$fn = \sum (1- \xi_i v \vert X_i \vert)+^2$
v>0
$\geq \sum P(\xi_i =1\vert X_i) (1- \vert X_i \vert)+^2$
By continuity of $P$ and Now we have that $v^*>0 \implies \exists x_1>c_0 and $\delta>0$ such for all $\forall x \in [x_1, x_1 + \delta]: P(\xi\vert x) >c_1$
$\geq \sum 1[X_i \in [x_1, x_1 + \delta]] c_1 (1- \vert X_i \vert)_+^2$
Whats $\frac{1}{n}\sum 1[X_i \in [x_1, x_1 + \delta]]$ thus we have bernoulli concentration. With exponential tail. So $\frac{1}{n}\sum 1[X_i \in [x_1, x_1 + \delta]] -> c_3 >0$