Jephian Lin
    • Create new note
    • Create a note from template
      • Sharing URL Link copied
      • /edit
      • View mode
        • Edit mode
        • View mode
        • Book mode
        • Slide mode
        Edit mode View mode Book mode Slide mode
      • Customize slides
      • Note Permission
      • Read
        • Only me
        • Signed-in users
        • Everyone
        Only me Signed-in users Everyone
      • Write
        • Only me
        • Signed-in users
        • Everyone
        Only me Signed-in users Everyone
      • Engagement control Commenting, Suggest edit, Emoji Reply
    • Invite by email
      Invitee

      This note has no invitees

    • Publish Note

      Share your work with the world Congratulations! 🎉 Your note is out in the world Publish Note

      Your note will be visible on your profile and discoverable by anyone.
      Your note is now live.
      This note is visible on your profile and discoverable online.
      Everyone on the web can find and read all notes of this public team.
      See published notes
      Unpublish note
      Please check the box to agree to the Community Guidelines.
      View profile
    • Commenting
      Permission
      Disabled Forbidden Owners Signed-in users Everyone
    • Enable
    • Permission
      • Forbidden
      • Owners
      • Signed-in users
      • Everyone
    • Suggest edit
      Permission
      Disabled Forbidden Owners Signed-in users Everyone
    • Enable
    • Permission
      • Forbidden
      • Owners
      • Signed-in users
    • Emoji Reply
    • Enable
    • Versions and GitHub Sync
    • Note settings
    • Note Insights New
    • Engagement control
    • Transfer ownership
    • Delete this note
    • Save as template
    • Insert from template
    • Import from
      • Dropbox
      • Google Drive
      • Gist
      • Clipboard
    • Export to
      • Dropbox
      • Google Drive
      • Gist
    • Download
      • Markdown
      • HTML
      • Raw HTML
Menu Note settings Note Insights Versions and GitHub Sync Sharing URL Create Help
Create Create new note Create a note from template
Menu
Options
Engagement control Transfer ownership Delete this note
Import from
Dropbox Google Drive Gist Clipboard
Export to
Dropbox Google Drive Gist
Download
Markdown HTML Raw HTML
Back
Sharing URL Link copied
/edit
View mode
  • Edit mode
  • View mode
  • Book mode
  • Slide mode
Edit mode View mode Book mode Slide mode
Customize slides
Note Permission
Read
Only me
  • Only me
  • Signed-in users
  • Everyone
Only me Signed-in users Everyone
Write
Only me
  • Only me
  • Signed-in users
  • Everyone
Only me Signed-in users Everyone
Engagement control Commenting, Suggest edit, Emoji Reply
  • Invite by email
    Invitee

    This note has no invitees

  • Publish Note

    Share your work with the world Congratulations! 🎉 Your note is out in the world Publish Note

    Your note will be visible on your profile and discoverable by anyone.
    Your note is now live.
    This note is visible on your profile and discoverable online.
    Everyone on the web can find and read all notes of this public team.
    See published notes
    Unpublish note
    Please check the box to agree to the Community Guidelines.
    View profile
    Engagement control
    Commenting
    Permission
    Disabled Forbidden Owners Signed-in users Everyone
    Enable
    Permission
    • Forbidden
    • Owners
    • Signed-in users
    • Everyone
    Suggest edit
    Permission
    Disabled Forbidden Owners Signed-in users Everyone
    Enable
    Permission
    • Forbidden
    • Owners
    • Signed-in users
    Emoji Reply
    Enable
    Import from Dropbox Google Drive Gist Clipboard
       Owned this note    Owned this note      
    Published Linked with GitHub
    • Any changes
      Be notified of any changes
    • Mention me
      Be notified of mention me
    • Unsubscribe
    # 列空間、零解空間、及其基底 Row space, kernel, and their bases ![Creative Commons License](https://i.creativecommons.org/l/by/4.0/88x31.png) This work by Jephian Lin is licensed under a [Creative Commons Attribution 4.0 International License](http://creativecommons.org/licenses/by/4.0/). $\newcommand{\trans}{^\top} \newcommand{\adj}{^{\rm adj}} \newcommand{\cof}{^{\rm cof}} \newcommand{\inp}[2]{\left\langle#1,#2\right\rangle} \newcommand{\dunion}{\mathbin{\dot\cup}} \newcommand{\bzero}{\mathbf{0}} \newcommand{\bone}{\mathbf{1}} \newcommand{\ba}{\mathbf{a}} \newcommand{\bb}{\mathbf{b}} \newcommand{\bc}{\mathbf{c}} \newcommand{\bd}{\mathbf{d}} \newcommand{\be}{\mathbf{e}} \newcommand{\bh}{\mathbf{h}} \newcommand{\bp}{\mathbf{p}} \newcommand{\bq}{\mathbf{q}} \newcommand{\br}{\mathbf{r}} \newcommand{\bx}{\mathbf{x}} \newcommand{\by}{\mathbf{y}} \newcommand{\bz}{\mathbf{z}} \newcommand{\bu}{\mathbf{u}} \newcommand{\bv}{\mathbf{v}} \newcommand{\bw}{\mathbf{w}} \newcommand{\tr}{\operatorname{tr}} \newcommand{\nul}{\operatorname{null}} \newcommand{\rank}{\operatorname{rank}} %\newcommand{\ker}{\operatorname{ker}} \newcommand{\range}{\operatorname{range}} \newcommand{\Col}{\operatorname{Col}} \newcommand{\Row}{\operatorname{Row}} \newcommand{\spec}{\operatorname{spec}} \newcommand{\vspan}{\operatorname{span}} \newcommand{\Vol}{\operatorname{Vol}} \newcommand{\sgn}{\operatorname{sgn}} \newcommand{\idmap}{\operatorname{id}} \newcommand{\am}{\operatorname{am}} \newcommand{\gm}{\operatorname{gm}} \newcommand{\mult}{\operatorname{mult}} \newcommand{\iner}{\operatorname{iner}}$ ```python from lingeo import random_good_matrix, row_space_matrix, kernel_matrix ``` ## Main idea You are recommended to read the section _Four fundamental subspaces_ first, where you will find the definition of $\beta_R$, $\beta_K$, $\beta_C$, $\beta_L$. Let $A$ be a matrix. Let $\beta_R$ and $\beta_K$ be the standard bases of $\Row(A)$ and $\ker(A)$, respectively. We have known that 1. $\Row(A) = \vspan(\beta_R)$. 2. $\ker(A) = \vspan(\beta_K)$. In fact, both $\beta_R$ and $\beta_K$ are linearly independent. Therefore, it is fine that we call them the standard bases. Let $V$ be a subspace in $\mathbb{R}^n$ spanned by a finite set of vectors $S$. Then we may find a basis of $V^\perp$ as follows. 1. Write the matrix $A$ whose rows are the vectors in the basis. 3. Calculate $\beta_K$ and it is a basis of $V^\perp$. ## Side stories - basis of the orthogonal complement - basis of a hyperplane ## Experiments ##### Exercise 1 執行下方程式碼。 令 $\left[\begin{array}{c|c} R & B \end{array}\right]$ 為 $\left[\begin{array}{c|c} A & I \end{array}\right]$ 最簡階梯形式矩陣。 令 $S = \{ \br_1, \ldots, \br_3 \}$ 為 $A$ 的各列向量﹐ 而 $S' = \{ \br'_1, \ldots, \br'_3 \}$ 為 $R$ 的各列向量。 <!-- eng start --> Run the code below. Let $\left[\begin{array}{c|c} R & B \end{array}\right]$ be the reduced echelon form of $\left[\begin{array}{c|c} A & I \end{array}\right]$. Let $S= \{ \bu_1, \ldots, \bu_3 \}$ be the rows of $A$ and $S' = \{ \br'_1, \ldots, \br'_3 \}$ the rows of $R$. <!-- eng end --> ```python ### code set_random_seed(0) print_ans = False m,n,r = 3,5,2 A = random_good_matrix(m,n,r) AI = A.augment(identity_matrix(m), subdivide=True) RB = AI.rref() B = RB[:,n:] print("[ A | I ] =") show(AI) print("[ R | B ] =") show(RB) if print_ans: for i in range(m): print( "r'%s = "%(i+1) + " + ".join("%s u%s"%(B[i,k], k+1) for k in range(m)) ) ``` $$ \left[\begin{array}{c|c} A & I \end{array}\right]= \left[\begin{array}{ccccc|ccc} 1 & -3 & 18 & 5 & -14 & 1 & 0 & 0\\ 3 & -8 & 49 & 15 &-39 & 0 & 1 & 0\\ -8 & 20 & -124 & -40 & 100 & 0 & 0 & 1 \end{array}\right] $$ $$ \left[\begin{array}{c|c} R & B \end{array}\right]= \left[\begin{array}{ccccc|ccc} 1 & 0 & 3 & 5 & -5 & 0 & -5 & -2\\ 0 & 1 & -5 & 0 & 3 & 0 & -2 & -\frac{3}{4}\\ 0 & 0 & 0 & 0 & 0 & 1 & -1 & -\frac{1}{4} \end{array}\right] $$ :::warning Record the values given by the code. ::: ##### Exercise 1(a) 將 $S'$ 中的每一個向量寫成 $S$ 的線性組合。 <!-- eng start --> For each vector in $S'$, write it as a linear combination of $S$. <!-- eng end --> :::warning - [x] Explain why and how you obtain the answers. - [x] Use boldface, e.g., $\br$, for vectors. - [x] Since $\left[\begin{array}{c|c} R & B \end{array}\right]$ is the reduced echelon form of $\left[\begin{array}{c|c} A & I \end{array}\right]$, every row of the former matrix is a linear combination of the rows of the latter matrix. By observing the last three entries of $\left[\begin{array}{c|c} R & B \end{array}\right]$, we know that ${\bf r}_1' = 0{\bf r}_1 - 5{\bf r}_2 - 2{\bf r}_3$. Similarly, we have ... ::: ##### Answer for 1(a): Since $\left[\begin{array}{c|c} R & B \end{array}\right]$ is the reduced echelon form of $\left[\begin{array}{c|c} A & I \end{array}\right]$, every row of the former matrix is a linear combination of the rows of the latter matrix. By observing the last three entries of $\left[\begin{array}{c|c} R & B \end{array}\right]$, we know that ${\bf r}_1' = 0{\bf r}_1 - 5{\bf r}_2 - 2{\bf r}_3$. Similarly, we have ${\bf r}_2' = 0{\bf r}_1 - 2{\bf r}_2 - \frac{3}{4}{\bf r}_3$ and ${\bf r}_3' = 1{\bf r}_1 - 1{\bf r}_2 - \frac{1}{4}{\bf r}_3.$ *** ##### Exercise 1(b) 令 $B$ 的第一列為 $(b_1, \ldots, b_3)$。 說明如果要把 $\left[\begin{array}{c|c} R & B \end{array}\right]$ 的第一列寫成 $\left[\begin{array}{c|c} A & I \end{array}\right]$ 各列的線性組合﹐ 使用係數 $b_1, \ldots, b_3$ 是唯一的辦法。 更一般來說﹐說明 $BA = R$。 (提示:令 $\left[\begin{array}{c|c} R & B \end{array}\right]$ 的各列為 $\bw'_1, \ldots, \bw'_3$、 而 $\left[\begin{array}{c|c} A & I \end{array}\right]$ 的各列為 $\bw_1, \ldots, \bw_3$。 解 $x_1\bw_1 + x_2\bw_2 + x_3\bw_3 = \bw'_1$。 只要觀察這個方程式每個向量的最後幾項就好。) <!-- eng start --> Let $(b_1, \ldots, b_3)$ be the first row of $B$. Explain the only way to write the first row of $\left[\begin{array}{c|c} R & B \end{array}\right]$ as a linear combination of rows of $\left[\begin{array}{c|c} A & I \end{array}\right]$ is by the coefficients $b_1, \ldots, b_3$. More generally, explain why $BA = R$. Hint: Let $\bw'_1, \ldots, \bw'_3$ be the rows of $\left[\begin{array}{c|c} R & B \end{array}\right]$ and $\bw_1, \ldots, \bw_3$ the rows of $\left[\begin{array}{c|c} A & I \end{array}\right]$. Try to solve $x_1\bw_1 + x_2\bw_2 + x_3\bw_3 = \bw'_1$ for $x_1, x_2, x_3$. Note that you only need to focus on the last few entries. <!-- eng end --> :::warning :warning: Not yet done. Still need to explain $BA = R$. Done now. ::: ##### Answer 1(b): Let $\bw'_1, \ldots, \bw'_3$ be the rows of $\left[\begin{array}{c|c} R & B \end{array}\right]$ and $\bw_1, \ldots, \bw_3$ the rows of $\left[\begin{array}{c|c} A & I \end{array}\right]$. $$ \bw_1= \begin{pmatrix} 1 & -3 & 18 & 5 & -14 & 1 & 0 & 0 \end{pmatrix}, $$ $$ \bw_2= \begin{pmatrix} 3 & -8 & 49 & 15 & -39 & 0 & 1 & 0 \end{pmatrix}, $$ $$ \bw_3= \begin{pmatrix} -8 & 20 & -124 & -40 & 100 & 0 & 0 & 1 \end{pmatrix}, $$ $$ \bw'_1= \begin{pmatrix} 1 & 0 & 3 & 5 & -5 & 0 & -5 & -2 \end{pmatrix}. $$ Sovle $x_1\bw_1 + x_2\bw_2 + x_3\bw_3 = \bw'_1$ for $x_1, x_2, x_3$. By observing the last three columns, it is clear that $x_1=0,x_2=-5,x_3=-2.$ Thus, we know $$ \begin{bmatrix} 0 & -5 & 2 \end{bmatrix} \left[\begin{array}{c|c} A & I \end{array}\right] $$ is the first row of $\left[\begin{array}{c|c} R & B \end{array}\right]$. Similarly, $$ \begin{bmatrix} 0 & -2 & -\frac{3}{4} \end{bmatrix} \left[\begin{array}{c|c} A & I \end{array}\right] \text{ and } \begin{bmatrix} 1 & -1 & -\frac{1}{4} \end{bmatrix} \left[\begin{array}{c|c} A & I \end{array}\right] $$ are the second and the third rows of $\left[\begin{array}{c|c} R & B \end{array}\right]$, respectively. Therefore, $B \left[\begin{array}{c|c} A & I \end{array}\right] = \left[\begin{array}{c|c} R & B \end{array}\right]$. In other word, $BA=R.$ *** ##### Exercise 1(c) 若 $A$ 是一個 $n\times n$ 矩陣。 而 $\left[\begin{array}{c|c} A & I_n \end{array}\right]$ 的最簡階梯形式矩陣是 $\left[\begin{array}{c|c} I_n & B \end{array}\right]$。 藉由上一小題的結果(再次)證明 若 $B$ 是 $n\times n$ 矩陣使得 $AB = I_n$﹐ 則 $BA = I_n$。 <!-- eng start --> Let $A$ be an $n\times n$ matrix. Suppose $\left[\begin{array}{c|c} I_n & B \end{array}\right]$ is the reduced echelon form of $\left[\begin{array}{c|c} A & I_n \end{array}\right]$. Use the observation from the previous problem prove (again) that if $B$ is an $n\times n$ matrix such that $AB = I_n$, then $BA = I_n$. <!-- eng end --> :::warning :warning: Not yet done. Need to explain why $AB = I$ implies $\left[\begin{array}{c|c} I & B \end{array}\right]$ is the reduced echelon form of $\left[\begin{array}{c|c} A & I \end{array}\right]$. ::: **Solution:** From Exercise 1(b), we know that $\left[\begin{array}{c|c} A & B \end{array}\right]$ after reduced row echelon form$\implies$ $\left[\begin{array}{c|c} R & B \end{array}\right]$, then $BA=R.$ So $\left[\begin{array}{c|c} A & I_n \end{array}\right]$ after reduced row echelon form, we get $\left[\begin{array}{c|c} I_n & B \end{array}\right].$ Therefore $BA=I_n.$ *** ## Exercises ##### Exercise 2 執行以下程式碼。 其中 $R$ 是 $A$ 的最簡階梯形式矩陣。 <!-- eng start --> Run the code below. Let $R$ be the reduced echelon form of $A$. <!-- eng end --> ```python ### code set_random_seed(0) print_ans = False m,n,r = 4,5,2 A = random_good_matrix(m,n,r) R = A.rref() print("A =") show(A) print("R =") show(R) if print_ans: print("A basis of the row space can be the set of rows of") show(row_space_matrix(A)) print("A basis of the kernel can be the set of columns of") show(kernel_matrix(A)) ``` :::warning - [x] Use the following template to record the values. By running the code with `seed = ?`, we get ... ::: By running the code with `seed = 0`, we get $$A =\begin{bmatrix} 1 & -3 & 18 & 5 & -14 \\ 3 & -8 & 49 & 15 & -39 \\ -5 & 12 & -75 & -25 & 61\\2 & -4 & 26 & 10 &-22 \end{bmatrix}$$ and $$R = \begin{bmatrix} 1 & 0 & 3 & 5 & -5 \\ 0 & 1 & -5 & 0 & 3 \\ 0 & 0 & 0 & 0 & 0\\0 & 0 & 0 & 0 & 0 \end{bmatrix}. $$ *** ##### Exercise 2(a) 求出 $\Row(A)$ 的一組基底。 <!-- eng start --> Find a basis of $\Row(A)$. <!-- eng end --> :::warning - [x] which --> where - [x] Add a sentence: Recall that $\beta_R$ is the set of nonzero rows in $R$. - [x] $\beta_R = \{\br_1$, $\br_2\}$ --> $\beta_R = \{\br_1, \br_2\}$ (see source code) - [x] Before the last sentence, add: Also, the nonzero rows in $R$ are independent since it is in echelon form. ::: ***Solution:*** Let $A = \begin{bmatrix} - & {\bf a}_1 & - \\ ~ & \vdots & ~ \\ - & {\bf a}_m & - \\ \end{bmatrix}$, and $R = \begin{bmatrix} - & {\bf r}_1 & - \\ ~ & \vdots & ~ \\ - & {\bf r}_m & - \\ \end{bmatrix}$. We know that $\Row(A) = \vspan(\beta_R)$, where $\beta_R$ is the standard basis of $\Row(A)$. Recall that $\beta_R$ is the set of nonzero rows in $R$. Thus, $\beta_R = \{\br_1, \br_2\}$. Since ${\bf a}_1= {\bf r}_1-3{\bf r}_2$, ${\bf a}_2= 3{\bf r}_1-8{\bf r}_2$, ${\bf a}_3= -5{\bf r}_1+12{\bf r}_2$, ${\bf a}_4= 2{\bf r}_1-4{\bf r}_2$. Also, the nonzero rows in $R$ are independent since it is in echelon form. Therefore, $\beta_R$ is a basis of $\Row(A)$. The basis of $\Row(A)$ is $$ \{ \begin{pmatrix} 1 & 0 & 3 & 5 & -5\\ \end{pmatrix}, \begin{pmatrix} 0 & 1 & -5 & 0 & 3\\ \end{pmatrix} \}. $$ *** ##### Exercise 2(b) 求出 $\ker(A)$ 的一組基底。 <!-- eng start --> Find a basis of $\ker(A)$. <!-- eng end --> :::warning :warning: Your asnwer is a vector in $\ker(A)$ but not a basis of $\ker(A)$. - [x] Suppose $$ \bx = \begin{bmatrix} a\\ b\\ c\\ d\\ e\\ \end{bmatrix}, a,b,c,d,e\in\mathbb{R}. $$ is a vector such that $A\bx = \bzero$. <-- boldface $\bzero$ - [x] Since ..., ~~then~~ ... . - [x] Period in the end. ::: **Solution:** Find $\ker(A)$: Suppose $$ \bx = \begin{bmatrix} a\\ b\\ c\\ d\\ e\\ \end{bmatrix}, a,b,c,d,e\in\mathbb{R} $$ is a vector such that $A\bx=\bzero$. Since $R$ is the reduced row echelon form, $\ker(A)=\ker(R)$. Find $\bx$: By assuming $c = p$, $d = q$, $e = r$, we have $$ \bx = \begin{bmatrix} -3p-5q+5r\\ 5p-3r\\ p\\ q\\ r\\ \end{bmatrix} =p\begin{bmatrix} -3\\ 5\\ 1\\ 0\\ 0\\ \end{bmatrix} +q\begin{bmatrix} -5\\ 0\\ 0\\ 1\\ 0\\ \end{bmatrix} +r\begin{bmatrix} 5\\ -3\\ 0\\ 0\\ 1\\ \end{bmatrix}, p,q,r\in\mathbb{R}. $$ Therefore, the basis of $\ker(A)$ is $$ \left\{ \begin{bmatrix} -3\\ 5\\ 1\\ 0\\ 0\\ \end{bmatrix}, \begin{bmatrix} -5\\ 0\\ 0\\ 1\\ 0\\ \end{bmatrix},\begin{bmatrix} 5\\ -3\\ 0\\ 0\\ 1\\ \end{bmatrix} \right\}. $$ *** ##### Exercise 3 令 $$ A = \begin{bmatrix} 1 & 1 & 0 \\ -1 & 0 & 1 \\ 0 & -1 & -1 \\ \end{bmatrix} $$ 且 $S = \{\br_1,\ldots,\br_3\}$ 為其各列向量。 令 $V = \vspan(S)$, 求 $V^\perp$ 的一組基底。 <!-- eng start --> Let $$ A = \begin{bmatrix} 1 & 1 & 0 \\ -1 & 0 & 1 \\ 0 & -1 & -1 \\ \end{bmatrix} $$ and $S = \{\br_1,\ldots,\br_3\}$ its rows. Let $V = \vspan(S)$. Find a basis of $V^\perp$. <!-- eng end --> :::warning :warning: Mathematical error. Every vector in $V^\perp$ is orthogonal to every vector in $\vspan(S)$. Is this true for your answer? Still not correct... the vector $(-1,-1,0)$ is not orthogonal to the vector $(0,-1,-1)$ in $S$. - [ ] Use the right macros: $span$ --> $\vspan$, $Row$ --> $\Row$, $ker$ --> $\ker$ - [ ] Put equal signs in math mode `$...$` - [ ] The paragraph about "Getting $\ker(A)$" need some more words, for example: By solving $$ \begin{bmatrix} 1 & 1 & 0 \\ -1 & 0 & 1 \\ 0 & -1 & -1 \end{bmatrix} \begin{bmatrix}\ x_1 \\ x_2 \\ x_3 \\ \end{bmatrix} = \begin{bmatrix}\ 0 \\ 0 \\ 0 \\ \end{bmatrix}, $$ we know $$ \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ \end{bmatrix} = t \begin{bmatrix} -1\\ 1\\ -1\\ \end{bmatrix} $$ for arbitrary $r\in \mathbb{R}$. ==:x: Vector is not equal to a set!!!== ::: **Answer** We can get the reduced echelon form of $A$, $$ R = \begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \\ \end{bmatrix}. $$ Since $V=\vspan(S)=\Row(A)$, we know that $\ker(A) \perp \Row(A)$. Therefore, $V^\perp=\ker(A)$. Getting $\ker(A)$: By solving $$ \begin{bmatrix} 1 & 1 & 0 \\ -1 & 0 & 1 \\ 0 & -1 & -1 \end{bmatrix} \begin{bmatrix}\ x_1 \\ x_2 \\ x_3 \\ \end{bmatrix} = \begin{bmatrix}\ 0 \\ 0 \\ 0 \\ \end{bmatrix}, $$ we know $$ \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ \end{bmatrix} = t \begin{bmatrix} 1\\ -1\\ 1\\ \end{bmatrix} ,\ t\in \Bbb R . $$ Thus, we can have a basis of $V^\perp$, which is equal to a basis of $\ker(A)$ $$ \left\{ \begin{bmatrix} 1\\ -1\\ 1\\ \end{bmatrix} \right\}. $$ *** ##### Exercise 4 利用 zero forcing 的方法來說明 $\beta_R$ 是線性獨立的。 <!-- eng start --> Use zero forcing to show that $\beta_R$ is linearly independent. <!-- eng end --> :::warning - [x] bases --> basis - [x] Consider the equation $c_1\bu_1+c_2\bu_2=\bzero$. By observing the first entries on the both sides, we get $c_1 = 0$. Then by observing ... ::: :::success Now it looks nice! ::: **Solution:** Since $\beta_R$ is the standard basis of $\Row(A)$, $$ \beta_R= \{ \begin{pmatrix} 1 & 0 & 3 & 5 & -5 \end{pmatrix}, \begin{pmatrix} 0 & 1 & -5 & 0 & 3 \end{pmatrix} \} $$ Let $$ \bu_1= \begin{pmatrix} 1 & 0 & 3 & 5 & -5 \end{pmatrix}, \bu_2= \begin{pmatrix} 0 & 1 & -5 & 0 & 3 \end{pmatrix}. $$ If $\beta_R$ is linearly independent, then the only coefficients $c_1,c_2 \in \mathbb{R}$ satisfying $$ c_1\bu_1+c_2\bu_2=\bzero $$ is $c_1=c_2=0$. Find $c_1$, $c_2$: Consider the equation $c_1\bu_1+c_2\bu_2=\bzero$ By observing the first entries on the both sides, we get $c_1=0$. Then by observing the second entries on the both sides, we get $c_2=0$. Thus $\beta_R$ is linearly independent. ##### Exercise 5 利用 zero forcing 的方法來說明 $\beta_K$ 是線性獨立的。 <!-- eng start --> Use zero forcing to show that $\beta_K$ is linearly independent. <!-- eng end --> **Solution for Exercise 5:** In order to show that a matrix is linearly independent with the **zero forcing** method, we need to: <!-- eng start --> 1. Let $S = \{ \bu_1, \ldots, \bu_k \}$ be some vectors in $\mathbb{R}^n$, and $S' = S$. 2. If for some $j = 1,\ldots, n$, every vector in $S'$ has its $j$-th entry zero except for one vector $\bu_i$ with its $j$-th entry nonzero, then remove $\bu_i$ from $S'$. 3. Repeat Step 2. If there is a way to remove all vectors, then $S$ is a linearly independent set. <!-- eng end --> As for a basis of a kernal, $\beta_K$, there would be a **Identity Matrix** within the basis matrix, reasoning as follows: In the process of the search for $\beta_K$, we will reduce the matrix $A$ to a reduced row echelon form $R$, let's take exercise 2(b) as an example: $$A =\begin{bmatrix} 1 & -3 & 18 & 5 & -14 \\ 3 & -8 & 49 & 15 & -39 \\ -5 & 12 & -75 & -25 & 61\\ 2 & -4 & 26 & 10 &-22 \\ \end{bmatrix}$$ $$R =\begin{bmatrix} 1 & 0 & 3 & 5 & -5 \\ 0 & 1 & -5 & 0 & 3 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ \end{bmatrix} $$ :::warning - [x] Use boldface only for vectors, so change the variables into normal font type. ::: We let the lead variables be x and y, and the free variables be a,b, and c . The kernel would then be: $$\ker(A) =\begin{bmatrix} x\\ y\\ a\\ b\\ c\\ \end{bmatrix} $$ And since: $$\begin{bmatrix} 1 & 0 & 3 & 5 & -5 \\ 0 & 1 & -5 & 0 & 3 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ \end{bmatrix} \begin{bmatrix} x \\ y \\ a \\ b \\ c \\ \end{bmatrix}= \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ \end{bmatrix}$$ We can know that: $$\begin{bmatrix} x \\ y \\ a \\ b \\ c \\ \end{bmatrix}= \begin{bmatrix} -3a-5b+5c\\ 5a-3c\\ a\\ b\\ c\\ \end{bmatrix}$$ And in order to get $\beta_K$, we let each of the free variables a, b, and c to be 1 for each entry, the result would then be: $$ \beta_K = \begin{bmatrix} -3 & -5 & 5 \\ 5 & 0 & -3 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ \end{bmatrix}$$ And that's the reason why every basis for a kernel would have an **Identity Matrix** within it, and with the presence of an indentity matrix, we can reduce the matrix further to facilitate the **Zero Forcing** procedure. :::warning - [x] can be reduced to zeros, which leaves us --> can be replaced by any numbers, which leaves us $$\begin{bmatrix} ? & ? & ? \\ ? & ? & ? \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ \end{bmatrix} $$ ::: That is, in the presence of an identiy matrix, the rows denoting the leading variables, (i.e. $$ \begin{bmatrix} -3 & -5 & 5 \end{bmatrix} \text{ and } \begin{bmatrix} 5 & 0 &-3 \\ \end{bmatrix}$$) regardless of their values, can be replaced by any numbers, which leaves us: $$\begin{bmatrix} ? & ? & ? \\ ? & ? & ? \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ \end{bmatrix} $$ By following the aforementioned **Zero Forcing Method**, we remove the 3rd, 4th and 5th rows since they have the none zero entries among the zeros in their columns. And the end result leaves us no more vectors, which is the proof that $\beta_K$ will always be linearly independent. ##### Exercise 6 令 $A$ 為一 $m \times n$ 矩陣。 若 $E$ 是一個 $m\times m$ 可逆矩陣且 $B = EA$。 <!-- eng start --> Let $A$ be an $m\times n$ matrix. Suppose $E$ is an $m\times m$ invertible matrix and $B = EA$. <!-- eng end --> ##### Exercise 6(a) 證明 $\Row(A) = \Row(B)$。 (提示:可以把 $E$ 拆成基本矩陣當做列運算。 另一個方法是說明 $B$ 的每一列都可以 $A$ 的各列的線性組合,而且反之亦然。) <!-- eng start --> Show that $\Row(A) = \Row(B)$. Hint: You may write $E$ as the product of some elementary matrices. Alternatively, you may show that each row of $B$ is a linear combination of $A$, and vice versa. <!-- eng end --> ##### Exercise 6(b) 證明以下敘述等價: 1. $A$ 的各列集合線性獨立。 2. $B$ 的各列集合線性獨立。 (提示:證明 $\Col(A)^\perp = \{\bzero\}$ 和 $\Col(B)^\perp = \{\bzero\}$ 等價。) <!-- eng start --> Show that the following are equivalent: 1. The rows of $A$ form a linearly independent set. 2. The rows of $B$ form a linearly independent set. Hint: You may show that $\Col(A)^\perp = \{\bzero\}$ and $\Col(B)^\perp = \{\bzero\}$ are equivalent. <!-- eng end --> ##### Exercise 6(c) 總結來說, 證明若 $A$ 的各列集合是 $\Row(A)$ 的一組基底, 則 $B$ 的各列集合也是 $\Row(A)$ 的一組基底。 <!-- eng start --> In summary, if the rows of $A$ form a basis of $\Row(A)$, then the rows of $B$ also form a basis of $\Row(A)$. <!-- eng end --> :::info collaboration: 1 4 problems: 4 done extra: 0.5 moderator: 0.5 quality control: 1 :::

    Import from clipboard

    Paste your markdown or webpage here...

    Advanced permission required

    Your current role can only read. Ask the system administrator to acquire write and comment permission.

    This team is disabled

    Sorry, this team is disabled. You can't edit this note.

    This note is locked

    Sorry, only owner can edit this note.

    Reach the limit

    Sorry, you've reached the max length this note can be.
    Please reduce the content or divide it to more notes, thank you!

    Import from Gist

    Import from Snippet

    or

    Export to Snippet

    Are you sure?

    Do you really want to delete this note?
    All users will lose their connection.

    Create a note from template

    Create a note from template

    Oops...
    This template has been removed or transferred.
    Upgrade
    All
    • All
    • Team
    No template.

    Create a template

    Upgrade

    Delete template

    Do you really want to delete this template?
    Turn this template into a regular note and keep its content, versions, and comments.

    This page need refresh

    You have an incompatible client version.
    Refresh to update.
    New version available!
    See releases notes here
    Refresh to enjoy new features.
    Your user state has changed.
    Refresh to load new user state.

    Sign in

    Forgot password

    or

    By clicking below, you agree to our terms of service.

    Sign in via Facebook Sign in via Twitter Sign in via GitHub Sign in via Dropbox Sign in with Wallet
    Wallet ( )
    Connect another wallet

    New to HackMD? Sign up

    Help

    • English
    • 中文
    • Français
    • Deutsch
    • 日本語
    • Español
    • Català
    • Ελληνικά
    • Português
    • italiano
    • Türkçe
    • Русский
    • Nederlands
    • hrvatski jezik
    • język polski
    • Українська
    • हिन्दी
    • svenska
    • Esperanto
    • dansk

    Documents

    Help & Tutorial

    How to use Book mode

    Slide Example

    API Docs

    Edit in VSCode

    Install browser extension

    Contacts

    Feedback

    Discord

    Send us email

    Resources

    Releases

    Pricing

    Blog

    Policy

    Terms

    Privacy

    Cheatsheet

    Syntax Example Reference
    # Header Header 基本排版
    - Unordered List
    • Unordered List
    1. Ordered List
    1. Ordered List
    - [ ] Todo List
    • Todo List
    > Blockquote
    Blockquote
    **Bold font** Bold font
    *Italics font* Italics font
    ~~Strikethrough~~ Strikethrough
    19^th^ 19th
    H~2~O H2O
    ++Inserted text++ Inserted text
    ==Marked text== Marked text
    [link text](https:// "title") Link
    ![image alt](https:// "title") Image
    `Code` Code 在筆記中貼入程式碼
    ```javascript
    var i = 0;
    ```
    var i = 0;
    :smile: :smile: Emoji list
    {%youtube youtube_id %} Externals
    $L^aT_eX$ LaTeX
    :::info
    This is a alert area.
    :::

    This is a alert area.

    Versions and GitHub Sync
    Get Full History Access

    • Edit version name
    • Delete

    revision author avatar     named on  

    More Less

    Note content is identical to the latest version.
    Compare
      Choose a version
      No search result
      Version not found
    Sign in to link this note to GitHub
    Learn more
    This note is not linked with GitHub
     

    Feedback

    Submission failed, please try again

    Thanks for your support.

    On a scale of 0-10, how likely is it that you would recommend HackMD to your friends, family or business associates?

    Please give us some advice and help us improve HackMD.

     

    Thanks for your feedback

    Remove version name

    Do you want to remove this version name and description?

    Transfer ownership

    Transfer to
      Warning: is a public team. If you transfer note to this team, everyone on the web can find and read this note.

        Link with GitHub

        Please authorize HackMD on GitHub
        • Please sign in to GitHub and install the HackMD app on your GitHub repo.
        • HackMD links with GitHub through a GitHub App. You can choose which repo to install our App.
        Learn more  Sign in to GitHub

        Push the note to GitHub Push to GitHub Pull a file from GitHub

          Authorize again
         

        Choose which file to push to

        Select repo
        Refresh Authorize more repos
        Select branch
        Select file
        Select branch
        Choose version(s) to push
        • Save a new version and push
        • Choose from existing versions
        Include title and tags
        Available push count

        Pull from GitHub

         
        File from GitHub
        File from HackMD

        GitHub Link Settings

        File linked

        Linked by
        File path
        Last synced branch
        Available push count

        Danger Zone

        Unlink
        You will no longer receive notification when GitHub file changes after unlink.

        Syncing

        Push failed

        Push successfully