Jephian Lin
    • Create new note
    • Create a note from template
      • Sharing URL Link copied
      • /edit
      • View mode
        • Edit mode
        • View mode
        • Book mode
        • Slide mode
        Edit mode View mode Book mode Slide mode
      • Customize slides
      • Note Permission
      • Read
        • Only me
        • Signed-in users
        • Everyone
        Only me Signed-in users Everyone
      • Write
        • Only me
        • Signed-in users
        • Everyone
        Only me Signed-in users Everyone
      • Engagement control Commenting, Suggest edit, Emoji Reply
    • Invite by email
      Invitee

      This note has no invitees

    • Publish Note

      Share your work with the world Congratulations! 🎉 Your note is out in the world Publish Note

      Your note will be visible on your profile and discoverable by anyone.
      Your note is now live.
      This note is visible on your profile and discoverable online.
      Everyone on the web can find and read all notes of this public team.
      See published notes
      Unpublish note
      Please check the box to agree to the Community Guidelines.
      View profile
    • Commenting
      Permission
      Disabled Forbidden Owners Signed-in users Everyone
    • Enable
    • Permission
      • Forbidden
      • Owners
      • Signed-in users
      • Everyone
    • Suggest edit
      Permission
      Disabled Forbidden Owners Signed-in users Everyone
    • Enable
    • Permission
      • Forbidden
      • Owners
      • Signed-in users
    • Emoji Reply
    • Enable
    • Versions and GitHub Sync
    • Note settings
    • Note Insights New
    • Engagement control
    • Transfer ownership
    • Delete this note
    • Save as template
    • Insert from template
    • Import from
      • Dropbox
      • Google Drive
      • Gist
      • Clipboard
    • Export to
      • Dropbox
      • Google Drive
      • Gist
    • Download
      • Markdown
      • HTML
      • Raw HTML
Menu Note settings Note Insights Versions and GitHub Sync Sharing URL Create Help
Create Create new note Create a note from template
Menu
Options
Engagement control Transfer ownership Delete this note
Import from
Dropbox Google Drive Gist Clipboard
Export to
Dropbox Google Drive Gist
Download
Markdown HTML Raw HTML
Back
Sharing URL Link copied
/edit
View mode
  • Edit mode
  • View mode
  • Book mode
  • Slide mode
Edit mode View mode Book mode Slide mode
Customize slides
Note Permission
Read
Only me
  • Only me
  • Signed-in users
  • Everyone
Only me Signed-in users Everyone
Write
Only me
  • Only me
  • Signed-in users
  • Everyone
Only me Signed-in users Everyone
Engagement control Commenting, Suggest edit, Emoji Reply
  • Invite by email
    Invitee

    This note has no invitees

  • Publish Note

    Share your work with the world Congratulations! 🎉 Your note is out in the world Publish Note

    Your note will be visible on your profile and discoverable by anyone.
    Your note is now live.
    This note is visible on your profile and discoverable online.
    Everyone on the web can find and read all notes of this public team.
    See published notes
    Unpublish note
    Please check the box to agree to the Community Guidelines.
    View profile
    Engagement control
    Commenting
    Permission
    Disabled Forbidden Owners Signed-in users Everyone
    Enable
    Permission
    • Forbidden
    • Owners
    • Signed-in users
    • Everyone
    Suggest edit
    Permission
    Disabled Forbidden Owners Signed-in users Everyone
    Enable
    Permission
    • Forbidden
    • Owners
    • Signed-in users
    Emoji Reply
    Enable
    Import from Dropbox Google Drive Gist Clipboard
       Owned this note    Owned this note      
    Published Linked with GitHub
    • Any changes
      Be notified of any changes
    • Mention me
      Be notified of mention me
    • Unsubscribe
    # 基本矩陣與列超平行體 ![Creative Commons License](https://i.creativecommons.org/l/by/4.0/88x31.png) This work by Jephian Lin is licensed under a [Creative Commons Attribution 4.0 International License](http://creativecommons.org/licenses/by/4.0/). $\newcommand{\trans}{^\top} \newcommand{\adj}{^{\rm adj}} \newcommand{\cof}{^{\rm cof}} \newcommand{\inp}[2]{\left\langle#1,#2\right\rangle} \newcommand{\dunion}{\mathbin{\dot\cup}} \newcommand{\bzero}{\mathbf{0}} \newcommand{\bone}{\mathbf{1}} \newcommand{\ba}{\mathbf{a}} \newcommand{\bb}{\mathbf{b}} \newcommand{\bc}{\mathbf{c}} \newcommand{\bd}{\mathbf{d}} \newcommand{\be}{\mathbf{e}} \newcommand{\bh}{\mathbf{h}} \newcommand{\bp}{\mathbf{p}} \newcommand{\bq}{\mathbf{q}} \newcommand{\br}{\mathbf{r}} \newcommand{\bx}{\mathbf{x}} \newcommand{\by}{\mathbf{y}} \newcommand{\bz}{\mathbf{z}} \newcommand{\bu}{\mathbf{u}} \newcommand{\bv}{\mathbf{v}} \newcommand{\bw}{\mathbf{w}} \newcommand{\tr}{\operatorname{tr}} \newcommand{\nul}{\operatorname{null}} \newcommand{\rank}{\operatorname{rank}} %\newcommand{\ker}{\operatorname{ker}} \newcommand{\range}{\operatorname{range}} \newcommand{\Col}{\operatorname{Col}} \newcommand{\Row}{\operatorname{Row}} \newcommand{\spec}{\operatorname{spec}} \newcommand{\vspan}{\operatorname{span}} \newcommand{\Vol}{\operatorname{Vol}}$ ```python from lingeo import random_int_list, row_operation_process ``` ## Main idea Each $n\times n$ matrix can be viewed as a list of row vectors $\{\br_1,\ldots, \br_n\}$. We define the **row parallelotope** of $A$ as the polytope $$ \{c_1\br_1 + \cdots + c_n\br_n : c_i\in [0,1] \text{ for all }i = 1,\ldots, n\} $$ spanned by the rows $\{\br_1,\ldots, \br_n\}$ of $A$. Let $\Vol_R(A)$ be the **signed volume** of the row parallelotope. Then $\Vol_R(A)$ can be defined through the following rules. - $\Vol_R(I_n) = 1$. - If $E$ is the elementary matrix of $\rho_i\leftrightarrow\rho_j$, then $E$ **swaps** the $i$-th and $j$-th rows of $A$. Thus, $\Vol_R(EA) = -\Vol_R(A)$ and we define $\Vol_R(E) = -1$. - If $E$ is the elementary matrix of $\rho_i:\times k$, then $E$ **rescales** the $i$-th row of $A$. Thus, $\Vol_R(EA) = k\Vol_R(A)$ and we define $\Vol_R(E) = k$. (Note that this statement still holds even when $k = 0$.) - If $E$ is the elementary matrix of $\rho_i:+k\rho_j$, then $E$ **slants** the $i$-th row of $A$ to the direction of $j$-th row. Thus, $\Vol_R(EA) = \Vol_R(A)$ and we define $\Vol_R(E) = 1$. As a consequence, if a matrix $A$ is invertible and can be written as the product a sequence of elementary matrices $F_1\cdots F_k$, then $\Vol_R(A) = \Vol_R(F_1)\cdots\Vol_R(F_k)\Vol_R(I_n) = \Vol_R(F_1)\cdots\Vol_R(F_k)$. In contrast, if $A$ is not invertible, then row parallelotope collapses and is flat $\Vol_R(A) = 0$. From this point of view, the value of $\Vol_R(A)$ can be both the signed volume and the **scaling factor** changing $\Vol_R(B)$ to $\Vol_R(AB)$ for any $B$. ## Side stories - operations on spanning vectors ## Experiments ##### Exercise 1 執行以下程式碼。 已知 $A = F_1\cdots F_k$ 是一群單位矩陣的乘積。 ```python ### code set_random_seed(0) print_ans = False n = 2 while True: A = matrix(n, random_int_list(n^2, 3)) if A.det() != 0: break elems = row_operation_process(A, inv=True) pretty_print(A, LatexExpr("="), *elems) R = identity_matrix(n) k = 1 vols = [1] for elem in elems[::-1]: R = elem * R vols.append(R.det()) vecs = R.rows() P = polytopes.parallelotope(vecs).plot( xmin=-3, xmax=3, ymin=-3, ymax=3, wireframe="black", fill="lightgreen" ) for v in vecs: P += text("%s"%v, v + vector([0,0.5]), fontweight=1000).plot() show(P, title="$V_{%s}$"%k) k += 1 if print_ans: for k,vol in enumerate(vols): print("The signed volumn (area) of V%s is"%k, vol) ``` `set_random_seed(0)` $\begin{bmatrix}-3&3\\1&2\end{bmatrix}=\begin{bmatrix}-3&0\\0&1\end{bmatrix}\begin{bmatrix}1&0\\1&1\end{bmatrix}\begin{bmatrix}1&0\\0&3\end{bmatrix}\begin{bmatrix}1&-1\\0&1\end{bmatrix}$ ##### Exercise 1(a) 令 $V_0$ 為單位矩陣的列超平行體。 說明如何從 $V_0$ 得到 $V_1$ 並求出 $V_1$ 的面積。 :::warning - [x] $V_1$ 為 $\begin{bmatrix}1&-1\\0&1\end{bmatrix}=\begin{bmatrix}1&-1\\0&1\end{bmatrix}\begin{bmatrix}1&0\\0&1\end{bmatrix}$ 的列超平行體。可以由 $V_0$ 的一邊傾斜得來,所以面積不變。 <-- $V_1$ 是幾何形狀,不是矩陣,不要寫等號。下一題也用同樣方式改。 - [x] 有行列式的那行可以去掉 ::: $Ans$ $V_1$ 為$\begin{bmatrix}1&-1\\0&1\end{bmatrix}=\begin{bmatrix}1&-1\\0&1\end{bmatrix}\begin{bmatrix}1&0\\0&1\end{bmatrix}$ 的列超平行體。可以由 $V_0$ 的一邊傾斜得來,所以面積不變。 因為 $\Vol_R(V_0) = 1$,所以 $\Vol_R(V_1) = 1$。 ##### Exercise 1(b) 依序說明如何從 $V_i$ 得到 $V_{i+1}$, 並求出 $V_2,\ldots, V_k$ 的面積。 **[由陳冠綸提供]** $V_2$ 為$\begin{bmatrix}1&-1\\0&3\end{bmatrix}=\begin{bmatrix}1&0\\0&3\end{bmatrix}\begin{bmatrix}1&-1\\0&1\end{bmatrix}$ 的列超平行體。可以由 $V_1$ 的一邊伸縮 $3$ 倍得來,所以面積變為 $3$ 倍。 所以 $\Vol_R(V_2) = 3$。 $V_3$ 為$\begin{bmatrix}1&-1\\1&2\end{bmatrix}=\begin{bmatrix}1&0\\1&1\end{bmatrix}\begin{bmatrix}1&-1\\0&3\end{bmatrix}$ 的列超平行體。可以由 $V_2$ 的一邊傾斜得來,所以面積不變。 所以 $\Vol_R(V_3) = 3$。 $V_4$ 為$\begin{bmatrix}-3&3\\1&2\end{bmatrix}=\begin{bmatrix}-3&0\\0&1\end{bmatrix}\begin{bmatrix}1&-1\\1&2\end{bmatrix}$ 的列超平行體。 為 $V_3$ 的一邊反向伸縮 $3$ 倍,所以面積變為 $-3$ 倍。 所以 $\Vol_R(V_3) = -9$。 ## Exercises ##### Exercise 2 對以下矩陣 $A$, 用文字描述它的列平行體,並用求出它的有向體積。 ##### Exercise 2(a) $$ A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}. $$ :::warning - [x] 行列式值等於體積還沒證明,不要使用它。這裡問你直觀的感覺:它是一個長方體,三邊長為... ::: 此平形體是由 $(1,0,0),(0,2,0),(0,0,3)$ 三個向量所組成的立體平行體, 它是一個長方體,三邊長為$1,2,3$。 所以 $\Vol_R(A) =6$ ##### Exercise 2(b) $$ A = \begin{bmatrix} 0 & 1 & 0 \\ 2 & 0 & 0 \\ 0 & 0 & 3 \end{bmatrix}. $$ **[由汪駿佑同學提供]** 此平行體是由 $(0,1,0),(2,0,0),(0,0,3)$ 三個向量所組成的立體平行體, 它是一個長方體,三邊長分別為 $1,2,3$,所以 $\Vol_R(A)$ 的體積為 $6$。 然而跟 $2(a)$ 的 $A$ 比較,發現這個矩陣是由 $2(a)$ 的 $A$ 用列運算:$\rho_i \leftrightarrow \rho_j$ 得來,根據定義我們知道 $$ \Vol_R(A_{2(b)}) = -\Vol_R(A_{2(a)}). $$ 即 $2(b)$ 的 $A$ 的列超平行體之 "有向體積" 為 $-6$。 ##### Exercise 2(c) $$ A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \\ 0 & 0 & 0 \end{bmatrix}. $$ **[由汪駿佑同學提供]** 此平行體是由 $(1,1,1),(1,2,3),(0,0,0)$ 所組成的平行體, 但此平行體扁平地落在 $x - 2y + z = 0$ 的平面上, 所以 $\Vol_R(A) =0$。 ##### Exercise 2(d) $$ A = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 2 & 0 \\ 1 & 3 & 0 \end{bmatrix}. $$ **[由汪駿佑同學提供]** 此平行體是由 $(1,1,0),(1,2,0),(1,3,0)$ 所組成的平行體, 但此平行體扁平地落在 $z=0$ 的平面上, 所以 $\Vol_R(A) =0$。 ##### Exercise 2(e) $$ A = \begin{bmatrix} 1 & 2 & 0 \\ 3 & 4 & 0 \\ 0 & 0 & 5 \end{bmatrix}. $$ **[由汪駿佑同學提供]** 此平行體是由 $(1,2,0),(3,4,0),(0,0,5)$ 所組成的立體平行體, 我們可以想成先用 $(1,2,0),(3,4,0)$ 組合成此長方形體的底面積,$(0,0,5)$ 則為高。那麼因為 $$ \det\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} $$ 的面積為 $4-6=-2$,所以 $\Vol_R(A) = -2×5 = -10$。 ##### Exercise 3 在 $\Vol_R$ 的定義中,假設我們已經接受了 - If $E$ is the elementary matrix of $\rho_i:\times k$, then $E$ **rescales** the $i$-th row of $A$. Thus, $\Vol_R(EA) = k\Vol_R(A)$ and we define $\Vol_R(E) = k$. - If $E$ is the elementary matrix of $\rho_i:+k\rho_j\times$, then $E$ **slants** the $i$-th row of $A$ to the direction of $j$-th row. Thus, $\Vol_R(EA) = \Vol_R(A)$ and we define $\Vol_R(E) = 1$. 說明為什麼 - If $E$ is the elementary matrix of $\rho_i\leftrightarrow\rho_j$, then $E$ **swaps** the $i$-th and $j$-th rows of $A$. Thus, $\Vol_R(EA) = -\Vol_R(A)$ and we define $\Vol_R(E) = -1$. 中的 $-1$ 是合理的。 **[由汪駿佑同學提供]** 令 $A$ 為一個 $m \times n$ 矩陣 ( 其中 $m$ 可以等於 $n$ ),其中第 $i$ 列為 $\ba_i$ 向量,第 $j$ 列為 $\ba_j$ 向量,即 $$ A = \begin{bmatrix} ~ & \cdots & ~ \\ - & \ba_i & - \\ ~ & \cdots & ~ \\ - & \ba_j & - \\ ~ & \cdots & ~ \end{bmatrix}. $$ 我們將此兩列互換得到 $$ \begin{bmatrix} ~ & \cdots & ~ \\ - & \ba_j & - \\ ~ & \cdots & ~ \\ - & \ba_i & - \\ ~ & \cdots & ~ \end{bmatrix}. $$ 不過這個動作可以被其他兩個動作取代,即 $$ \begin{bmatrix} ~ & \cdots & ~ \\ - & \ba_i & - \\ ~ & \cdots & ~ \\ - & \ba_j & - \\ ~ & \cdots & ~ \end{bmatrix} \xrightarrow{\rho_i:+1\rho_j} \begin{bmatrix} ~ & \cdots & ~ \\ - & \ba_i + \ba_j & - \\ ~ & \cdots & ~ \\ - & \ba_j & - \\ ~ & \cdots & ~ \end{bmatrix} \xrightarrow{\rho_j:+(-1)\rho_i} \begin{bmatrix} ~ & \cdots & ~ \\ - & \ba_i + \ba_j & - \\ ~ & \cdots & ~ \\ - & -\ba_i & - \\ ~ & \cdots & ~ \end{bmatrix} \xrightarrow{\rho_i:+1\rho_j} \begin{bmatrix} ~ & \cdots & ~ \\ - & \ba_j & - \\ ~ & \cdots & ~ \\ - & -\ba_i & - \\ ~ & \cdots & ~ \end{bmatrix} \xrightarrow{\rho_i:\times(-1)} \begin{bmatrix} ~ & \cdots & ~ \\ - & \ba_j & - \\ ~ & \cdots & ~ \\ - & \ba_i & - \\ ~ & \cdots & ~ \end{bmatrix}. $$ 根據列運算與列超平行體體積的關係我們可以知道以上四個動作讓新矩陣的值對比 $\Vol_R(A)$ 的值分別為不變,不變,不變,乘 $(-1)$,也就是讓 $\Vol_R(A)$ 乘 $(-1)$。因此我們得知兩列互換這個動作得到新的矩陣 $EA$ 後,$\Vol_R(EA)$ 會是原 $\Vol_R(A)$ 的 $(-1)$ 倍。 因此表現出兩列互換這個動作的基本矩陣 $E$ 之 $\Vol_R$ 值為 $-1$。 **[由黃秋雲同學提供]** __rule 1__ If $B$ is obtained from $A$ by the row operation $\rho_i:\times k$, then $\Vol_R(B) = k\Vol_R(A)$. __rule 2__ If $B$ is obtained from $A$ by the row operation $\rho_1:+k \rho_2$ , then $\Vol_R(B) = \Vol_R(A)$. __rule 3__ If $B$ is obtained from $A$ by the row operation $\rho_1\leftrightarrow\rho_2$ , then $\Vol_R(B) = -\Vol_R(A)$. Based on the three rules above, the main purpose of this question is to show that "swap" can be done by a sequence of "rescale" and "slant". This can be done by the following actions. $$ \begin{bmatrix} \br_i \\ \br_j \\ \end{bmatrix} \xrightarrow{\rho_i:+\rho_j} \begin{bmatrix} \br_i + \br_j \\ \br_j \\ \end{bmatrix} \xrightarrow{\rho_j:-1\rho_i} \begin{bmatrix} \br_i + \br_j \\ -\br_i \\ \end{bmatrix} \xrightarrow{\rho_j:+1\rho_i} \begin{bmatrix} \br_j \\ -\br_i \\ \end{bmatrix} \xrightarrow{\rho_j:\times (-1)} \begin{bmatrix} \br_j \\ \br_i \\ \end{bmatrix}. $$ Note that the outcome of these actions is the same as swapping the $i$-th and the $j$-th rows. The first action does not change the signed volume because the action belongs to __rule 2__. In the second and third actions it also uses __rule 2__. But it's different in the fourth action because the position of the-i and the-j row in the fourth act changes and it belongs to __rule 1__. So we can see that __rule 3__ is a combination of __rule 1__ and __rule 2__. If we combine from action 1 to action 4 then the result is $-1$. Therefore, swapping two rows will make the volume become negative. ##### Exercise 4 利用 $\Vol_R$ 定義中的四條準則,說明以下性質。 ##### Exercise 4(a) 若 $A$ 中有一列為零向量,說明 $\Vol_R(A) = 0$。 **[由汪駿佑同學提供]** 因為 $A$ 中有一列零向量,我們可以使用列運算 $\rho_i:\times k$ 讓這一個零列每項的值乘 $k$ 倍,並令這一個新矩陣為 $B$。然而由於 $0$ 乘上任何數字還是 $0$,故 $A = B$。 另外,從 $\Vol_R$ 的定義中得知 $$\Vol_R(B) = k\Vol_R(A). $$ 然而我們也知道 $A=B$,故 $\Vol_R(B) = \Vol_R(A)$。因此我們得到 $$ \Vol_R(B) = \Vol_R(A) = k\Vol_R(A), $$ 所以 $\Vol_R(A) = 0$。(我們可以取 $k = 2$。) ##### Exercise 4(b) 若 $A$ 中有兩列向量相等,說明 $\Vol_R(A) = 0$。 **[由汪駿佑同學提供]** 因為 $A$ 中有兩列向量相等 ( 假定這兩列為第 $i$ 列與第 $j$ 列 ),我們可以使用列運算 $\rho_i:+(-1)\rho_j$ 讓這一列成為零列,從而得到與上面相同的結論。 所以 $\Vol_C(A) = 0$。 ##### Exercise 4(c) 若 $A$ 中的列向量集合線性相依,說明 $\Vol_R(A) = 0$。 **[由汪駿佑同學提供]** 假設 $A$ 為 $n \times n$ 矩陣,其列向量為 ${\{\ba_1,\ba_2,\cdots,\ba_n}\}$。 則其中一個向量可以寫成其它向量的線性組合,不失一般性,我們假設 $\ba_i$ 可以寫成 $$ \ba_i = c_1\ba_1 + c_2\ba_2 + \cdots + c_n\ba_n,c_1,c_2,\ldots,c_n \in \mathbb R. $$ 那麼我們可以利用列運算 $\rho_i:+(-c_1)\rho_1$、$\rho_i:+(-c_2)\rho_2$ $\cdots$ 等等運算使得第 $i$ 列成為零列,從而得到與上面相同的結論。 所以 $\Vol_R(A) = 0$。 ##### Exercise 5(a) 令 $$ A = \begin{bmatrix} \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}}\\ \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}}\\ \frac{1}{\sqrt{3}} & 0 & -\frac{2}{\sqrt{6}}\\ \end{bmatrix}. $$ 已知 $A$ 的列向量彼此互相垂直 且長度皆為 $1$。 以直觀的方式猜測 $\Vol_R(A)$。 真的計算看看你的猜測是否正確。 :::info 這個題組的「真的計算看看」指的是用列運算算出答案。 但最終我們會知道 $\Vol_R(A) = \det(A)$,所以也可以。 ::: $Ans:$ 猜測 $A$ 的各列向量可張開成一個邊長為 $1$ 的正立方體, $\Vol_R(A)$ 應為 $1$。 經計算, $\Vol_R(A) = \det(A) = \frac{1}{3} + \frac{1}{6} + 0 + \frac{1}{6} + 0 + \frac{1}{3} = 1$, 故知猜測正確。 ##### Exercise 5(b) 將 $A$ 矩陣的 第一個列向量伸縮為原來的 $3$ 倍, 第二個列向量伸縮為原來的 $4$ 倍, 第三個列向量伸縮為原來的 $5$ 倍, 並得到 $B$ 矩陣。 以直觀的方式猜測 $\Vol_R(B)$。 真的計算看看你的猜測是否正確。 $Ans:$ $$B = \begin{bmatrix} \frac{3}{\sqrt{3}} & \frac{3}{\sqrt{2}} & \frac{3}{\sqrt{6}}\\ \frac{4}{\sqrt{3}} & -\frac{4}{\sqrt{2}} & \frac{4}{\sqrt{6}}\\ \frac{5}{\sqrt{3}} & 0 & -\frac{10}{\sqrt{6}}\\ \end{bmatrix}. $$ 猜測 $\Vol_R(B)$ 為 $\Vol_R(A)$ 的 $3 \times 4 \times 5$ 倍,即 $60$。 經計算, $\Vol_R(B) = \det(B) = 20 + 10 + 0 + 10 + 0 + 20 = 60$, 故知猜測正確。 ##### Exercise 6 令 $\bx$、$\by$、及 $\bz$ 為 $\mathbb{R}^3$ 中的向量。 令 $V_1$ 為 $\bx, \by, \bz$ 所張出來的平行六面體, 而 $V_2$ 為 $\bx + \by, \by + \bz, \bz + \bx$ 所張出來的平行六面體。 問 $V_2$ 的有向體積是 $V_1$ 的有向體積的幾倍? **[由汪駿佑同學提供]** 令 $$ A = \begin{bmatrix} - & \bx & - \\ - & \by & - \\ - & \bz & - \\ \end{bmatrix}, B = \begin{bmatrix} - & \bx + \by & - \\ - & \by + \bz & - \\ - & \bz + \bx & - \\ \end{bmatrix}. $$ 那麼 $A$ 可以經過以下六個列運算得到 $B$,依序為 $$ A = \begin{bmatrix} - & \bx & - \\ - & \by & - \\ - & \bz & - \\ \end{bmatrix} \xrightarrow{\rho_1:+\rho_2} \begin{bmatrix} - & \bx + \by & - \\ - & \by & - \\ - & \bz & - \\ \end{bmatrix} \xrightarrow{\rho_2:+\rho_3} \begin{bmatrix} - & \bx + \by & - \\ - & \by + \bz & - \\ - & \bz & - \\ \end{bmatrix} \xrightarrow{\rho_3:\times 2} \begin{bmatrix} - & \bx + \by & - \\ - & \by + \bz & - \\ - & 2 \bz & - \\ \end{bmatrix}, $$ $$ \begin{bmatrix} - & \bx + \by & - \\ - & \by + \bz & - \\ - & 2 \bz & - \\ \end{bmatrix} \xrightarrow{\rho_3:+(-2)\rho_2} \begin{bmatrix} - & \bx + \by & - \\ - & \by + \bz & - \\ - & -2 \by & - \\ \end{bmatrix} \xrightarrow{\rho_3:+\rho_1} \begin{bmatrix} - & \bx + \by & - \\ - & \by + \bz & - \\ - & \bx - \by & - \\ \end{bmatrix} \xrightarrow{\rho_3:+\rho_2} \begin{bmatrix} - & \bx + \by & - \\ - & \by + \bz & - \\ - & \bz + \bx & - \\ \end{bmatrix} = B. $$ 根據列運算與列超平行體體積的關係我們知道以上動作使得 $\Vol_R(B)$ 的值為 $\Vol_R(A)$ 的兩倍,即 $V_2$ 的有向體積是 $V_1$ 的有向體積的兩倍。 :::info 目前分數 = 4 &pm; 檢討 = 4 :::

    Import from clipboard

    Paste your markdown or webpage here...

    Advanced permission required

    Your current role can only read. Ask the system administrator to acquire write and comment permission.

    This team is disabled

    Sorry, this team is disabled. You can't edit this note.

    This note is locked

    Sorry, only owner can edit this note.

    Reach the limit

    Sorry, you've reached the max length this note can be.
    Please reduce the content or divide it to more notes, thank you!

    Import from Gist

    Import from Snippet

    or

    Export to Snippet

    Are you sure?

    Do you really want to delete this note?
    All users will lose their connection.

    Create a note from template

    Create a note from template

    Oops...
    This template has been removed or transferred.
    Upgrade
    All
    • All
    • Team
    No template.

    Create a template

    Upgrade

    Delete template

    Do you really want to delete this template?
    Turn this template into a regular note and keep its content, versions, and comments.

    This page need refresh

    You have an incompatible client version.
    Refresh to update.
    New version available!
    See releases notes here
    Refresh to enjoy new features.
    Your user state has changed.
    Refresh to load new user state.

    Sign in

    Forgot password

    or

    By clicking below, you agree to our terms of service.

    Sign in via Facebook Sign in via Twitter Sign in via GitHub Sign in via Dropbox Sign in with Wallet
    Wallet ( )
    Connect another wallet

    New to HackMD? Sign up

    Help

    • English
    • 中文
    • Français
    • Deutsch
    • 日本語
    • Español
    • Català
    • Ελληνικά
    • Português
    • italiano
    • Türkçe
    • Русский
    • Nederlands
    • hrvatski jezik
    • język polski
    • Українська
    • हिन्दी
    • svenska
    • Esperanto
    • dansk

    Documents

    Help & Tutorial

    How to use Book mode

    Slide Example

    API Docs

    Edit in VSCode

    Install browser extension

    Contacts

    Feedback

    Discord

    Send us email

    Resources

    Releases

    Pricing

    Blog

    Policy

    Terms

    Privacy

    Cheatsheet

    Syntax Example Reference
    # Header Header 基本排版
    - Unordered List
    • Unordered List
    1. Ordered List
    1. Ordered List
    - [ ] Todo List
    • Todo List
    > Blockquote
    Blockquote
    **Bold font** Bold font
    *Italics font* Italics font
    ~~Strikethrough~~ Strikethrough
    19^th^ 19th
    H~2~O H2O
    ++Inserted text++ Inserted text
    ==Marked text== Marked text
    [link text](https:// "title") Link
    ![image alt](https:// "title") Image
    `Code` Code 在筆記中貼入程式碼
    ```javascript
    var i = 0;
    ```
    var i = 0;
    :smile: :smile: Emoji list
    {%youtube youtube_id %} Externals
    $L^aT_eX$ LaTeX
    :::info
    This is a alert area.
    :::

    This is a alert area.

    Versions and GitHub Sync
    Get Full History Access

    • Edit version name
    • Delete

    revision author avatar     named on  

    More Less

    Note content is identical to the latest version.
    Compare
      Choose a version
      No search result
      Version not found
    Sign in to link this note to GitHub
    Learn more
    This note is not linked with GitHub
     

    Feedback

    Submission failed, please try again

    Thanks for your support.

    On a scale of 0-10, how likely is it that you would recommend HackMD to your friends, family or business associates?

    Please give us some advice and help us improve HackMD.

     

    Thanks for your feedback

    Remove version name

    Do you want to remove this version name and description?

    Transfer ownership

    Transfer to
      Warning: is a public team. If you transfer note to this team, everyone on the web can find and read this note.

        Link with GitHub

        Please authorize HackMD on GitHub
        • Please sign in to GitHub and install the HackMD app on your GitHub repo.
        • HackMD links with GitHub through a GitHub App. You can choose which repo to install our App.
        Learn more  Sign in to GitHub

        Push the note to GitHub Push to GitHub Pull a file from GitHub

          Authorize again
         

        Choose which file to push to

        Select repo
        Refresh Authorize more repos
        Select branch
        Select file
        Select branch
        Choose version(s) to push
        • Save a new version and push
        • Choose from existing versions
        Include title and tags
        Available push count

        Pull from GitHub

         
        File from GitHub
        File from HackMD

        GitHub Link Settings

        File linked

        Linked by
        File path
        Last synced branch
        Available push count

        Danger Zone

        Unlink
        You will no longer receive notification when GitHub file changes after unlink.

        Syncing

        Push failed

        Push successfully