This note tries to figure out how storage circuit should work with evm circuit especially encountering REVERT
in sub calls. (extending the reverting process describe here)
We focus on storage of account state and error caused by REVERT
in this note.
context
gc
- global counteraddr
- account address holding opcodespc
- program counterop
- opcode respect to addr
and pc
sp
- stack pointeris_persistant
- a binary flag that tells us if this call succeeds in the future (immutable within a call)gc_end_of_call
- a number for us to know when the call ends, we use this to rollback storage write in FILO order (immutable within a call)sstore_counter
- a counter to count how many SSTORE
we have done...
- more will be needed, see more details hereIn storage circuit, we have similar hierarchical namespacing as evm, we group access records by account address and then storage location. Finally in each sub-groups (each location of an account) we order records by global counter ascendingly.
(Different from stack and memory, which should be seperated properly by some other unique identical call context instead of only account address for indicating the source of CALLDATA
and RETURNDATA
)
Also for convinience for rollback, we add an extra val_prev
in access record when Storage
Write
.
Another extra value in bus mapping is is_first_touch
for EIP2929, it should be 1
when a storage location is touched for the first time in a EOA call.
So the bus mapping lookup could look like:
bus_mapping_lookup(
gc,
Storage,
key,
val,
rw,
val_prev,
is_first_touch,
)
I take this naive but concrete example: Caller
tries to trigger Callee
to perform simple storage operation Callee.0++; Callee.0++
3 times, but second call will revert. So finally the Callee.0
will be 4
.
Their runtime codes are:
object "Caller" {
code {
let callee := loadimmutable("callee")
// call 1: success
mstore(0, 1)
pop(call(30000, callee, 0, 0, 32, 0, 0))
// call 2: revert
mstore(0, 0)
pop(call(30000, callee, 0, 0, 32, 0, 0))
// call 3: success
mstore(0, 1)
pop(call(30000, callee, 0, 0, 32, 0, 0))
}
}
object "Callee" {
code {
// counter++
sstore(0, add(sload(0), 1))
// counter++
sstore(0, add(sload(0), 1))
// stop
if calldataload(0) { stop() }
// revert
revert(0, 0)
}
}
Then we will get executation trace after calling Caller
like below, I replaced all DUP
with PUSH
for simplicity. (ID
for CallIndex
, RV
for Revert
):
ID RV PC OP STACK STORAGE
---- ---- ----- -------------- ------------------------------ ----------
0 0 0 PUSH1 1 [ , , , , , , 1 ]
0 0 2 PUSH1 0 [ , , , , , 0, 1 ]
0 0 4 MSTORE [ , , , , , , ]
0 0 5 PUSH1 0 [ , , , , , , 0 ]
0 0 7 PUSH1 0 [ , , , , , 0, 0 ]
0 0 9 PUSH1 20 [ , , , , 20, 0, 0 ]
0 0 11 PUSH1 0 [ , , , 0, 20, 0, 0 ]
0 0 13 PUSH1 0 [ , , 0, 0, 20, 0, 0 ]
0 0 15 PUSH20 a [ , a, 0, 0, 20, 0, 0 ]
0 0 36 PUSH2 c350 [ c350, a, 0, 0, 20, 0, 0 ]
0 0 39 CALL [ , , , , , , ]
1 0 0 PUSH1 0 [ , , , , , , 0 ] { 0: 0 }
1 0 2 SLOAD [ , , , , , , 0 ] { 0: 0 }
1 0 3 PUSH1 1 [ , , , , , 1, 0 ] { 0: 0 }
1 0 5 ADD [ , , , , , , 1 ] { 0: 0 }
1 0 6 PUSH1 0 [ , , , , , 0, 1 ] { 0: 0 }
1 0 8 SSTORE [ , , , , , , ] { 0: 1 }
1 0 9 PUSH1 0 [ , , , , , , 0 ] { 0: 1 }
1 0 11 SLOAD [ , , , , , , 1 ] { 0: 1 }
1 0 12 PUSH1 1 [ , , , , , 1, 1 ] { 0: 1 }
1 0 14 ADD [ , , , , , , 2 ] { 0: 1 }
1 0 15 PUSH1 0 [ , , , , , 0, 2 ] { 0: 1 }
1 0 17 SSTORE [ , , , , , , ] { 0: 2 }
1 0 18 PUSH1 0 [ , , , , , , 0 ] { 0: 2 }
1 0 20 CALLDATALOAD [ , , , , , , 1 ] { 0: 2 }
1 0 21 ISZERO [ , , , , , , 0 ] { 0: 2 }
1 0 22 PUSH2 1b [ , , , , , 1b, 0 ] { 0: 2 }
1 0 25 JUMPI [ , , , , , , ] { 0: 2 }
1 0 26 STOP [ , , , , , , 1 ] { 0: 2 }
0 0 40 POP [ , , , , , , ]
0 0 41 PUSH1 0 [ , , , , , , 0 ]
0 0 43 PUSH1 0 [ , , , , , 0, 0 ]
0 0 45 MSTORE [ , , , , , , ]
0 0 46 PUSH1 0 [ , , , , , , 0 ]
0 0 48 PUSH1 0 [ , , , , , 0, 0 ]
0 0 50 PUSH1 20 [ , , , , 20, 0, 0 ]
0 0 52 PUSH1 0 [ , , , 0, 20, 0, 0 ]
0 0 54 PUSH1 0 [ , , 0, 0, 20, 0, 0 ]
0 0 56 PUSH20 a [ , a, 0, 0, 20, 0, 0 ]
0 0 77 PUSH2 c350 [ c350, a, 0, 0, 20, 0, 0 ]
0 0 80 CALL [ , , , , , , ]
2 1 0 PUSH1 0 [ , , , , , , 0 ] { 0: 2 }
2 1 2 SLOAD [ , , , , , , 2 ] { 0: 2 }
2 1 3 PUSH1 1 [ , , , , , 1, 2 ] { 0: 2 }
2 1 5 ADD [ , , , , , , 3 ] { 0: 2 }
2 1 6 PUSH1 0 [ , , , , , 0, 3 ] { 0: 2 }
2 1 8 SSTORE [ , , , , , , ] { 0: 3 }
2 1 9 PUSH1 0 [ , , , , , , 0 ] { 0: 3 }
2 1 11 SLOAD [ , , , , , , 3 ] { 0: 3 }
2 1 12 PUSH1 1 [ , , , , , 1, 3 ] { 0: 3 }
2 1 14 ADD [ , , , , , , 4 ] { 0: 3 }
2 1 15 PUSH1 0 [ , , , , , 0, 4 ] { 0: 3 }
2 1 17 SSTORE [ , , , , , , ] { 0: 4 }
2 1 18 PUSH1 0 [ , , , , , , 0 ] { 0: 4 }
2 1 20 CALLDATALOAD [ , , , , , , 0 ] { 0: 4 }
2 1 21 ISZERO [ , , , , , , 1 ] { 0: 4 }
2 1 22 PUSH2 1b [ , , , , , 1b, 1 ] { 0: 4 }
2 1 25 JUMPI [ , , , , , , ] { 0: 4 }
2 1 27 JUMPDEST [ , , , , , , ] { 0: 4 }
2 1 28 PUSH1 0 [ , , , , , , 0 ] { 0: 4 }
2 1 30 PUSH1 0 [ , , , , , 0, 0 ] { 0: 4 }
2 1 32 REVERT [ , , , , , , 0 ] { 0: 2 }
0 0 81 POP [ , , , , , , ]
0 0 82 PUSH1 1 [ , , , , , , 1 ]
0 0 84 PUSH1 0 [ , , , , , 0, 1 ]
0 0 86 MSTORE [ , , , , , , ]
0 0 87 PUSH1 0 [ , , , , , , 0 ]
0 0 89 PUSH1 0 [ , , , , , 0, 0 ]
0 0 91 PUSH1 20 [ , , , , 20, 0, 0 ]
0 0 93 PUSH1 0 [ , , , 0, 20, 0, 0 ]
0 0 95 PUSH1 0 [ , , 0, 0, 20, 0, 0 ]
0 0 97 PUSH20 a [ , a, 0, 0, 20, 0, 0 ]
0 0 118 PUSH2 c350 [ c350, a, 0, 0, 20, 0, 0 ]
0 0 121 CALL [ , , , , , , ]
3 0 0 PUSH1 0 [ , , , , , , 0 ] { 0: 2 }
3 0 2 SLOAD [ , , , , , , 2 ] { 0: 2 }
3 0 3 PUSH1 1 [ , , , , , 1, 2 ] { 0: 2 }
3 0 5 ADD [ , , , , , , 3 ] { 0: 2 }
3 0 6 PUSH1 0 [ , , , , , 0, 3 ] { 0: 2 }
3 0 8 SSTORE [ , , , , , , ] { 0: 3 }
3 0 9 PUSH1 0 [ , , , , , , 0 ] { 0: 3 }
3 0 11 SLOAD [ , , , , , , 3 ] { 0: 3 }
3 0 12 PUSH1 1 [ , , , , , 1, 3 ] { 0: 3 }
3 0 14 ADD [ , , , , , , 4 ] { 0: 3 }
3 0 15 PUSH1 0 [ , , , , , 0, 4 ] { 0: 3 }
3 0 17 SSTORE [ , , , , , , ] { 0: 4 }
3 0 18 PUSH1 0 [ , , , , , , 0 ] { 0: 4 }
3 0 20 CALLDATALOAD [ , , , , , , 1 ] { 0: 4 }
3 0 21 ISZERO [ , , , , , , 0 ] { 0: 4 }
3 0 22 PUSH2 1b [ , , , , , 1b, 0 ] { 0: 4 }
3 0 25 JUMPI [ , , , , , , ] { 0: 4 }
3 0 26 STOP [ , , , , , , 1 ] { 0: 4 }
0 0 122 POP [ , , , , , , ]
0 0 123 STOP [ , , , , , , ]
From the above example, we can derive such storage circuit witnesses:
(is_first_touch
is omitted for simplicity, only first row is 1
)
addr |
key |
gc |
val |
val_prev |
rw |
Note |
---|---|---|---|---|---|---|
a |
0 |
ASC ↓ | 0 |
0 |
Write |
Init |
a |
0 |
0 |
Read |
ID = 1 2 SLOAD |
||
a |
0 |
1 |
0 |
Write |
ID = 1 8 SSTORE |
|
a |
0 |
1 |
Read |
ID = 1 11 SLOAD |
||
a |
0 |
2 |
1 |
Write |
ID = 1 17 SSTORE |
|
a |
0 |
2 |
Read |
ID = 2 2 SLOAD |
||
a |
0 |
3 |
2 |
Write |
ID = 2 8 SSTORE |
|
a |
0 |
3 |
Read |
ID = 2 11 SLOAD |
||
a |
0 |
4 |
3 |
Write |
ID = 2 17 SSTORE |
|
a |
0 |
3 |
4 |
Write |
ID = 2 17 SSTORE.REVERT |
|
a |
0 |
2 |
3 |
Write |
ID = 2 8 SSTORE.REVERT |
|
a |
0 |
2 |
Read |
ID = 3 2 SLOAD |
||
a |
0 |
3 |
2 |
Write |
ID = 3 8 SSTORE |
|
a |
0 |
3 |
Read |
ID = 3 11 SLOAD |
||
a |
0 |
4 |
3 |
Write |
ID = 3 17 SSTORE |
We can observe that in ID = 2
, the storage writes are undone in a FILO (first in last out) order. In evm circuit, we will constraint the number of SSTORE
and SSTORE.REVERT
happens together and in FILO order when is_persistant = 0
, which ensures all storage writes to be undone correctly.
The pseudo code of SSTORE
in evm circuit could be like:
// read location and value
bus_mapping_lookup(gc, Stack, sp, loc, Read)
bus_mapping_lookup(gc+1, Stack, sp+1, val, Read)
// write storage
bus_mapping_lookup(gc+2, Storage, loc, val, Write, val_prev, is_first_touch)
if !is_persistant {
// rollback storage in a "first in last out" order
bus_mapping_lookup(
gc_end_of_call - sstore_counter,
Storage,
loc,
val_prev,
Write,
val,
is_first_touch,
)
}
// sstore_counter should increase 1
sstore_counter_next === sstore_counter + 1
gc_next === gc + 3 // gc should increase 3
pc_next === pc + 1 // pc should increase 1
sp_next === sp + 2 // sp should increase 2 (SSTORE = 2 POP)
Then pseudo code of RETURN
and REVERT
in evm circuit could be like:
// read offset and size (of return data)
bus_mapping_lookup(gc, Stack, sp, offset, Read)
bus_mapping_lookup(gc+1, Stack, sp+1, size, Read)
// TODO: check offset and size are set in parent's context for RETURNDATA
// should be persistant if RETURN
if op == RETURN {
is_persistant === 1
}
// should not be persistant if REVERT
if op == REVERT {
is_persistant === 0
}
// check no extra records within revert section
gc_end_of_call === gc + 1 + sstore_counter
// gc should jump to correct one
gc_next === gc_end_of_call + 1
// TODO: pc_next should set back to parent's next one
// TODO: sp_next should set back to parent's next one
If we have such trace:
PC OP STACK STORAGE
---- --------- ---------- ----------------
0 PUSH1 1 [ , 1 ] { 6: 0, a: 0 }
2 PUSH1 a [ a, 1 ] { 6: 0, a: 0 }
4 SSTORE [ , ] { 6: 0, a: 1 }
5 PUSH1 3 [ , 3 ] { 6: 0, a: 1 }
7 PUSH1 6 [ 6, 3 ] { 6: 0, a: 1 }
9 SSTORE [ , ] { 6: 3, a: 1 }
10 PUSH1 0 [ , 0 ] { 6: 3, a: 1 }
12 PUSH1 0 [ 0, 0 ] { 6: 3, a: 1 }
14 REVERT [ 0, 0 ] { 6: 0, a: 0 }
Then we will have such bus mapping table ordered by gc
increasingly:
(is_first_touch
is omitted for simplicity, only rows gc = 5
and gc = 10
are 1
)
gc |
target |
key |
val |
rw |
val_prev |
Note |
---|---|---|---|---|---|---|
1 |
Stack |
1023 |
1 |
Write |
0 PUSH1 1 |
|
2 |
Stack |
1022 |
a |
Write |
2 PUSH1 a |
|
3 |
Stack |
1023 |
1 |
Read |
4 SSTORE.POP |
|
4 |
Stack |
1022 |
a |
Read |
4 SSTORE.POP |
|
5 |
Storage |
a |
1 |
Write |
0 |
4 SSTORE |
6 |
Stack |
1023 |
3 |
Write |
5 PUSH1 3 |
|
7 |
Stack |
1022 |
6 |
Write |
7 PUSH1 6 |
|
8 |
Stack |
1023 |
3 |
Read |
9 SSTORE.POP |
|
9 |
Stack |
1022 |
6 |
Read |
9 SSTORE.POP |
|
10 |
Storage |
6 |
3 |
Write |
0 |
9 SSTORE |
11 |
Stack |
1023 |
0 |
Write |
10 PUSH1 0 |
|
12 |
Stack |
1022 |
0 |
Write |
12 PUSH1 0 |
|
13 |
Stack |
1023 |
0 |
Read |
14 REVERT.POP |
|
14 |
Stack |
1022 |
0 |
Read |
14 REVERT.POP |
|
15 |
Storage |
6 |
0 |
Write |
3 |
9 SSTORE.REVERT |
16 |
Storage |
a |
0 |
Write |
1 |
4 SSTORE.REVERT |
The related context:
gc_end_of_call = 16
is_persistant = 0
The green rows happen at the same 4 SSTORE
, it does:
bus_mapping_lookup(5, Storage, a, 1, Write, 0, 1)
// gc = gc_end_of_call - sstore_counter = 16 - 0 = 16
bus_mapping_lookup(16, Storage, a, 0, Write, 1, 0)
sstore_counter_next === sstore_counter + 1 // sstore_counter_next = 0 + 1 = 1
The orange rows happen at the same 9 SSTORE
, it does:
bus_mapping_lookup(10, Storage, 6, 3, Write, 0, 1)
// gc = gc_end_of_call - sstore_counter = 16 - 1 = 15
bus_mapping_lookup(15, Storage, 6, 0, Write, 3, 0)
sstore_counter_next === sstore_counter + 1 // sstore_counter_next = 1 + 1 = 2
When REVERT
, we at least check:
// no extra records within revert section
gc_end_of_call === gc + 1 + sstore_counter // 16 = 13 + 1 + 2
// next gc jump to after gc_end_of_call
gc_next === gc_end_of_call + 1
For all identical locations of address, the init rows will be attached with a merkle proof to ensure it's read from old state root.
Then the first one in total will be verified with the old state root as a public input loaded from L1 contract.
The last row of each location builds a intermediate state root using the same merkle proof of its init row with its final value. Then next location opens the intermediate state root to read its old value. We can do this because we know different locations will not be updated due to the location group constraint.
In the end of storage circuit, we can build the finalized state root. Then we use a public input to verify the equality of the result, and update it to L1 contract.
(Note the verb build and open here are actually merkle proof verification in circuit)
TODO example
There are other actions would cause state trie update:
nonce
and balance
will be updatedCALL
- if CALL
has non-zero value, the balance
will be updatedCREATE
, CREATE2
- hash of code
will be updated to new contract addressSSTORE
- covered by this noteThere are some other actions cause receipt trie updates:
LOGX
- log will be appendedREVERT
?If we are going to support evm fully, we should allow all possible error behavior instead of avoid it happend by the design of circuit. For example, using a 10-bit lookup to check sp
's validity will be super simple, but it doesn't allow a prover to create a proof with a stack overflow or underflow error anymore, which could happen in evm now.
Such errors halts the call and lead to all storage updates rollback just like REVERT
, what extra thing they do is to consume all given gas.
So we should treat all possible even error cases as execution result of a op, we can let prover show us which result it is, then we verify it. For example, a POP
would have one possible success result and two possible error results for ErrStackUndreflow
and ErrOutOfGas
.
We might need encode an extra item is_first_touch
into bus mapping to specify which time it is being access. Then in evm circuit, we adjust the gas cost by the access time.
Since EIP2929 is per EOA transaction, we need to know in storage circuit, we seem to need a root_call_context
to enable the is_first_touch
flag.
barryWhiteHat os this is a flag for first touch ?
han Yes, not counter but a boolean flag for first touch instead.
barryWhiteHat we would also need to add a lask touch flag so that we know what value to store in state via merkle proof.
han Seems we don't need to put it into bus mapping becasue we verify merkle proof in state circuit?