Jephian Lin
    • Create new note
    • Create a note from template
      • Sharing URL Link copied
      • /edit
      • View mode
        • Edit mode
        • View mode
        • Book mode
        • Slide mode
        Edit mode View mode Book mode Slide mode
      • Customize slides
      • Note Permission
      • Read
        • Only me
        • Signed-in users
        • Everyone
        Only me Signed-in users Everyone
      • Write
        • Only me
        • Signed-in users
        • Everyone
        Only me Signed-in users Everyone
      • Engagement control Commenting, Suggest edit, Emoji Reply
      • Invitee
    • Publish Note

      Share your work with the world Congratulations! 🎉 Your note is out in the world Publish Note

      Your note will be visible on your profile and discoverable by anyone.
      Your note is now live.
      This note is visible on your profile and discoverable online.
      Everyone on the web can find and read all notes of this public team.
      See published notes
      Unpublish note
      Please check the box to agree to the Community Guidelines.
      View profile
    • Commenting
      Permission
      Disabled Forbidden Owners Signed-in users Everyone
    • Enable
    • Permission
      • Forbidden
      • Owners
      • Signed-in users
      • Everyone
    • Suggest edit
      Permission
      Disabled Forbidden Owners Signed-in users Everyone
    • Enable
    • Permission
      • Forbidden
      • Owners
      • Signed-in users
    • Emoji Reply
    • Enable
    • Versions and GitHub Sync
    • Note settings
    • Engagement control
    • Transfer ownership
    • Delete this note
    • Save as template
    • Insert from template
    • Import from
      • Dropbox
      • Google Drive
      • Gist
      • Clipboard
    • Export to
      • Dropbox
      • Google Drive
      • Gist
    • Download
      • Markdown
      • HTML
      • Raw HTML
Menu Note settings Sharing URL Create Help
Create Create new note Create a note from template
Menu
Options
Versions and GitHub Sync Engagement control Transfer ownership Delete this note
Import from
Dropbox Google Drive Gist Clipboard
Export to
Dropbox Google Drive Gist
Download
Markdown HTML Raw HTML
Back
Sharing URL Link copied
/edit
View mode
  • Edit mode
  • View mode
  • Book mode
  • Slide mode
Edit mode View mode Book mode Slide mode
Customize slides
Note Permission
Read
Only me
  • Only me
  • Signed-in users
  • Everyone
Only me Signed-in users Everyone
Write
Only me
  • Only me
  • Signed-in users
  • Everyone
Only me Signed-in users Everyone
Engagement control Commenting, Suggest edit, Emoji Reply
Invitee
Publish Note

Share your work with the world Congratulations! 🎉 Your note is out in the world Publish Note

Your note will be visible on your profile and discoverable by anyone.
Your note is now live.
This note is visible on your profile and discoverable online.
Everyone on the web can find and read all notes of this public team.
See published notes
Unpublish note
Please check the box to agree to the Community Guidelines.
View profile
Engagement control
Commenting
Permission
Disabled Forbidden Owners Signed-in users Everyone
Enable
Permission
  • Forbidden
  • Owners
  • Signed-in users
  • Everyone
Suggest edit
Permission
Disabled Forbidden Owners Signed-in users Everyone
Enable
Permission
  • Forbidden
  • Owners
  • Signed-in users
Emoji Reply
Enable
Import from Dropbox Google Drive Gist Clipboard
   owned this note    owned this note      
Published Linked with GitHub
Subscribed
  • Any changes
    Be notified of any changes
  • Mention me
    Be notified of mention me
  • Unsubscribe
Subscribe
# 特徵空間 ![Creative Commons License](https://i.creativecommons.org/l/by/4.0/88x31.png) This work by Jephian Lin is licensed under a [Creative Commons Attribution 4.0 International License](http://creativecommons.org/licenses/by/4.0/). $\newcommand{\trans}{^\top} \newcommand{\adj}{^{\rm adj}} \newcommand{\cof}{^{\rm cof}} \newcommand{\inp}[2]{\left\langle#1,#2\right\rangle} \newcommand{\dunion}{\mathbin{\dot\cup}} \newcommand{\bzero}{\mathbf{0}} \newcommand{\bone}{\mathbf{1}} \newcommand{\ba}{\mathbf{a}} \newcommand{\bb}{\mathbf{b}} \newcommand{\bc}{\mathbf{c}} \newcommand{\bd}{\mathbf{d}} \newcommand{\be}{\mathbf{e}} \newcommand{\bh}{\mathbf{h}} \newcommand{\bp}{\mathbf{p}} \newcommand{\bq}{\mathbf{q}} \newcommand{\br}{\mathbf{r}} \newcommand{\bx}{\mathbf{x}} \newcommand{\by}{\mathbf{y}} \newcommand{\bz}{\mathbf{z}} \newcommand{\bu}{\mathbf{u}} \newcommand{\bv}{\mathbf{v}} \newcommand{\bw}{\mathbf{w}} \newcommand{\tr}{\operatorname{tr}} \newcommand{\nul}{\operatorname{null}} \newcommand{\rank}{\operatorname{rank}} %\newcommand{\ker}{\operatorname{ker}} \newcommand{\range}{\operatorname{range}} \newcommand{\Col}{\operatorname{Col}} \newcommand{\Row}{\operatorname{Row}} \newcommand{\spec}{\operatorname{spec}} \newcommand{\vspan}{\operatorname{span}} \newcommand{\Vol}{\operatorname{Vol}} \newcommand{\sgn}{\operatorname{sgn}} \newcommand{\idmap}{\operatorname{id}} \newcommand{\am}{\operatorname{am}} \newcommand{\gm}{\operatorname{gm}}$ ```python from lingeo import random_int_list, random_good_matrix ``` ## Main idea Let $A$ be a square matrix and $\lambda\in\spec(A)$. The **eigenspace** of $A$ with respect to $\lambda$ is defined as $$ E_\lambda = \ker(A - \lambda I). $$ By definition, we have $\gm(\lambda) = \dim(E_\lambda)$. Similarly, if $f:V \rightarrow V$ is a linear function and $\lambda\in\spec(f)$, then the **eigenspace** of $f$ with respect to $\lambda$ is $$ E_\lambda = \ker(f - \lambda\idmap_V) = \{\bv\in V: f(v) = \lambda \bv\}. $$ Recall that a set of subspaces $\{V_1,\ldots,V_k\}$ is linearly independent if the only choice of ${\bf v}_1\in V_1, \ldots, {\bf v}_k\in V_k$ satisfying $$ {\bf v}_1 + \cdots + {\bf v}_k = {\bf 0} $$ is ${\bf v}_1 = \cdots = {\bf v}_k = {\bf 0}$. (See 211 for more details and exercises.) Let $A$ be an $n\times n$ matrix with distinct eigenvalues $\lambda_1, \ldots, \lambda_q$. Then $\{E_{\lambda_1}, \ldots, E_{\lambda_q}\}$ is linearly independent. Therefore, if $\gm(\lambda_i) = \am(\lambda_i)$, or, equivalently, the sum of geometric multiplicity is $n$, then one may pick a basis $\beta_{\lambda_i}$ for each $E_{\lambda_i}$ and $\beta = \beta_{\lambda_1} \cup \cdots \cup \beta_{\lambda_q}$ is a basis of $\mathbb{R}^n$. Therefore, $A$ is diagonalizable. In a different language, the following are equivalent. - $A$ is diagonalizable. - $\mathbb{R}^n = E_{\lambda_1} \oplus \cdots \oplus E_{\lambda_q}$. That is, $\mathbb{R}^n$ can be written as the direct sum of the eigenspaces of $A$. ## Side stories - simultaneously diagonalizable ## Experiments ##### Exercise 1 執行以下程式碼。 令 $\bu_1$ 為 $A_1$ 的行向量、 $\bu_2,\bu_3$ 為 $A_2$ 的行向量、 $\bu_4,\bu_5$ 為 $A_3$ 的行向量、 而 $R$ 為 $\begin{bmatrix} A_1 A_2 A_3 \end{bmatrix}$ 的最簡階梯型。 (已知 $\ker(A_1) = \ker(A_2) = \ker(A_3) = \{\bzero\}$。) ```python ### code set_random_seed(0) print_ans = False indep = choice([True, False]) n = 6 A = random_good_matrix(n,5,5) if not indep: while True: l = random_int_list(4) if 0 not in l: break A[:,-1] = A[:,[0,1,2,3]] * matrix(4, l) A1 = A[:,[0]] A2 = A[:,[1,2]] A3 = A[:,[3,4]] R = A.rref() pretty_print(LatexExpr("A_1 ="), A1, LatexExpr(", A_2 ="), A2, LatexExpr("A_3 ="), A3) pretty_print(LatexExpr("R ="), R) if print_ans: print("Linearly independent?", indep) if indep: print("If v1 + v2 + v3 = 0,") print("then v1 = a1 u1, v2 = a2 u2 + a3 u3, v3 = a4 u4 + a5 u5,") print("and a1 u1 + a2 u2 + a3 u3 + a4 u4 + a5 u5 = 0.") print("But then {u1, u2, u3, u4, u5} is linearly independent.") else: v1 = A1 * vector(l[:1]) v2 = A2 * vector(l[1:3]) v3 = A3 * vector(l[3:] + [-1]) print("v1 = (%s)u1"%l[0], v1) print("v2 = (%s)u2 + (%s)u3"%(l[1], l[2]), v2) print("v3 = (%s)u4 + (%s)u5"%(l[3], -1), v3) ``` $Ans:$ 藉由 `seed = 0`得到 $$ A_1 = \begin{bmatrix} 1\\ -4\\19\\47\\36\\-53\\ \end{bmatrix}, A_2 = \begin{bmatrix} -5&0\\21&3\\-100&-14\\-248&-37\\-191&-31\\278&38\\ \end{bmatrix}, A_3 = \begin{bmatrix} -3&-4\\15&13\\-68&-59\\-171&-141\\-132&-102\\193&168\\ \end{bmatrix} $$ 以及 $$ R = \begin{bmatrix} 1&0&0&0&0\\0&1&0&0&0\\0&0&1&0&0\\0&0&0&1&0\\0&0&0&0&1\\0&0&0&0&0 \end{bmatrix} $$ ##### Exercise 1(a) 判斷 $\{\Col(A_1), \Col(A_2), \Col(A_3)\}$ 是否線性獨立。 :::warning - [x] 向量改粗體 ::: $Ans:$ 經過列運算可以得到 $\begin{bmatrix} A_1 A_2 A_3 \end{bmatrix}$ 的最簡階梯型式$R$, 明顯地,我們可以知道 $\bu_1,\bu_2,\bu_3,\bu_4,\bu_5$ 無法互相寫成彼此的線性組合, 故為線性獨立。 ##### Exercise 1(b) 若線性獨立,請說明原因。 若不線性獨立,請找出 $\bv_1\in\Col(A_1)$、$\bv_2\in\Col(A_2)$、及 $\bv_3\in\Col(A_3)$ 使得 $\bv_1 + \bv_2 + \bv_3 = \bzero$ 且三向量不全為零向量。 $Ans:$ 經過列運算可以得到 $\begin{bmatrix} A_1 A_2 A_3 \end{bmatrix}$ 的最簡階梯型式$R$, 明顯地,我們可以知道 $\bu_1,\bu_2,\bu_3,\bu_4,\bu_5$ 無法互相寫成彼此的線性組合, 故為線性獨立。 ## Exercises ##### Exercise 2 令 $$ A = \begin{bmatrix} 8 & -2 & 3 & -5 & -1 \\ -11 & 7 & -5 & 11 & 1 \\ -34 & 14 & -14 & 33 & 4 \\ 0 & 0 & 0 & 3 & 0 \\ -40 & 16 & -19 & 39 & 7 \end{bmatrix}. $$ 已知 $A$ 有三個相異的特徵值 $1,2,3$, 對於 $\lambda = 1,2,3$, 找出特徵空間 $E_\lambda$ 的一組基底 $\beta_\lambda$。 判斷 $\beta = \beta_1 \cup \beta_2 \cup \beta_3$ 是否為 $\mathbb{R}^5$ 的一組基底。 :::warning - [x] 中英數之間空格 - [x] $\lambda = 1$ 時, $$ A - \lambda I = ... $$ - [x] 矩陣要進數學模式,中文不要進 - [x] $span$ --> $\vspan$ - [x] $\beta$ 是一群向量,不是矩陣;你只能說令 $B$ 為由 $\beta$ 中向量為行向量的矩陣 ... - [x] 為什麼高斯消去法沒消乾淨? ::: $Ans:$ $\lambda = 1$ 時 , $$A - \lambda I=\begin{bmatrix} 7 & -2 & 3 & -5 & -1 \\ -11 & 6 & -5 & 11 & 1 \\ -34 & 14 & -15 & 33 & 4 \\ 0 & 0 & 0 & 2 & 0 \\ -40 & 16 & -19 & 39 & 6 \end{bmatrix}$$ 經過高斯消去法, $$\begin{bmatrix} 7 & 0 & 0 & 0 & 1 \\ 0 & 7 & 0 & 0 & -2 \\ 0 & 0 & 7 & 0 & -6 \\ 0 & 0 & 0 & 7 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}. $$ $$E_1=\ker(A - \lambda I) = \vspan\left\{\begin{bmatrix} -1\\ 2\\6\\0\\7\\ \end{bmatrix}\right\}, $$ 同理可推得,$$E_2=\ker(A - \lambda I) = \vspan\left\{\begin{bmatrix} -5\\ -3\\8\\0\\0 \end{bmatrix}, \begin{bmatrix} 3\\ 5\\0\\0\\8 \end{bmatrix}\right\}, E_3=\ker(A - \lambda I) = \vspan\left\{\begin{bmatrix} 6\\ 4\\1\\5\\0 \end{bmatrix}, \begin{bmatrix} -1\\ 1\\4\\0\\5 \end{bmatrix}\right\}$$ 另 $B$ 為 $\beta$ 中向量為行向量的矩陣,則 $$ B=\begin{bmatrix} -1&-5&3&6&-1\\2&-3&5&4&1\\6&8&0&1&4\\0&0&0&5&0\\7&0&8&0&5\\ \end{bmatrix}$$ 經過高斯消去法,可得 $$ \begin{bmatrix} -1 & 0 & 0 & 0 & 0 \\ 0 & 73 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 5 & 0 \\ 0 & 0 & 0 & 0 & 63/73 \\ \end{bmatrix} $$ 根據定義,由於 $\operatorname{ker}(B) = \{{\bf 0}\}$,所以 $\beta$ 為 $\mathbb{R}^5$ 的一組基底。 ##### Exercise 3 令 $$ A = \begin{bmatrix} -1 & 5 & -6 & 5 & -2 \\ 4 & -9 & 11 & -8 & 3 \\ 6 & -18 & 19 & -12 & 4 \\ -1 & -2 & 1 & 2 & 0 \\ -6 & 15 & -13 & 9 & 0 \end{bmatrix}. $$ 已知 $A$ 有三個相異的特徵值 $1,2,3$, 對於 $\lambda = 1,2,3$, 找出特徵空間 $E_\lambda$ 的一組基底 $\beta_\lambda$。 判斷 $\beta = \beta_1 \cup \beta_2 \cup \beta_3$ 是否為 $\mathbb{R}^5$ 的一組基底。 :::warning - [x] 同上題 - [x] 標點 ::: $Ans:$ $\lambda = 1$ 時 , $$A - \lambda I= \begin{bmatrix} -2 & 5 & -6 & 5 & -2 \\ 4 & -10 & 11 & -8 & 3 \\ 6 & -18 & 18 & -12 & 4 \\ -1 & -2 & 1 & 1 & 0 \\ -6 & 15 & -13 & 9 & -1 \end{bmatrix}.$$ 經過高斯消去法可得 $$\begin{bmatrix} 3 & 0 & 0 & 0 & -1 \\ 0 & 3 & 0 & 0 & 2 \\ 0 & 0 & 3 & 0 & 3 \\ 0 & 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}. $$ 因此 $$E_1=\ker(A -\lambda I) = \vspan\left\{\begin{bmatrix} -1\\ -2\\-3\\0\\3 \end{bmatrix} \right\}.$$ 同理可推 $$E_2=\ker(A - \lambda I) = \vspan\left\{\begin{bmatrix} 0\\ -1\\-2\\-1\\1 \end{bmatrix} \right\}, E_3=\ker(A -\lambda I) = \vspan\left\{\begin{bmatrix} -1\\ -3\\-6\\-1\\6 \end{bmatrix} \right\}. $$ 因為只有三組向量所以無法組成 $\mathbb{R}^5$ 的一組基底。 ##### Exercise 4 對以下線性函數 $f$,描述它的每一個特徵空間。 ##### Exercise 4(a) 令 $V$ 為 $\mathbb{R}^3$ 中的一個二維空間, 而 $f:\mathbb{R}^3 \rightarrow \mathbb{R}^3$ 將向量 $\bv\in\mathbb{R}^3$ 投影到 $V$ 上。 :::warning - [x] 向量粗體 - [x] v --> $\bv$ - [x] 中英數之間空格 - [x] $\lambda=1$ 且 $E_1$ = $\{\bv:\bv\in V \}$ - [x] 標點 - [x] $∀\bv\in V$ --> $\text{ for all }\bv\in V$ ::: $Ans:$ $$ E_\lambda = \ker(f - \lambda\idmap_V) = \{\bv\in V: f(\bv) = \lambda \bv\}. $$ 因為所求 $f(\bv) = \lambda \bv$ 中的 $\bv$ 須滿足運算後方向與原本平行, 因此 $\lambda$ 只有兩種可能 1. 向量與 $V$ 平行,此時 $\lambda=1$ 且 $E_1$ = $\{\bv:\bv\in V \}.$ 2. 向量與 $V$ 垂直,此時 $\lambda=0$ 且 $E_0$ = $\{\bu:\inp{\bu}{\bv}=0 \text{ for all }\bv\in V\}.$ ##### Exercise 4(b) 令 $V$ 為 $\mathbb{R}^3$ 中的一個二維空間, 而 $f:\mathbb{R}^3 \rightarrow \mathbb{R}^3$ 將向量 $\bv\in\mathbb{R}^3$ 鏡射到 $V$ 的對面。 :::warning - [x] 同上題 ::: $Ans:$ 因為所求 $f(\bv) = \lambda \bv$ 中的 $\bv$ 須滿足運算後方向與原本平行, 因此$\lambda$ 只有兩種可能 1. 向量與 $V$ 平行,此時 $\lambda=1$ 且 $E_1$ = $\{\bv:\bv\in V \}.$ 2. 向量與 $V$ 垂直,此時 $\lambda=-1$ 且 $E_{-1}$ = $\{\bu:\inp{\bu}{\bv}=0 \text{ for all }\bv\in V\}.$ ##### Exercise 5 令 $V_1,\ldots, V_k$ 為同一向量空間中的子空間, 且 $\{V_1, \ldots, V_k\}$ 線性獨立。 若對於 $i = 1,\ldots, k$ 分別有 $\beta_i$ 為 $V_i$ 的基底。 證明 $\beta = \beta_1 \cup \cdots \cup \beta_k$ 為 $V_1 \oplus \cdots \oplus V_k$ 的基底。 :::warning - [x] 開頭應該是:考慮一群向量 $\bv^1_1,\ldots, \bv^1_{s_1}\in\beta_1$, $\ldots$, $\bv^k_1,\ldots, \bv^k_{s_k}\in\beta_k$。若 $$ \sum_{i=1}^{s_1}c^1_i\bv^1_i + \cdots + \sum_{i=1}^{s_k}c^k_i\bv^k_i = \bzero. $$ ... 並說明係數為零。 ::: $Ans:$ 考慮一群向量 $\bv^1_1,\ldots, \bv^1_{s_1}\in\beta_1$, $\ldots$, $\bv^k_1,\ldots, \bv^k_{s_k}\in\beta_k$。若 $$ \sum_{i=1}^{s_1}c^1_i\bv^1_i + \cdots + \sum_{i=1}^{s_k}c^k_i\bv^k_i = \bzero. $$ 令 $$\sum_{i=1}^{s_1}c^1_i\bv^1_i = {\bf u}_1\in V_1, \ldots,\sum_{i=1}^{s_k}c^k_i\bv^k_i = {\bf u}_k\in V_k$$ 因為 $\{V_1, \ldots, V_k\}$ 線性獨立,因此 ${\bf u}_1 = \cdots = {\bf u}_k = {\bf 0}$. 因為基底中的元素彼此線性獨立,因此係數皆為零. 所以 $\beta = \beta_1 \cup \cdots \cup \beta_k$ 中的元素線性獨立. 因而得出 $\beta_1 \cup \cdots \cup \beta_k = \beta$ 為 $V_1 \oplus \cdots \oplus V_k$ 的基底. ##### Exercise 6 令 $A$ 為一矩陣且其相異的特徵值為 $\lambda_1,\ldots,\lambda_q$。 證明其所有特徵空間 $\{E_{\lambda_1}, \ldots, E_{\lambda_q}\}$ 線性獨立。 (參考 311-5。) :::warning - [x] 零向量用 $\bzero$ ::: $Ans:$ 令 ${\bf v}_1\in E_{\lambda_1}, \ldots, {\bf v}_q\in E_{\lambda_q}$,且 ${\bf v}_1 + \cdots + {\bf v}_q = {\bf 0}.$ 將上述等式左右同乘 $A$ q-1次,並將所得結果列出可得出下列等式 $$\begin{cases} {\bf v}_1 + \cdots + {\bf v}_q = \bzero \\ \lambda_1{\bf v}_1 + \cdots + \lambda_q{\bf v}_q = \bzero\\ \vdots \\ \lambda_1^{q-1}{\bf v}_1 + \cdots + \lambda_q^{q-1}{\bf v}_q = \bzero \end{cases} $$ 令 $f_1$ 使得 $f(\lambda_1) = 1$ 且對 $k = 2,\ldots,q$ 都有 $f(\lambda_k) = 0$. 將 $f_1$ 展開寫成 $f_1 = c_0 + c_1x + \cdots + c_{q-1}x^{q-1}$. $\begin{aligned} &c_0({\bf v}_1 + \cdots + {\bf v}_q &= \bzero)\\ &c_1(\lambda_1 {\bf v}_1 + \cdots + \lambda_q {\bf v}_q &= \bzero)\\ &\vdots\\ +)&c_{q-1}(\lambda_{1} {\bf u}_1 + \cdots + \lambda_q^{q-1}{\bf v}_q &= \bzero)\\ \hline &f(\lambda_1){\bf v}_1 +\dots+f(\lambda_{q}){\bf v}_q&=\bzero \end{aligned}$ 而對 $k = 2,\ldots,q$ 都有 $f(\lambda_k) = 0.$ 所以 $f(\lambda_1){\bf v}_1= \bzero.$ 其中 $f(\lambda_1) = 1$ 推得 ${\bf v}_1=\bzero.$ 令 $f_2$ 使得 $f(\lambda_2) = 1$ 且對 $k = 1,3,4,\ldots,q$ 都有 $f(\lambda_k) = 0$. 將 $f_2$ 展開寫成 $f_1 = a_0 + a_1x + \cdots + a_{q-1}x^{q-1}$. $\begin{aligned} &a_0({\bf v}_1 + \cdots + {\bf v}_q &= \bzero)\\ &a_1(\lambda_1 {\bf v}_1 + \cdots + \lambda_q {\bf v}_q &= \bzero)\\ &\vdots\\ +)&a_{q-1}(\lambda_{1} {\bf v}_1 + \cdots + \lambda_q^{q-1}{\bf v}_q &= \bzero)\\ \hline &f(\lambda_1){\bf v}_1 +\dots+f(\lambda_{q}){\bf v}_q&=\bzero \end{aligned}$ 而對對 $k = 1,3,4,\ldots,q$ 都有 $f(\lambda_k) = 0.$ 所以 $f(\lambda_2){\bf v}_2= \bzero.$ 其中 $f(\lambda_2) = 1$ 推得 ${\bf v}_2= \bzero.$ 因此可以推得 ${\bf v}_1=\cdots={\bf v}_q= \bzero$,即所有特徵空間 $\{E_{\lambda_1}, \ldots, E_{\lambda_q}\}$ 線性獨立。 ##### Exercise 7 給定兩大小相同的方陣 $A$ 和 $B$, 若存在一個可逆矩陣 $Q$ 使得 $Q^{-1}AQ$ 和 $Q^{-1}BQ$ 同時是對角矩陣, 則我們稱 $A$ 和 $B$ 可 **同時對角化(simultaneously diagonalizable)**。 依照以下步驟說明: 若 $A$ 和 $B$ 皆可對角化,且 $AB = BA$, 則 $A$ 和 $B$ 可同時對角化。 :::warning - [x] 應該從 7(a) 開始回答就好。這邊的論證「若 $AB=BA$ 則 $Q=T$」不正確。 ::: ##### Exercise 7(a) 令 $A$ 和 $B$ 為大小相同的方陣。 令 $\lambda$ 為 $A$ 的一個特徵值,而 $E_\lambda$ 為其特徵空間。 證明若 $AB = BA$,則 $E_\lambda$ 同時為 $A$-不變子空間、也是 $B$-不變子空間。 :::warning - [x] $\lambda$ 為 $A$ 的一個特徵值,則 $A$ 可對角化。 <-- 不正確;每個矩陣至少都有一個特徵值,但不見得每個矩陣都可以被對角化 - [x] 這題就是要證明有共通矩陣 $Q$ - [ ] 格式可以再改善,少用 &rarr; ::: $Ans:$ $\lambda$$\bv=Av\in$$E_\lambda$&rarr;$E_\lambda$ 為$A$-不變子空間,又 $\text{for all}$ $\bv,$ $\lambda$$\bv=A\bv$ &hArr; $\bv\in$$E_\lambda$;和 $A(B\bv)=B(A\bv)=B(\lambda \bv)=\lambda B\bv$ &rarr; $B\bv\in$ &rarr; $E_\lambda$ 為 $B$ -不變子空間。 ##### Exercise 7(b) 令 $A_1$ 和 $A_2$ 分別為 $n_1\times n_1$ 及 $n_2\times n_2$ 的可對角化的方陣。 若一 $n_1\times n_2$ 矩陣 $X$ 滿足 $A_1X = XA_2$, 且 $A_1$ 和 $A_2$ 沒有共同的特徵值, 說明 $X$ 必為零矩陣。 提示:先考慮 $A_1$ 和 $A_2$ 都是對角矩陣的情況。 :::warning - [ ] 若 $A_1$ 和 $A_2$ 沒有共通特徵值且皆為對角矩陣,特徵空間便不會有重疊。<-- 兩個矩陣大小不一定一樣,$A_1$ 的特徵空間活在 $\mathbb{R}^{n_1}$,$A_2$ 的特徵空間活在 $\mathbb{R}^{n_2}$,本來就不會重壘 - [ ] 就算唯一相等的只有零向量,也和 $X = O$ 沒關係 - [ ] 第二段的論證不完整也不正確 ::: $Ans:$ 若 $A_1$ 和 $A_2$ 沒有共通特徵值且皆為對角矩陣,特徵空間便不會有重疊。 而特徵空間不重疊的情況下向量唯一相等便是為零向量,由此可得 $X$ 為零矩陣。 若 $A_1$ 和 $A_2$ 不是對角矩陣,則視 $A_1$ 和 $A_2$ 為 $A_1=Y_1A'_1$ 和 $A_2=A'_2Y_2$,其中 $A'_1$ 及 $A'_2$ 為對角矩陣,$A_1$ 和 $A_2$ 依然沒有共通特徵空間,$X$ 為零矩陣。 ##### Exercise 7(c) 令 $A$ 和 $B$ 為大小相同的方陣且 $AB = BA$。 假設 $A$ 的相異特徵值為 $\lambda_1, \ldots, \lambda_q$、$q \geq 2$、 且 $E_{\lambda_1},\ldots,E_{\lambda_q}$ 分別為其特徵空間。 令 $V_1 = E_{\lambda_1}$ 而 $V_2 = E_{\lambda_2}\oplus\cdots\oplus E_{\lambda_q}$、 且 $\beta_1$ 和 $\beta_2$ 分別為 $V_1$ 和 $V_2$ 的基底。 取 $\beta = \beta_1 \cup \beta_2$, 證明有以下型式: $$ [f_A]_\beta^\beta = \begin{bmatrix} A_1 & O \\ O & A_2 \end{bmatrix} \text{ and } [f_B]_\beta^\beta = \begin{bmatrix} B_1 & O \\ O & B_2 \end{bmatrix}, $$ 其中 $A_1$ 和 $B_1$ 的大小為 $V_1$ 的維度、 而 $A_2$ 和 $B_2$ 的大小為 $V_2$ 的維度。 :::warning - [ ] 不完整 ::: $Ans:$ $A_1$ 和 $B_1$ 之基底取決於 $\beta_1$ 的大小,且 $\beta_1$ 為 $V_1$ 的基底。 同理 $A_2$ 和 $B_2$。 ##### Exercise 7(d) 證明將前一題 $q = 1$ 的情況, 並用數學歸納法證明: 若 $A$ 和 $B$ 皆可對角化,且 $AB = BA$, 則 $A$ 和 $B$ 可同時對角化。 $Ans:$ 設$Q^{-1}AQ=C$ 和 $T^{-1}BT=D$ 對角矩陣 $CD=DC$ $CD=DC=Q^{-1}AQT^{-1}BT=T^{-1}BTQ^{-1}AQ$ 若 $AB=BA$ 則 $Q=T$ 則 $Q^{-1}AQT^{-1}BT=Q^{-1}ABQ=Q^{-1}BAQ$ 又 $QQ^{-1}ABQQ^{-1}=QQ^{-1}BAQQ^{-1}=AB=BA$ 因此 $A$ 和 $B$ 可同時對角化。 :::warning - [ ] 未回答 ::: :::info 目前分數 = 4 &times; 檢討 = 6.5 :::

Import from clipboard

Paste your markdown or webpage here...

Advanced permission required

Your current role can only read. Ask the system administrator to acquire write and comment permission.

This team is disabled

Sorry, this team is disabled. You can't edit this note.

This note is locked

Sorry, only owner can edit this note.

Reach the limit

Sorry, you've reached the max length this note can be.
Please reduce the content or divide it to more notes, thank you!

Import from Gist

Import from Snippet

or

Export to Snippet

Are you sure?

Do you really want to delete this note?
All users will lose their connection.

Create a note from template

Create a note from template

Oops...
This template has been removed or transferred.
Upgrade
All
  • All
  • Team
No template.

Create a template

Upgrade

Delete template

Do you really want to delete this template?
Turn this template into a regular note and keep its content, versions, and comments.

This page need refresh

You have an incompatible client version.
Refresh to update.
New version available!
See releases notes here
Refresh to enjoy new features.
Your user state has changed.
Refresh to load new user state.

Sign in

Forgot password

or

By clicking below, you agree to our terms of service.

Sign in via Facebook Sign in via Twitter Sign in via GitHub Sign in via Dropbox Sign in with Wallet
Wallet ( )
Connect another wallet

New to HackMD? Sign up

Help

  • English
  • 中文
  • Français
  • Deutsch
  • 日本語
  • Español
  • Català
  • Ελληνικά
  • Português
  • italiano
  • Türkçe
  • Русский
  • Nederlands
  • hrvatski jezik
  • język polski
  • Українська
  • हिन्दी
  • svenska
  • Esperanto
  • dansk

Documents

Help & Tutorial

How to use Book mode

Slide Example

API Docs

Edit in VSCode

Install browser extension

Contacts

Feedback

Discord

Send us email

Resources

Releases

Pricing

Blog

Policy

Terms

Privacy

Cheatsheet

Syntax Example Reference
# Header Header 基本排版
- Unordered List
  • Unordered List
1. Ordered List
  1. Ordered List
- [ ] Todo List
  • Todo List
> Blockquote
Blockquote
**Bold font** Bold font
*Italics font* Italics font
~~Strikethrough~~ Strikethrough
19^th^ 19th
H~2~O H2O
++Inserted text++ Inserted text
==Marked text== Marked text
[link text](https:// "title") Link
![image alt](https:// "title") Image
`Code` Code 在筆記中貼入程式碼
```javascript
var i = 0;
```
var i = 0;
:smile: :smile: Emoji list
{%youtube youtube_id %} Externals
$L^aT_eX$ LaTeX
:::info
This is a alert area.
:::

This is a alert area.

Versions and GitHub Sync
Get Full History Access

  • Edit version name
  • Delete

revision author avatar     named on  

More Less

Note content is identical to the latest version.
Compare
    Choose a version
    No search result
    Version not found
Sign in to link this note to GitHub
Learn more
This note is not linked with GitHub
 

Feedback

Submission failed, please try again

Thanks for your support.

On a scale of 0-10, how likely is it that you would recommend HackMD to your friends, family or business associates?

Please give us some advice and help us improve HackMD.

 

Thanks for your feedback

Remove version name

Do you want to remove this version name and description?

Transfer ownership

Transfer to
    Warning: is a public team. If you transfer note to this team, everyone on the web can find and read this note.

      Link with GitHub

      Please authorize HackMD on GitHub
      • Please sign in to GitHub and install the HackMD app on your GitHub repo.
      • HackMD links with GitHub through a GitHub App. You can choose which repo to install our App.
      Learn more  Sign in to GitHub

      Push the note to GitHub Push to GitHub Pull a file from GitHub

        Authorize again
       

      Choose which file to push to

      Select repo
      Refresh Authorize more repos
      Select branch
      Select file
      Select branch
      Choose version(s) to push
      • Save a new version and push
      • Choose from existing versions
      Include title and tags
      Available push count

      Pull from GitHub

       
      File from GitHub
      File from HackMD

      GitHub Link Settings

      File linked

      Linked by
      File path
      Last synced branch
      Available push count

      Danger Zone

      Unlink
      You will no longer receive notification when GitHub file changes after unlink.

      Syncing

      Push failed

      Push successfully