & 0 & 1\\ \end{bmatrix}\begin{bmatrix} 0 & 1 & 1 & 1\\ 1 & 2 & 0 & 0\\ 1 & 0 & 2 & 0\\ 1 & 0 & 0 & 2\\ \end{bmatrix}\begin{bmatrix} 1 & 0 & 0 & 0\\ 1 & 1 & 0 & 0\\ 1 & 0 & 1 & 0\\ 1 & 0 & 0 & 1\\ \end{bmatrix} = \begin{bmatrix} 3 & 1 & 1 & 1\\ 0 & 1 & -1 & -1\\ 0 & -1 & 1 & -1\\ 0 & -1 & -1 & 1\\ \end{bmatrix}.$ Since we can get an eigenvalue $\lambda_1 = 3$ 。 Let $A_2 = \begin{bmatrix} 1 & -1 & -1 \\ -1 & 1 & -1\\ -1 & -1 & 1 \\ \end{bmatrix}$, $\bv_2 = \begin{bmatrix} 1 \\ 1 \\ 1 \\ \end{bmatrix}。$ $\beta = \{\bv_1,\bv_2,\bv_3\}$, $$ Q_2 = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \\ \end{bmatrix} $$ Then $[f_{A_2}]_\beta^\beta = Q_2^{-1}A_2Q_2 = \begin{bmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ -1 & 0 & 1 \\ \end{bmatrix}\begin{bmatrix} 1 & -1 & -1 \\ -1 & 1 & -1 \\ -1 & -1 & 1 \\ \end{bmatrix}\begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \\ \end{bmatrix} = \begin{bmatrix} -1 & -1 & -1\\ 0 & 2 & 0 \\ 0 & 0 & 2 \\ \end{bmatrix}.$ We can get $\lambda_2 = -1$ 。 Let matrix $A_3 = \begin{bmatrix} 2 & 0 \\ 0 & 2 \\ \end{bmatrix}$, then $\spec(A_3) = \{2,2\}$。 Thus, $\spec(A) =\{3\}\cup\{-1\}\cup\{2,2\} = \{-1,2,2,3\}$。 ##### Exercise 4 令 $$ A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix}. $$ <!-- eng start --> Let $$ A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix}. $$ <!-- eng end --> ##### Exercise 4(a) 令 $\omega = e^{\frac{2\pi}{3}i}$ 且 $$ \bv = \begin{bmatrix} 1 \\ \omega \\ \omega^2 \end{bmatrix}. $$ 求出 $\bv$ 所對應的特徵值 $\lambda$, 並說明如何找到一個么正矩陣 $Q$ 使得 $$ Q^* AQ = \begin{bmatrix} \lambda & * \\ \bzero & A_2 \end{bmatrix}. $$ <!-- eng start --> Let $\omega = e^{\frac{2\pi}{3}i}$ and $$ \bv = \begin{bmatrix} 1 \\ \omega \\ \omega^2 \end{bmatrix}. $$ Find the eigenvalue $\lambda$ corresponding to $\bv$. Then explain how to find a unitary matrix $Q$ such that $$ Q^* AQ = \begin{bmatrix} \lambda & * \\ \bzero & A_2 \end{bmatrix}. $$ <!-- eng end --> ##### Exercise 4(b) 令 $$ \bv = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}. $$ 求出 $\bv$ 所對應的特徵值 $\lambda$, 並說明如何找到一個實垂直矩陣 $Q$ 使得 $$ Q\trans AQ = \begin{bmatrix} \lambda & * \\ \bzero & A_2 \end{bmatrix}. $$ <!-- eng start --> Let $$ \bv = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}. $$ Find the eigenvalue $\lambda$ corresponding to $\bv$. Then explain how to find a unitary matrix $Q$ such that $$ Q^* AQ = \begin{bmatrix} \lambda & * \\ \bzero & A_2 \end{bmatrix}. $$ <!-- eng end --> ##### Exercise 4(c) 令 $\omega = e^{\frac{2\pi}{3}i}$ 且 $$ \bv = \begin{bmatrix} 1 \\ \omega \\ \omega^2 \end{bmatrix}. $$ 已知 $\bv$ 所對應的特徵值為 $\omega = a + bi$。 令 $\bv = \bx + \by i$,也就是 $\bx$ 和 $\by$ 分別為 $\bv$ 的實部和虛部向量。 驗證 $$ \begin{aligned} A \bx &= a\bx - b\by, \\ A \by &= b\bx + a\by. \end{aligned} $$ 並說明如何找到一個可逆矩陣 $Q$ 使得 $$ Q^{-1} AQ = \begin{bmatrix} a & b & * \\ -b & a & * \\ 0 & 0 & A_2 \end{bmatrix}. $$ <!-- eng start --> Let $\omega = e^{\frac{2\pi}{3}i}$ 且 $$ \bv = \begin{bmatrix} 1 \\ \omega \\ \omega^2 \end{bmatrix}. $$ It is known that $\omega = a + bi$ is the eigenvalue corresponding to $\bv$. Let $\bv = \bx + \by i$ such that $\bx$ and $\by$ are both real vectors. Verify that $$ \begin{aligned} A \bx &= a\bx - b\by, \\ A \by &= b\bx + a\by. \end{aligned} $$ Then find the eigenvalue $\lambda$ corresponding to $\bv$. Then explain how to find a unitary matrix $Q$ such that $$ Q^{-1} AQ = \begin{bmatrix} a & b & * \\ -b & a & * \\ 0 & 0 & A_2 \end{bmatrix}. $$ <!-- eng end --> ##### Exercise 5 令 $Q$ 為一 $n\times n$ 么正矩陣,而 $\bx,\by\in\mathbb{C}^n$。 證明 $\inp{\bx}{\by} = \inp{Q\bx}{Q\by}$。 (上述性質在當 $Q$ 是實垂直矩陣而 $\bx$ 和 $\by$ 為實向量時也對。) 這表示 $\bv\mapsto Q\bv$ 這個動作不會改變 $\bv$ 的長度, 因此么正矩陣和實垂直矩陣常被視為高維度的鏡射和旋轉。 (我們沒有說清楚高維度的鏡射和旋轉是什麼意思。) <!-- eng start --> Let $Q$ be an $n\times n$ unitary matrix and $\bx,\by\in\mathbb{C}^n$. Show that $\inp{\bx}{\by} = \inp{Q\bx}{Q\by}$. (The same statement also holds when $Q$ is a real orthogonal matrix and $\bx$ and $\by$ are real vectors.) Therefore, the mapping $\bv\mapsto Q\bv$ preserves the length of any vector $\bv$, so unitary matrices and real orthogonal matrices are usually viewed as reflections or rotations in higher dimensions. (However, we did not clarify the meaning of reflections and rotations.) <!-- eng end --> <font color="f300">Ans:</font> Since the inverse of $Q$ equals it conjugate transpose, which means that $Q^*Q=I$. We can know that $\inp{\bx}{\by} = \inp{Q^*Q\bx}{Q\by} = \inp{Q\bx}{Q\by}$. --- ##### Exercise 6 固定一個正整數 $n$。 令 $\zeta = e^{\frac{2\pi}{n}i}$, 並令 $Q$ 為一 $n\times n$ 矩陣, 其第 $a,b$-項為 $\zeta^{a-1}{b-1}$。 證明 $Q$ 是一個么正矩陣。 (這個矩陣稱為**離散傅立葉變換矩陣** 。) <!-- eng start --> Fix a positive integer $n$. Let $\zeta = e^{\frac{2\pi}{n}i}$ and $Q$ the $n\times n$ matrix whose $a,b$-entry is $\zeta^{a-1}{b-1}$. Show that $Q$ is a unitary matrix. (The matrix $Q$ is known as the **discrete Fourier transform matrix** .) <!-- eng end --> :::info collaboration: 2 3 problems: 3 - 2ab, 3 extra: 1.5 - 2cd, 5 moderator: 1 qc: 1 :::

    Import from clipboard

    Paste your markdown or webpage here...

    Advanced permission required

    Your current role can only read. Ask the system administrator to acquire write and comment permission.

    This team is disabled

    Sorry, this team is disabled. You can't edit this note.

    This note is locked

    Sorry, only owner can edit this note.

    Reach the limit

    Sorry, you've reached the max length this note can be.
    Please reduce the content or divide it to more notes, thank you!

    Import from Gist

    Import from Snippet

    or

    Export to Snippet

    Are you sure?

    Do you really want to delete this note?
    All users will lose their connection.

    Create a note from template

    Create a note from template

    Oops...
    This template has been removed or transferred.
    Upgrade
    All
    • All
    • Team
    No template.

    Create a template

    Upgrade

    Delete template

    Do you really want to delete this template?
    Turn this template into a regular note and keep its content, versions, and comments.

    This page need refresh

    You have an incompatible client version.
    Refresh to update.
    New version available!
    See releases notes here
    Refresh to enjoy new features.
    Your user state has changed.
    Refresh to load new user state.

    Sign in

    Forgot password

    or

    By clicking below, you agree to our terms of service.

    Sign in via Facebook Sign in via Twitter Sign in via GitHub Sign in via Dropbox Sign in with Wallet
    Wallet ( )
    Connect another wallet

    New to HackMD? Sign up

    Help

    • English
    • 中文
    • Français
    • Deutsch
    • 日本語
    • Español
    • Català
    • Ελληνικά
    • Português
    • italiano
    • Türkçe
    • Русский
    • Nederlands
    • hrvatski jezik
    • język polski
    • Українська
    • हिन्दी
    • svenska
    • Esperanto
    • dansk

    Documents

    Help & Tutorial

    How to use Book mode

    Slide Example

    API Docs

    Edit in VSCode

    Install browser extension

    Contacts

    Feedback

    Discord

    Send us email

    Resources

    Releases

    Pricing

    Blog

    Policy

    Terms

    Privacy

    Cheatsheet

    Syntax Example Reference
    # Header Header 基本排版
    - Unordered List
    • Unordered List
    1. Ordered List
    1. Ordered List
    - [ ] Todo List
    • Todo List
    > Blockquote
    Blockquote
    **Bold font** Bold font
    *Italics font* Italics font
    ~~Strikethrough~~ Strikethrough
    19^th^ 19th
    H~2~O H2O
    ++Inserted text++ Inserted text
    ==Marked text== Marked text
    [link text](https:// "title") Link
    ![image alt](https:// "title") Image
    `Code` Code 在筆記中貼入程式碼
    ```javascript
    var i = 0;
    ```
    var i = 0;
    :smile: :smile: Emoji list
    {%youtube youtube_id %} Externals
    $L^aT_eX$ LaTeX
    :::info
    This is a alert area.
    :::

    This is a alert area.

    Versions and GitHub Sync
    Get Full History Access

    • Edit version name
    • Delete

    revision author avatar     named on  

    More Less

    Note content is identical to the latest version.
    Compare
      Choose a version
      No search result
      Version not found
    Sign in to link this note to GitHub
    Learn more
    This note is not linked with GitHub
     

    Feedback

    Submission failed, please try again

    Thanks for your support.

    On a scale of 0-10, how likely is it that you would recommend HackMD to your friends, family or business associates?

    Please give us some advice and help us improve HackMD.

     

    Thanks for your feedback

    Remove version name

    Do you want to remove this version name and description?

    Transfer ownership

    Transfer to
      Warning: is a public team. If you transfer note to this team, everyone on the web can find and read this note.

        Link with GitHub

        Please authorize HackMD on GitHub
        • Please sign in to GitHub and install the HackMD app on your GitHub repo.
        • HackMD links with GitHub through a GitHub App. You can choose which repo to install our App.
        Learn more  Sign in to GitHub

        Push the note to GitHub Push to GitHub Pull a file from GitHub

          Authorize again
         

        Choose which file to push to

        Select repo
        Refresh Authorize more repos
        Select branch
        Select file
        Select branch
        Choose version(s) to push
        • Save a new version and push
        • Choose from existing versions
        Include title and tags
        Available push count

        Pull from GitHub

         
        File from GitHub
        File from HackMD

        GitHub Link Settings

        File linked

        Linked by
        File path
        Last synced branch
        Available push count

        Danger Zone

        Unlink
        You will no longer receive notification when GitHub file changes after unlink.

        Syncing

        Push failed

        Push successfully