Jephian Lin
    • Create new note
    • Create a note from template
      • Sharing URL Link copied
      • /edit
      • View mode
        • Edit mode
        • View mode
        • Book mode
        • Slide mode
        Edit mode View mode Book mode Slide mode
      • Customize slides
      • Note Permission
      • Read
        • Only me
        • Signed-in users
        • Everyone
        Only me Signed-in users Everyone
      • Write
        • Only me
        • Signed-in users
        • Everyone
        Only me Signed-in users Everyone
      • Engagement control Commenting, Suggest edit, Emoji Reply
    • Invite by email
      Invitee

      This note has no invitees

    • Publish Note

      Share your work with the world Congratulations! 🎉 Your note is out in the world Publish Note

      Your note will be visible on your profile and discoverable by anyone.
      Your note is now live.
      This note is visible on your profile and discoverable online.
      Everyone on the web can find and read all notes of this public team.
      See published notes
      Unpublish note
      Please check the box to agree to the Community Guidelines.
      View profile
    • Commenting
      Permission
      Disabled Forbidden Owners Signed-in users Everyone
    • Enable
    • Permission
      • Forbidden
      • Owners
      • Signed-in users
      • Everyone
    • Suggest edit
      Permission
      Disabled Forbidden Owners Signed-in users Everyone
    • Enable
    • Permission
      • Forbidden
      • Owners
      • Signed-in users
    • Emoji Reply
    • Enable
    • Versions and GitHub Sync
    • Note settings
    • Note Insights
    • Engagement control
    • Transfer ownership
    • Delete this note
    • Save as template
    • Insert from template
    • Import from
      • Dropbox
      • Google Drive
      • Gist
      • Clipboard
    • Export to
      • Dropbox
      • Google Drive
      • Gist
    • Download
      • Markdown
      • HTML
      • Raw HTML
Menu Note settings Versions and GitHub Sync Note Insights Sharing URL Create Help
Create Create new note Create a note from template
Menu
Options
Engagement control Transfer ownership Delete this note
Import from
Dropbox Google Drive Gist Clipboard
Export to
Dropbox Google Drive Gist
Download
Markdown HTML Raw HTML
Back
Sharing URL Link copied
/edit
View mode
  • Edit mode
  • View mode
  • Book mode
  • Slide mode
Edit mode View mode Book mode Slide mode
Customize slides
Note Permission
Read
Only me
  • Only me
  • Signed-in users
  • Everyone
Only me Signed-in users Everyone
Write
Only me
  • Only me
  • Signed-in users
  • Everyone
Only me Signed-in users Everyone
Engagement control Commenting, Suggest edit, Emoji Reply
  • Invite by email
    Invitee

    This note has no invitees

  • Publish Note

    Share your work with the world Congratulations! 🎉 Your note is out in the world Publish Note

    Your note will be visible on your profile and discoverable by anyone.
    Your note is now live.
    This note is visible on your profile and discoverable online.
    Everyone on the web can find and read all notes of this public team.
    See published notes
    Unpublish note
    Please check the box to agree to the Community Guidelines.
    View profile
    Engagement control
    Commenting
    Permission
    Disabled Forbidden Owners Signed-in users Everyone
    Enable
    Permission
    • Forbidden
    • Owners
    • Signed-in users
    • Everyone
    Suggest edit
    Permission
    Disabled Forbidden Owners Signed-in users Everyone
    Enable
    Permission
    • Forbidden
    • Owners
    • Signed-in users
    Emoji Reply
    Enable
    Import from Dropbox Google Drive Gist Clipboard
       owned this note    owned this note      
    Published Linked with GitHub
    Subscribed
    • Any changes
      Be notified of any changes
    • Mention me
      Be notified of mention me
    • Unsubscribe
    Subscribe
    # 凱力–漢米頓定理 ![Creative Commons License](https://i.creativecommons.org/l/by/4.0/88x31.png) This work by Jephian Lin is licensed under a [Creative Commons Attribution 4.0 International License](http://creativecommons.org/licenses/by/4.0/). $\newcommand{\trans}{^\top} \newcommand{\adj}{^{\rm adj}} \newcommand{\cof}{^{\rm cof}} \newcommand{\inp}[2]{\left\langle#1,#2\right\rangle} \newcommand{\dunion}{\mathbin{\dot\cup}} \newcommand{\bzero}{\mathbf{0}} \newcommand{\bone}{\mathbf{1}} \newcommand{\ba}{\mathbf{a}} \newcommand{\bb}{\mathbf{b}} \newcommand{\bc}{\mathbf{c}} \newcommand{\bd}{\mathbf{d}} \newcommand{\be}{\mathbf{e}} \newcommand{\bh}{\mathbf{h}} \newcommand{\bp}{\mathbf{p}} \newcommand{\bq}{\mathbf{q}} \newcommand{\br}{\mathbf{r}} \newcommand{\bx}{\mathbf{x}} \newcommand{\by}{\mathbf{y}} \newcommand{\bz}{\mathbf{z}} \newcommand{\bu}{\mathbf{u}} \newcommand{\bv}{\mathbf{v}} \newcommand{\bw}{\mathbf{w}} \newcommand{\tr}{\operatorname{tr}} \newcommand{\nul}{\operatorname{null}} \newcommand{\rank}{\operatorname{rank}} %\newcommand{\ker}{\operatorname{ker}} \newcommand{\range}{\operatorname{range}} \newcommand{\Col}{\operatorname{Col}} \newcommand{\Row}{\operatorname{Row}} \newcommand{\spec}{\operatorname{spec}} \newcommand{\vspan}{\operatorname{span}} \newcommand{\Vol}{\operatorname{Vol}} \newcommand{\sgn}{\operatorname{sgn}} \newcommand{\idmap}{\operatorname{id}} \newcommand{\am}{\operatorname{am}} \newcommand{\gm}{\operatorname{gm}}$ ```python from lingeo import random_int_list from linspace import vtop ``` ## Main idea Let $A$ be an $n\times n$ matrix and $$ p(x) = a_0x^d + a_1x^{d-1} + \cdots + a_d $$ a polynomial. Then define $$ p(A) = a_0A^d + a_1A^{d-1} + \cdots + a_dI. $$ ##### Cayley–Hamilton Theorem Let $A$ be an $n\times n$ matrix and $$ p_A(x) = s_0(-x)^n + s_1(-x)^{n-1} + \cdots + s_n $$ its characteristic polyonimal. Then $$ p_A(A) = s_0(-A)^n + s_1(-A)^{n-1} + \cdots + s_nI = O. $$ ##### Remark Although $p_A(x) = \det(A - xI)$, it is not correct that $p_A(A) = \det(A - A\cdot I)$ by definition. In particular, $p_A(A)$ is a matrix, while $\det(A - AI)$ is a number. ##### Proof of the Cayley–Hamilton Theorem Let $A_x = A - xI$. Then we know $\det(A_x) = p_A(x)$ and the adjucate $A_x\adj$ of $A_x$ has the property $$ \begin{aligned} A_x\adj A_x &= p_A(x) I \\ &= s_0I(-x)^n + s_1I(-x)^{n-1} + \cdots + s_nI. \end{aligned} $$ On the other hand, each entry of $A_x\adj$ is a polynomial of degree at most $n-1$, so we may write $$ A_x\adj = C_1(-x)^{n-1} + C_2(-x)^{n-2} + \cdots + C_n $$ for some constant matrices $C_1,\ldots, C_n$. Therefore, $$ \begin{aligned} A_x\adj A_x &= A_x\adj(A - xI) \\ &= C_1(-x)^n + (C_1A + C_2)(-x)^{n-1} + \cdots + (C_{n-1}A + C_n)(-x) + C_nA. \end{aligned} $$ By comparing the coefficients of the two expressions of $A_x\adj A_x$ we get $$ \begin{array}{rclcl} s_0 I &= & & &C_1 \\ s_1 I &= &C_1A &+ &C_2\\ \vdots &&&& \\ s_{n-1}I &= &C_{n-1}A &+ &C_n\\ s_nI &= &C_nA. & & \end{array} $$ By post-multiplying $(-A)^n-k$ to both sides of the $k$-th equation for $k = 0,\ldots, n$, we get $$ \begin{aligned} p_A(A) &= s_0(-A)^n + s_1(-A)^{n-1} + \cdots + s_nI \\ &= C_1(-A)^n + C_1A(-A)^{n-1} + C_2(-A)^{n-1} + C_2A(-A)^{n-2} + \cdots + C_n(-A) + C_nA\\ &= O. \end{aligned} $$ Notice that $s_0,\ldots,s_n$ can be written as polynomials in entries of $A$. Also, each entry of $A^0,\ldots,A^n$ can be written as a polynomial in entries of $A$. This mean each entry of $p_A(A)$ is a polynomial in entries of $A$, and it is zero polynomial! How come these terms cancel with each other can be viewed from graph theory, but it is beyond the scope. See the book _A Combinatorial Approach to Matrix Theory and Its Applications_ by Richard A. Brualdi and Dragoš Cvetković for more details. ## Side stories - matrix as a complex number ## Experiments ##### Exercise 1 執行以下程式碼。 ```python ### code set_random_seed(0) print_ans = False n = 2 A = matrix(n, random_int_list(n^2)) cs = random_int_list(n + 1) p = vtop(cs) print("n =", n) pretty_print(LatexExpr("A ="), A) pretty_print(LatexExpr("p ="), p) if print_ans: for i in range(n + 1): pretty_print(LatexExpr("A^{%s} ="%i), A^i) pofA = sum([cs[i] * A^i for i in range(n + 1)], identity_matrix(n)) pretty_print(LatexExpr("p(A) ="), pofA) ``` ##### Exercise 1(a) 計算 $A^0, A^1, \ldots, A^n$。 $Ans:$ 當 `seed = 1` 時, $n = 2 , A = \begin{bmatrix} 0 & 3 \\ 4 & -1 \end{bmatrix} , p = 3x^2 − 5,$ $A^2 = \begin{bmatrix} 0 & 3 \\ 4 & -1 \end{bmatrix} \begin{bmatrix} 0 & 3 \\ 4 & -1 \end{bmatrix} = \begin{bmatrix} 12 & -3 \\ -4 & 13 \end{bmatrix},$ $A^1 = A = \begin{bmatrix} 0 & 3 \\ 4 & -1 \end{bmatrix},$ $A^0 = I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}。$ ##### Exercise 1(b) 計算 $p(A)$。 $Ans:$ 根據 1(a) 可得知 $p(x) = 3x^2 - 5$,因此 $p(A) = 3A^2 - 5I = \begin{bmatrix} 36 & -9 \\ -12 & 39 \end{bmatrix} - \begin{bmatrix} 5 & 0 \\ 0 & 5 \end{bmatrix} = \begin{bmatrix} 31 & -9 \\ -12 & 34 \end{bmatrix}。$ ## Exercises ##### Exercise 2 令 $$ p(x) = x^2 - 5x + 6 = (x - 2)(x - 3). $$ 說明 $$ p(A) = A^2 - 5A + 6 = (A - 2I)(A - 3I). $$ 因此 $p(A)$ 不會因為 $p$ 的表達式不同而影響結果。 :::warning - [x] 中和英數字之間留半型空格 ::: 答: $A^2-5A+6I$ 等價於 $(A-2I)(A-3I)$, 因為 $A、I$ 可交換, 於是也等價於 $(2I-A)(3I-A)$。 故 $p(A)$ 不會因 $p$ 的表達式不同而影響結果。 ##### Exercise 3 對以下 $n\times n$ 矩陣 $A$, 求出其特徵多項式 $p_A(x)$ 並計算 $A^0, \ldots, A^n$, 最後驗證 $p_A(A) = O$。 ##### Exercise 3(a) $$ A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}. $$ :::warning - [x] 標點 - [x] 中和英數字之間留半型空格 - [x] 等號不要跳出數學模式 ::: 其特稱多項式 $p_A(x) = (1-x)(4-x)-6 = x^2-5x-2$。 $A^0 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$, $A^1 = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$, $A^2 = \begin{bmatrix} 7 & 10 \\ 15 & 22 \end{bmatrix}$。 可以推得 $p_A(A) = A^2-5A-2I = \begin{bmatrix} 7 & 10 \\ 15 & 22 \end{bmatrix} -5\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} -2\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$。 故 $p_A(A) = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} = O$。 ##### Exercise 3(b) $$ A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}. $$ :::warning - [x] 標點 - [x] 中和英數字之間留半型空格 - [x] 等號不要跳出數學模式 ::: 其特稱多項式 $p_A(x) = -x^3+3x^2$, $A^0 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$, $A^1 = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$, $A^2 = \begin{bmatrix} 3 & 3 & 3 \\ 3 & 3 & 3 \\ 3 & 3 & 3 \end{bmatrix}$, $A^3 = \begin{bmatrix} 9 & 9 & 9 \\ 9 & 9 & 9 \\ 9 & 9 & 9 \end{bmatrix}$。 故可以推得 $p_A(A) = -A^3+3A^2 =\begin{bmatrix} 9 & 9 & 9 \\ 9 & 9 & 9 \\ 9 & 9 & 9 \end{bmatrix} -3\begin{bmatrix} 3 & 3 & 3 \\ 3 & 3 & 3 \\ 3 & 3 & 3 \end{bmatrix} =\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} =O$。 ##### Exercise 4 令 $$ A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}. $$ 計算 $B_1 = A - I$、$B_2 = A - 2I$、及 $B_3 = A - 3I$。 說明 $B_1,B_2,B_3$ 彼此兩兩可交換,並驗證 $B_1B_2B_3 = O$。 求出特徵多項式 $p_A(x)$ 並說明為什麼 $p_A(A) = O$。 $Ans:$ 根據題目, $$ \begin{aligned} B_1 &= A - I = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{bmatrix}, \\ B_2 &= A - 2I = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \\ B_3 &= A - 3I = \begin{bmatrix} -1 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & 0 \end{bmatrix}。 \end{aligned} $$ 而經過運算可得 $$ \begin{aligned} B_1B_2 &= \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 2 \end{bmatrix} = B_2B_1, \\ B_2B_3 &= \begin{bmatrix} -1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} = B_3B_2, \\ B_1B_3 &= \begin{bmatrix} 0 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & 0 \end{bmatrix} = B_3B_1, \end{aligned} $$ 且 $$ B_1B_2B_3 = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} = O。 $$ 根據定義, $$ \begin{aligned} p_A(x) &= (1 - x)(2 - x)(3 - x) \\ &= - x^3 + 6x^2 - 11x + 6 \end{aligned}. $$ 將 $A$ 代入 $p_A(x)$,可得 $$ \begin{aligned} p_A(A) &= (1I - A)(2I - A)(3I- A) \\ &= (-B_1)(-B_2)(-B_3) \\ &= O. \end{aligned} $$ 因此 $p_A(A) = O$。 :::info 答案都沒問題,不過 $B_1, B_2, B_3$ 兩兩皆可交換的部份,可以觀察它們都是對角矩陣,而任兩個對角矩陣皆可交換。 ::: ##### Exercise 5 令 $$ A = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}. $$ 計算 $A^0, A^1, \ldots, A^5$。 求出特徵多項式 $p_A(x)$ 並說明為什麼 $p_A(A) = O$。 $Ans:$ 根據運算,我們可得 $$ A^0 = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}, $$ $$ A^1 = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}, $$ $$ A^2 = \begin{bmatrix} 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}, $$ $$ A^3 = \begin{bmatrix} 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}, $$ $$ A^4 = \begin{bmatrix} 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}, $$ $$ A^5 = \begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}。 $$ 根據定義, $$ p_A(x) = s_0(-x)^5+s_1(-x)^4+s_2(-x)^3+s_3(-x)^2+s_4(-x)^1+s_5(-x)^0。 $$ 而經過運算可求出 $s_0 = 1,s_1 = s_2 = s_3 = s_4 = s_5 = 0$。 因此 $$ \begin{aligned} p_A(A) &= 1(-A)^5+0(-A)^4+0(-A)^3+0(-A)^2+0(-A)^1+0(-A)^0 \\ &= -1\begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} \\ &= O。 \end{aligned} $$ ##### Exercise 6 令 $$ A = \begin{bmatrix} 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 2 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 2 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 2 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 3 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 3 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 3 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 3 \end{bmatrix} $$ 計算 $B_1 = (A - I)^2$、$B_2 = (A - 2I)^3$、及 $B_3 = (A - 3I)^4$。 說明 $B_1,B_2,B_3$ 彼此兩兩可交換,並驗證 $B_1B_2B_3 = O$。 求出特徵多項式 $p_A(x)$ 並說明為什麼 $p_A(A) = O$。 :::warning - [ ] 沒有解釋為什麼兩兩可交換 ::: $Ans:$ $$B_1 = (A - I)^2 = \begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 2 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 2 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 4 & 4 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 4 & 4 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 4 & 4 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 4 \end{bmatrix} $$ $$B_2 = (A - 2I)^3 = \begin{bmatrix} -1 & 3 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 3 & 3 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 3 & 3 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 3 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix} $$ $$B_3 = (A - 3I)^4 = \begin{bmatrix} 16 & -32 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 16 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & -4 & 6 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & -4 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix} $$ 令 $$ X_1 = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}, X_2 = \begin{bmatrix} 2 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2\end{bmatrix}, X_3 = \begin{bmatrix} 3 & 1 & 0 & 0 \\ 0 & 3 & 1 & 0\\ 0 & 0 & 3 & 1 \\ 0 & 0 & 0 & 3\\ \end{bmatrix} $$ $A = X_1 \oplus X_2 \oplus X_3$,因此可以得知 $B_1 = (A - I)^2 = (X_1 - I)^2 \oplus (X_2 - I)^2 \oplus (X_3 -I)^2 = O \oplus (X_2 - I)^2 \oplus (X_3 -I)^2$, 同理 $B_2 = (A - 2I)^3 = (X_1 - 2I)^3 \oplus O \oplus (X_3 -2I)^3$, $B_3 = (A - 3I)^4 = (X_1 - 3I)^4 \oplus (X_2 - 3I)^4 \oplus O$, 透過以上條件,可以得知在 $B_1,B_2,B_3$ 互乘的時候,每個區域皆至少有一個 $O$,因此" $B_1B_2B_3 = O$ 且 $B_1,B_2,B_3$ 彼此可互換"得證。 透過觀察我們可以得知 $A$ 為上三角矩陣,因此特徵多項式 $p_A(x) = \det(A - xI) = (1 - x)^2 (2 - x)^3 (3 - x)^4$,而 $B_1B_2B_3 = (A - I)^2 (A - 2I)^3 (A - 3I)^4 = (I - A)^2 (2I - A)^3 (3I - A)^4 = O$ ,因此可以推論出 $p_A(A) = (I - A)^2 (2I - A)^3 (3I - A)^4 = O$。 ##### Exercise 7 令 $$ A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix} $$ 而 $A_x - xI$。 計算 $A_x\adj$ 並將其寫成 $$ A_x\adj = C_1(-x)^{2} + C_2(-x)^{1} + C_3. $$ $Ans:$ 利用伴隨矩陣公式(參考 $410$ ),可得 $\det A_x(1,1) = \det\begin{bmatrix} 5-x & 6 \\ 8 & 9-x \\ \end{bmatrix}=x^2-14x-3$, $\det A_x(1,2) = \det\begin{bmatrix} 4 & 6 \\ 7 & 9-x \\ \end{bmatrix} =-4x-6$, $\det A_x(1,3) = \det\begin{bmatrix} 4 & 5-x \\ 7 & 8 \\ \end{bmatrix}=7x-3$, $\det A_x(2,1) = \det\begin{bmatrix} 2 & 3 \\ 8 & 9-x \\ \end{bmatrix}=-2x-6$, $\det A_x(2,2) = \det\begin{bmatrix} 1-x & 3 \\ 7 & 9-x \\ \end{bmatrix}=x^2-10x-12$, $\det A_x(2,3) = \det\begin{bmatrix} 1-x & 2 \\ 7 & 8 \\ \end{bmatrix}=-8x-6$, $\det A_x(3,1) = \det\begin{bmatrix} 2 & 3 \\ 5-x & 6 \\ \end{bmatrix}=3x-3$, $\det A_x(3,2) = \det\begin{bmatrix} 1-x & 3 \\ 4 & 6 \\ \end{bmatrix}=-6x-6$, $\det A_x(3,3) = \det\begin{bmatrix} 1-x & 2 \\ 4 & 5-x \\ \end{bmatrix}=x^2-6x-3$。 則 $A_x\adj=\begin{bmatrix} x^2-14x-3& 2x+6 &3x-3 \\ 4x+6 & x^2-10x-12 &6x+6 \\ 7x-3 & 8x+6 & x^2-6x-3 \end{bmatrix} =C_1(-x)^{2} + C_2(-x)^{1} + C_3$。 把其按照 $x^n$ 拆開,可得 $C_1=\begin{bmatrix} 1& 0 &0 \\ 0 & 1 &0 \\ 0 & 0 & 1 \end{bmatrix}$, $C_2=\begin{bmatrix} 14& -2 &-3 \\ -4 & 10 &-6 \\ -7 & -8 & 6 \end{bmatrix}$, $C_3=\begin{bmatrix} -3& 6 &-3 \\ 6& -12 &6 \\ -3 & 6 & -3 \end{bmatrix}$。 :::success 你們好棒! 可以比對一下 Main idea 裡的證明,搭配 $$ p_A(x) = 1(-x)^3 + 15(-x)^2 + (-18)(-x) + 0 $$ 你會發覺真的以下式子都成立: 1. $C_1 = s_0I$ 2. $AC_1 + C_2 = s_1I$ 3. $AC_2 + C_3 = s_2I$ 4. $AC_3 = s_3I$ 最後再去計算 $$ p_A(A) = s_0I(-A)^3 + s_1I(-A)^2 + \cdots $$ 就會發現真的等於 $O$。 ::: ##### Exercise 8 當 $z = a + bi$ 為一複數時,定義 $$ A(z) = \begin{bmatrix} a & -b \\ b & a \end{bmatrix}. $$ 驗證對於任兩複數 $z_1,z_2$ 都有 - $A(z_1z_2) = A(z_1)A(z_2)$ 及 - $A(z_1 + z_2) = A(z_1) + A(z_2)$。 所以當 $p$ 是一個多項式滿足 $p(z) = 0$ 時,則有 $p(A(z)) = O$。 $Ans:$ 證明- $A(z_1z_2) = A(z_1)A(z_2)$。 令 $z_1=a+bi$ 且 $z_2=c+di$, 則 \begin{aligned} A(z_1z_2) &=A(ac-bd+bci+adi)\\ &=\begin{bmatrix} ac-bd & -bc-ad \\ bc+ad & ac-bd \end{bmatrix}\\ &= \begin{bmatrix} a & -b \\ b & a \end{bmatrix} \begin{bmatrix} c & -d \\ d & c \end{bmatrix}\\ &=A(z_1)A(z_2)。 \end{aligned} 可看出以下性質 如果有一實數 $K$ ,則 \begin{aligned} KA(z_1)&=\begin{bmatrix} Ka & -Kb \\ Kb & Ka \end{bmatrix}\\ &= \begin{bmatrix} a & -b \\ b & a \end{bmatrix} \begin{bmatrix} K & 0\\ 0 & K \end{bmatrix}\\ &=A(Kz_1)。 \end{aligned} 證明- $A(z_1 + z_2) = A(z_1) + A(z_2)$。 \begin{aligned} A(z_1 + z_2)&=A(a+c +bi+di )\\&= \begin{bmatrix} a+c & -b-d \\ b+d & a+d \end{bmatrix}\\ &= \begin{bmatrix} a & -b \\ b & a \end{bmatrix}+ \begin{bmatrix} c & -d \\ d & c \end{bmatrix}\\ &=A(z_1)+A(z_2)。 \end{aligned} 令 $p(x)=a_nx^n+...+a_1x+a_0$ 且 $p(z)=0$, $\begin{aligned} p(A(z)) &=a_nA(z)^n+...+a_1A(z)+a_0I\\ &=a_nIA(z^n)+...+a_1IA(z)+a_0I\\ &=A(a_nz^n+...+a_1z+a_0)\\ &=A(p(z))\\ &=A(0)\\ &=O。 \end{aligned}$ :::success Nice work! ::: :::info 目前分數 = 6.5 × 檢討 = 6.5 :::

    Import from clipboard

    Paste your markdown or webpage here...

    Advanced permission required

    Your current role can only read. Ask the system administrator to acquire write and comment permission.

    This team is disabled

    Sorry, this team is disabled. You can't edit this note.

    This note is locked

    Sorry, only owner can edit this note.

    Reach the limit

    Sorry, you've reached the max length this note can be.
    Please reduce the content or divide it to more notes, thank you!

    Import from Gist

    Import from Snippet

    or

    Export to Snippet

    Are you sure?

    Do you really want to delete this note?
    All users will lose their connection.

    Create a note from template

    Create a note from template

    Oops...
    This template has been removed or transferred.
    Upgrade
    All
    • All
    • Team
    No template.

    Create a template

    Upgrade

    Delete template

    Do you really want to delete this template?
    Turn this template into a regular note and keep its content, versions, and comments.

    This page need refresh

    You have an incompatible client version.
    Refresh to update.
    New version available!
    See releases notes here
    Refresh to enjoy new features.
    Your user state has changed.
    Refresh to load new user state.

    Sign in

    Forgot password

    or

    By clicking below, you agree to our terms of service.

    Sign in via Facebook Sign in via Twitter Sign in via GitHub Sign in via Dropbox Sign in with Wallet
    Wallet ( )
    Connect another wallet

    New to HackMD? Sign up

    Help

    • English
    • 中文
    • Français
    • Deutsch
    • 日本語
    • Español
    • Català
    • Ελληνικά
    • Português
    • italiano
    • Türkçe
    • Русский
    • Nederlands
    • hrvatski jezik
    • język polski
    • Українська
    • हिन्दी
    • svenska
    • Esperanto
    • dansk

    Documents

    Help & Tutorial

    How to use Book mode

    Slide Example

    API Docs

    Edit in VSCode

    Install browser extension

    Contacts

    Feedback

    Discord

    Send us email

    Resources

    Releases

    Pricing

    Blog

    Policy

    Terms

    Privacy

    Cheatsheet

    Syntax Example Reference
    # Header Header 基本排版
    - Unordered List
    • Unordered List
    1. Ordered List
    1. Ordered List
    - [ ] Todo List
    • Todo List
    > Blockquote
    Blockquote
    **Bold font** Bold font
    *Italics font* Italics font
    ~~Strikethrough~~ Strikethrough
    19^th^ 19th
    H~2~O H2O
    ++Inserted text++ Inserted text
    ==Marked text== Marked text
    [link text](https:// "title") Link
    ![image alt](https:// "title") Image
    `Code` Code 在筆記中貼入程式碼
    ```javascript
    var i = 0;
    ```
    var i = 0;
    :smile: :smile: Emoji list
    {%youtube youtube_id %} Externals
    $L^aT_eX$ LaTeX
    :::info
    This is a alert area.
    :::

    This is a alert area.

    Versions and GitHub Sync
    Get Full History Access

    • Edit version name
    • Delete

    revision author avatar     named on  

    More Less

    Note content is identical to the latest version.
    Compare
      Choose a version
      No search result
      Version not found
    Sign in to link this note to GitHub
    Learn more
    This note is not linked with GitHub
     

    Feedback

    Submission failed, please try again

    Thanks for your support.

    On a scale of 0-10, how likely is it that you would recommend HackMD to your friends, family or business associates?

    Please give us some advice and help us improve HackMD.

     

    Thanks for your feedback

    Remove version name

    Do you want to remove this version name and description?

    Transfer ownership

    Transfer to
      Warning: is a public team. If you transfer note to this team, everyone on the web can find and read this note.

        Link with GitHub

        Please authorize HackMD on GitHub
        • Please sign in to GitHub and install the HackMD app on your GitHub repo.
        • HackMD links with GitHub through a GitHub App. You can choose which repo to install our App.
        Learn more  Sign in to GitHub

        Push the note to GitHub Push to GitHub Pull a file from GitHub

          Authorize again
         

        Choose which file to push to

        Select repo
        Refresh Authorize more repos
        Select branch
        Select file
        Select branch
        Choose version(s) to push
        • Save a new version and push
        • Choose from existing versions
        Include title and tags
        Available push count

        Pull from GitHub

         
        File from GitHub
        File from HackMD

        GitHub Link Settings

        File linked

        Linked by
        File path
        Last synced branch
        Available push count

        Danger Zone

        Unlink
        You will no longer receive notification when GitHub file changes after unlink.

        Syncing

        Push failed

        Push successfully