We make the induction assumption for that for \(m \to \infty\):
\[ f^{(h)} \sim GP(0, \Sigma^{(h-1)})\]
First, we for the mean have :
\[ \mathbb{E}\left[[f^{(h+1)}(x)]_i \mid f^{(h)}(x) \right] = \mathbb{E}\left[\sum_{j=1}^mW^{(h+1)}_{i,j}[g^{(h)}(x)]_i \mid f^{(h)}(x) \right] = \sum_{j=1}^m\mathbb{E}\left[W^{(h+1)}_{i,j}\right][g^{(h)}(x)]_i = 0 \]
Now, for the covariance matrix, we have :
\[
\Sigma^{(h)}=\lim_{m\to \infty} \frac{2}{m}\sum_{i=1}^m\sigma(u_i)\sigma(v_i)\qquad [u;v]\sim\mathcal{N}(0,\Lambda^{(h)})
\]
\[
\begin{align}
\mathbb{E}_{x,y}\left[[f^{(h+1)}(x)]_i[f^{(h+1)}(y)]_i
\mid f^{(h)}(x) \right]
& =\mathbb{E}\left[\sum_{j=1}^m\sum_{k=1}^m W_{i,j}^{(h+1)}W_{i,k}^{(h+1)}[g^{(h)}(x)]_j[g^{(h)}(y)]_k
\mid f^{(h)}(x) \right] \\
& = \mathbb{E}\left[\sum_{j=1}^m \left(W_{i,j}^{(h+1)}\right)^2 [g^{(h)}(x)]_j[g^{(h)}(y)]_j
\mid f^{(h)}(x) \right] \\
& = \sum_{j=1}^m [g^{(h)}(x)]_j[g^{(h)}(y)]_j\\
& = \frac{2}{m}\sum_{j=1}^m \sigma([f^{(h)}(x)]_j)\sigma([f^{(h)}(y)]_j)
\end{align}
\]
Hence with \(m\to\infty\) we get:
\[
\begin{aligned}
Cov([f^{(h+1)}(x)]_i,[f^{(h+1)}(y)]_i\mid f^{(h)}(x) ) &= \mathbb{E}_{x,y}\left[[f^{(h+1)}(x)]_i[f^{(h+1)}(y)]_i
\mid f^{(h)}(x) \right]
\\& - {\mathbb{E}_{x,y}\left[[f^{(h+1)}(y)]_i
\mid f^{(h)}(x) \right]}\\&- \mathbb{E}_{x,y}\left[[f^{(h+1)}(x)]_i
\mid f^{(h)}(x) \right]\\
&=\lim_{m\to \infty} \frac{2}{m}\sum_{j=1}^m \sigma([f^{(h)}(x)]_j)\sigma([f^{(h)}(y)]_j)\\
&=2\mathbb{E}[\sigma(u)\sigma(v)] = \Sigma^{(h)}(x,y)\\
\end{aligned}
\]
Where \(u,v\) are drawn from:
\[
\begin{bmatrix}
[f^{(h)}(x)]_j\\
[f^{(h)}(y)]_j
\end{bmatrix}\sim \mathcal{N}\left(
\begin{bmatrix}
0\\
0
\end{bmatrix},
\begin{bmatrix}
\Sigma^{(h-1)}(x,x) & \Sigma^{(h-1)}(x,y)\\
\Sigma^{(h-1)}(y,x) & \Sigma^{(h-1)}(y,y)
\end{bmatrix}
\right) = \mathcal{N}(0,\Lambda^{(h)})
\]
Thanks to the indjuction assumption. Since this is all gaussian then also \([f^{(h+1)}(x)]_i\) is Gaussian. And we have determined it's mean and it's covariance, hence it's prooven that
\[
[f^{(h+1)}(x)]_i\sim GP(0,\Sigma^{(h)})
\]
And therefore we have concluded the induction step.
For the last point one can notics
\[
\begin{align}
\mathbb{E}\left[\sum_{j=1}^m \left(W_{i,j}^{(h+1)}\right)^2 [g^{(h)}(x)]_j[g^{(h)}(y)]_j
\mid f^{(h)}(x) \right] &= \sum_{j=1}^m [g^{(h)}(x)]_j[g^{(h)}(y)]_j\\
& = \frac{2}{m}\sum_{j=1}^m \sigma([f^{(h)}(x)]_j)
\end{align}
\]
And therefore we can recycle the reasoning above.
or
or
By clicking below, you agree to our terms of service.
New to HackMD? Sign up
Syntax | Example | Reference | |
---|---|---|---|
# Header | Header | 基本排版 | |
- Unordered List |
|
||
1. Ordered List |
|
||
- [ ] Todo List |
|
||
> Blockquote | Blockquote |
||
**Bold font** | Bold font | ||
*Italics font* | Italics font | ||
~~Strikethrough~~ | |||
19^th^ | 19th | ||
H~2~O | H2O | ||
++Inserted text++ | Inserted text | ||
==Marked text== | Marked text | ||
[link text](https:// "title") | Link | ||
 | Image | ||
`Code` | Code |
在筆記中貼入程式碼 | |
```javascript var i = 0; ``` |
|
||
:smile: | ![]() |
Emoji list | |
{%youtube youtube_id %} | Externals | ||
$L^aT_eX$ | LaTeX | ||
:::info This is a alert area. ::: |
This is a alert area. |
On a scale of 0-10, how likely is it that you would recommend HackMD to your friends, family or business associates?
Please give us some advice and help us improve HackMD.
Do you want to remove this version name and description?
Syncing