owned this note
owned this note
Published
Linked with GitHub
# 凱力–漢米頓定理

This work by Jephian Lin is licensed under a [Creative Commons Attribution 4.0 International License](http://creativecommons.org/licenses/by/4.0/).
$\newcommand{\trans}{^\top}
\newcommand{\adj}{^{\rm adj}}
\newcommand{\cof}{^{\rm cof}}
\newcommand{\inp}[2]{\left\langle#1,#2\right\rangle}
\newcommand{\dunion}{\mathbin{\dot\cup}}
\newcommand{\bzero}{\mathbf{0}}
\newcommand{\bone}{\mathbf{1}}
\newcommand{\ba}{\mathbf{a}}
\newcommand{\bb}{\mathbf{b}}
\newcommand{\bc}{\mathbf{c}}
\newcommand{\bd}{\mathbf{d}}
\newcommand{\be}{\mathbf{e}}
\newcommand{\bh}{\mathbf{h}}
\newcommand{\bp}{\mathbf{p}}
\newcommand{\bq}{\mathbf{q}}
\newcommand{\br}{\mathbf{r}}
\newcommand{\bx}{\mathbf{x}}
\newcommand{\by}{\mathbf{y}}
\newcommand{\bz}{\mathbf{z}}
\newcommand{\bu}{\mathbf{u}}
\newcommand{\bv}{\mathbf{v}}
\newcommand{\bw}{\mathbf{w}}
\newcommand{\tr}{\operatorname{tr}}
\newcommand{\nul}{\operatorname{null}}
\newcommand{\rank}{\operatorname{rank}}
%\newcommand{\ker}{\operatorname{ker}}
\newcommand{\range}{\operatorname{range}}
\newcommand{\Col}{\operatorname{Col}}
\newcommand{\Row}{\operatorname{Row}}
\newcommand{\spec}{\operatorname{spec}}
\newcommand{\vspan}{\operatorname{span}}
\newcommand{\Vol}{\operatorname{Vol}}
\newcommand{\sgn}{\operatorname{sgn}}
\newcommand{\idmap}{\operatorname{id}}
\newcommand{\am}{\operatorname{am}}
\newcommand{\gm}{\operatorname{gm}}$
```python
from lingeo import random_int_list
from linspace import vtop
```
## Main idea
Let $A$ be an $n\times n$ matrix and
$$
p(x) = a_0x^d + a_1x^{d-1} + \cdots + a_d
$$
a polynomial.
Then define
$$
p(A) = a_0A^d + a_1A^{d-1} + \cdots + a_dI.
$$
##### Cayley–Hamilton Theorem
Let $A$ be an $n\times n$ matrix and
$$
p_A(x) = s_0(-x)^n + s_1(-x)^{n-1} + \cdots + s_n
$$
its characteristic polyonimal.
Then
$$
p_A(A) = s_0(-A)^n + s_1(-A)^{n-1} + \cdots + s_nI = O.
$$
##### Remark
Although $p_A(x) = \det(A - xI)$, it is not correct that $p_A(A) = \det(A - A\cdot I)$ by definition.
In particular, $p_A(A)$ is a matrix, while $\det(A - AI)$ is a number.
##### Proof of the Cayley–Hamilton Theorem
Let $A_x = A - xI$.
Then we know $\det(A_x) = p_A(x)$ and the adjucate $A_x\adj$ of $A_x$ has the property
$$
\begin{aligned}
A_x\adj A_x &= p_A(x) I \\
&= s_0I(-x)^n + s_1I(-x)^{n-1} + \cdots + s_nI.
\end{aligned}
$$
On the other hand, each entry of $A_x\adj$ is a polynomial of degree at most $n-1$, so we may write
$$
A_x\adj = C_1(-x)^{n-1} + C_2(-x)^{n-2} + \cdots + C_n
$$
for some constant matrices $C_1,\ldots, C_n$.
Therefore,
$$
\begin{aligned}
A_x\adj A_x &= A_x\adj(A - xI) \\
&= C_1(-x)^n + (C_1A + C_2)(-x)^{n-1} + \cdots + (C_{n-1}A + C_n)(-x) + C_nA.
\end{aligned}
$$
By comparing the coefficients of the two expressions of $A_x\adj A_x$ we get
$$
\begin{array}{rclcl}
s_0 I &= & & &C_1 \\
s_1 I &= &C_1A &+ &C_2\\
\vdots &&&& \\
s_{n-1}I &= &C_{n-1}A &+ &C_n\\
s_nI &= &C_nA. & &
\end{array}
$$
By post-multiplying $(-A)^n-k$ to both sides of the $k$-th equation for $k = 0,\ldots, n$, we get
$$
\begin{aligned}
p_A(A) &= s_0(-A)^n + s_1(-A)^{n-1} + \cdots + s_nI \\
&= C_1(-A)^n + C_1A(-A)^{n-1} + C_2(-A)^{n-1} + C_2A(-A)^{n-2} + \cdots + C_n(-A) + C_nA\\
&= O.
\end{aligned}
$$
Notice that $s_0,\ldots,s_n$ can be written as polynomials in entries of $A$.
Also, each entry of $A^0,\ldots,A^n$ can be written as a polynomial in entries of $A$.
This mean each entry of $p_A(A)$ is a polynomial in entries of $A$, and it is zero polynomial!
How come these terms cancel with each other can be viewed from graph theory, but it is beyond the scope.
See the book _A Combinatorial Approach to Matrix Theory and Its Applications_ by Richard A. Brualdi and Dragoš Cvetković for more details.
## Side stories
- matrix as a complex number
## Experiments
##### Exercise 1
執行以下程式碼。
```python
### code
set_random_seed(0)
print_ans = False
n = 2
A = matrix(n, random_int_list(n^2))
cs = random_int_list(n + 1)
p = vtop(cs)
print("n =", n)
pretty_print(LatexExpr("A ="), A)
pretty_print(LatexExpr("p ="), p)
if print_ans:
for i in range(n + 1):
pretty_print(LatexExpr("A^{%s} ="%i), A^i)
pofA = sum([cs[i] * A^i for i in range(n + 1)], identity_matrix(n))
pretty_print(LatexExpr("p(A) ="), pofA)
```
##### Exercise 1(a)
計算 $A^0, A^1, \ldots, A^n$。
$Ans:$
當 `seed = 1` 時,
$n = 2 ,
A = \begin{bmatrix}
0 & 3 \\ 4 & -1
\end{bmatrix} , p = 3x^2 − 5,$
$A^2 =
\begin{bmatrix}
0 & 3 \\ 4 & -1
\end{bmatrix}
\begin{bmatrix}
0 & 3 \\ 4 & -1
\end{bmatrix} =
\begin{bmatrix}
12 & -3 \\ -4 & 13
\end{bmatrix},$
$A^1 = A =
\begin{bmatrix}
0 & 3 \\ 4 & -1
\end{bmatrix},$
$A^0 = I =
\begin{bmatrix}
1 & 0 \\ 0 & 1
\end{bmatrix}。$
##### Exercise 1(b)
計算 $p(A)$。
$Ans:$
根據 1(a) 可得知 $p(x) = 3x^2 - 5$,因此
$p(A) = 3A^2 - 5I =
\begin{bmatrix}
36 & -9 \\ -12 & 39
\end{bmatrix} -
\begin{bmatrix}
5 & 0 \\ 0 & 5
\end{bmatrix} =
\begin{bmatrix}
31 & -9 \\ -12 & 34
\end{bmatrix}。$
## Exercises
##### Exercise 2
令
$$
p(x) = x^2 - 5x + 6 = (x - 2)(x - 3).
$$
說明
$$
p(A) = A^2 - 5A + 6 = (A - 2I)(A - 3I).
$$
因此 $p(A)$ 不會因為 $p$ 的表達式不同而影響結果。
:::warning
- [x] 中和英數字之間留半型空格
:::
答:
$A^2-5A+6I$ 等價於 $(A-2I)(A-3I)$,
因為 $A、I$ 可交換,
於是也等價於 $(2I-A)(3I-A)$。
故 $p(A)$ 不會因 $p$ 的表達式不同而影響結果。
##### Exercise 3
對以下 $n\times n$ 矩陣 $A$,
求出其特徵多項式 $p_A(x)$ 並計算 $A^0, \ldots, A^n$,
最後驗證 $p_A(A) = O$。
##### Exercise 3(a)
$$
A = \begin{bmatrix}
1 & 2 \\
3 & 4
\end{bmatrix}.
$$
:::warning
- [x] 標點
- [x] 中和英數字之間留半型空格
- [x] 等號不要跳出數學模式
:::
其特稱多項式 $p_A(x) = (1-x)(4-x)-6 = x^2-5x-2$。
$A^0 = \begin{bmatrix}
1 & 0 \\
0 & 1
\end{bmatrix}$,
$A^1 = \begin{bmatrix}
1 & 2 \\
3 & 4
\end{bmatrix}$,
$A^2 = \begin{bmatrix}
7 & 10 \\
15 & 22
\end{bmatrix}$。
可以推得 $p_A(A) = A^2-5A-2I
= \begin{bmatrix}
7 & 10 \\
15 & 22
\end{bmatrix}
-5\begin{bmatrix}
1 & 2 \\
3 & 4
\end{bmatrix}
-2\begin{bmatrix}
1 & 0 \\
0 & 1
\end{bmatrix}$。
故 $p_A(A) = \begin{bmatrix}
0 & 0 \\
0 & 0
\end{bmatrix} = O$。
##### Exercise 3(b)
$$
A = \begin{bmatrix}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{bmatrix}.
$$
:::warning
- [x] 標點
- [x] 中和英數字之間留半型空格
- [x] 等號不要跳出數學模式
:::
其特稱多項式 $p_A(x) = -x^3+3x^2$,
$A^0 = \begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{bmatrix}$,
$A^1 = \begin{bmatrix}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{bmatrix}$,
$A^2 = \begin{bmatrix}
3 & 3 & 3 \\
3 & 3 & 3 \\
3 & 3 & 3
\end{bmatrix}$,
$A^3 = \begin{bmatrix}
9 & 9 & 9 \\
9 & 9 & 9 \\
9 & 9 & 9
\end{bmatrix}$。
故可以推得 $p_A(A) = -A^3+3A^2
=\begin{bmatrix}
9 & 9 & 9 \\
9 & 9 & 9 \\
9 & 9 & 9
\end{bmatrix}
-3\begin{bmatrix}
3 & 3 & 3 \\
3 & 3 & 3 \\
3 & 3 & 3
\end{bmatrix}
=\begin{bmatrix}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{bmatrix}
=O$。
##### Exercise 4
令
$$
A = \begin{bmatrix}
1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 3
\end{bmatrix}.
$$
計算 $B_1 = A - I$、$B_2 = A - 2I$、及 $B_3 = A - 3I$。
說明 $B_1,B_2,B_3$ 彼此兩兩可交換,並驗證 $B_1B_2B_3 = O$。
求出特徵多項式 $p_A(x)$ 並說明為什麼 $p_A(A) = O$。
$Ans:$
根據題目,
$$
\begin{aligned}
B_1 &= A - I = \begin{bmatrix}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 2
\end{bmatrix}, \\
B_2 &= A - 2I = \begin{bmatrix}
-1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{bmatrix}, \\
B_3 &= A - 3I = \begin{bmatrix}
-1 & 0 & 0 \\
0 & -2 & 0 \\
0 & 0 & 0
\end{bmatrix}。
\end{aligned}
$$
而經過運算可得
$$
\begin{aligned}
B_1B_2 &= \begin{bmatrix}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 2
\end{bmatrix} = B_2B_1, \\
B_2B_3 &= \begin{bmatrix}
-1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{bmatrix} = B_3B_2, \\
B_1B_3 &= \begin{bmatrix}
0 & 0 & 0 \\
0 & -2 & 0 \\
0 & 0 & 0
\end{bmatrix} = B_3B_1,
\end{aligned}
$$
且
$$
B_1B_2B_3 = \begin{bmatrix}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{bmatrix} = O。
$$
根據定義,
$$
\begin{aligned}
p_A(x) &= (1 - x)(2 - x)(3 - x) \\
&= - x^3 + 6x^2 - 11x + 6
\end{aligned}.
$$
將 $A$ 代入 $p_A(x)$,可得
$$
\begin{aligned}
p_A(A) &= (1I - A)(2I - A)(3I- A) \\
&= (-B_1)(-B_2)(-B_3) \\
&= O.
\end{aligned}
$$
因此 $p_A(A) = O$。
:::info
答案都沒問題,不過 $B_1, B_2, B_3$ 兩兩皆可交換的部份,可以觀察它們都是對角矩陣,而任兩個對角矩陣皆可交換。
:::
##### Exercise 5
令
$$
A = \begin{bmatrix}
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0
\end{bmatrix}.
$$
計算 $A^0, A^1, \ldots, A^5$。
求出特徵多項式 $p_A(x)$ 並說明為什麼 $p_A(A) = O$。
$Ans:$
根據運算,我們可得
$$
A^0 = \begin{bmatrix}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1
\end{bmatrix},
$$
$$
A^1 = \begin{bmatrix}
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0
\end{bmatrix},
$$
$$
A^2 = \begin{bmatrix}
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{bmatrix},
$$
$$
A^3 = \begin{bmatrix}
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{bmatrix},
$$
$$
A^4 = \begin{bmatrix}
0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{bmatrix},
$$
$$
A^5 = \begin{bmatrix}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{bmatrix}。
$$
根據定義,
$$
p_A(x) = s_0(-x)^5+s_1(-x)^4+s_2(-x)^3+s_3(-x)^2+s_4(-x)^1+s_5(-x)^0。
$$
而經過運算可求出 $s_0 = 1,s_1 = s_2 = s_3 = s_4 = s_5 = 0$。
因此
$$
\begin{aligned}
p_A(A) &= 1(-A)^5+0(-A)^4+0(-A)^3+0(-A)^2+0(-A)^1+0(-A)^0 \\
&= -1\begin{bmatrix}
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{bmatrix} \\
&= O。
\end{aligned}
$$
##### Exercise 6
令
$$
A = \begin{bmatrix}
1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 2 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 2 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 2 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 3 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 3 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 3 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 3
\end{bmatrix}
$$
計算 $B_1 = (A - I)^2$、$B_2 = (A - 2I)^3$、及 $B_3 = (A - 3I)^4$。
說明 $B_1,B_2,B_3$ 彼此兩兩可交換,並驗證 $B_1B_2B_3 = O$。
求出特徵多項式 $p_A(x)$ 並說明為什麼 $p_A(A) = O$。
:::warning
- [ ] 沒有解釋為什麼兩兩可交換
:::
$Ans:$
$$B_1 = (A - I)^2 =
\begin{bmatrix}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 2 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 2 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 4 & 4 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 4 & 4 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 4 & 4 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 4
\end{bmatrix} $$
$$B_2 = (A - 2I)^3 =
\begin{bmatrix}
-1 & 3 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 3 & 3 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 3 & 3 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 3 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{bmatrix} $$
$$B_3 = (A - 3I)^4 =
\begin{bmatrix}
16 & -32 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 16 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & -4 & 6 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & -4 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{bmatrix} $$
令 $$ X_1 = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix},
X_2 = \begin{bmatrix}
2 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2\end{bmatrix},
X_3 = \begin{bmatrix}
3 & 1 & 0 & 0 \\ 0 & 3 & 1 & 0\\
0 & 0 & 3 & 1 \\ 0 & 0 & 0 & 3\\ \end{bmatrix} $$
$A = X_1 \oplus X_2 \oplus X_3$,因此可以得知
$B_1 = (A - I)^2 = (X_1 - I)^2 \oplus (X_2 - I)^2 \oplus (X_3 -I)^2 = O \oplus (X_2 - I)^2 \oplus (X_3 -I)^2$,
同理
$B_2 = (A - 2I)^3 = (X_1 - 2I)^3 \oplus O \oplus (X_3 -2I)^3$,
$B_3 = (A - 3I)^4 = (X_1 - 3I)^4 \oplus (X_2 - 3I)^4 \oplus O$,
透過以上條件,可以得知在 $B_1,B_2,B_3$ 互乘的時候,每個區域皆至少有一個 $O$,因此" $B_1B_2B_3 = O$ 且 $B_1,B_2,B_3$ 彼此可互換"得證。
透過觀察我們可以得知 $A$ 為上三角矩陣,因此特徵多項式 $p_A(x) = \det(A - xI) = (1 - x)^2 (2 - x)^3 (3 - x)^4$,而 $B_1B_2B_3 = (A - I)^2 (A - 2I)^3 (A - 3I)^4 = (I - A)^2 (2I - A)^3 (3I - A)^4 = O$ ,因此可以推論出 $p_A(A) = (I - A)^2 (2I - A)^3 (3I - A)^4 = O$。
##### Exercise 7
令
$$
A = \begin{bmatrix}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9
\end{bmatrix}
$$
而 $A_x - xI$。
計算 $A_x\adj$ 並將其寫成
$$
A_x\adj = C_1(-x)^{2} + C_2(-x)^{1} + C_3.
$$
$Ans:$
利用伴隨矩陣公式(參考 $410$ ),可得
$\det A_x(1,1) = \det\begin{bmatrix}
5-x & 6 \\
8 & 9-x \\
\end{bmatrix}=x^2-14x-3$,
$\det A_x(1,2) = \det\begin{bmatrix}
4 & 6 \\
7 & 9-x \\
\end{bmatrix} =-4x-6$,
$\det A_x(1,3) = \det\begin{bmatrix}
4 & 5-x \\
7 & 8 \\
\end{bmatrix}=7x-3$,
$\det A_x(2,1) = \det\begin{bmatrix}
2 & 3 \\
8 & 9-x \\
\end{bmatrix}=-2x-6$,
$\det A_x(2,2) = \det\begin{bmatrix}
1-x & 3 \\
7 & 9-x \\
\end{bmatrix}=x^2-10x-12$,
$\det A_x(2,3) = \det\begin{bmatrix}
1-x & 2 \\
7 & 8 \\
\end{bmatrix}=-8x-6$,
$\det A_x(3,1) = \det\begin{bmatrix}
2 & 3 \\
5-x & 6 \\
\end{bmatrix}=3x-3$,
$\det A_x(3,2) = \det\begin{bmatrix}
1-x & 3 \\
4 & 6 \\
\end{bmatrix}=-6x-6$,
$\det A_x(3,3) = \det\begin{bmatrix}
1-x & 2 \\
4 & 5-x \\
\end{bmatrix}=x^2-6x-3$。
則
$A_x\adj=\begin{bmatrix}
x^2-14x-3& 2x+6 &3x-3 \\
4x+6 & x^2-10x-12 &6x+6 \\
7x-3 & 8x+6 & x^2-6x-3
\end{bmatrix}
=C_1(-x)^{2} + C_2(-x)^{1} + C_3$。
把其按照 $x^n$ 拆開,可得
$C_1=\begin{bmatrix}
1& 0 &0 \\
0 & 1 &0 \\
0 & 0 & 1
\end{bmatrix}$,
$C_2=\begin{bmatrix}
14& -2 &-3 \\
-4 & 10 &-6 \\
-7 & -8 & 6
\end{bmatrix}$,
$C_3=\begin{bmatrix}
-3& 6 &-3 \\
6& -12 &6 \\
-3 & 6 & -3
\end{bmatrix}$。
:::success
你們好棒!
可以比對一下 Main idea 裡的證明,搭配
$$
p_A(x) = 1(-x)^3 + 15(-x)^2 + (-18)(-x) + 0
$$
你會發覺真的以下式子都成立:
1. $C_1 = s_0I$
2. $AC_1 + C_2 = s_1I$
3. $AC_2 + C_3 = s_2I$
4. $AC_3 = s_3I$
最後再去計算
$$
p_A(A) = s_0I(-A)^3 + s_1I(-A)^2 + \cdots
$$
就會發現真的等於 $O$。
:::
##### Exercise 8
當 $z = a + bi$ 為一複數時,定義
$$
A(z) =
\begin{bmatrix}
a & -b \\
b & a
\end{bmatrix}.
$$
驗證對於任兩複數 $z_1,z_2$ 都有
- $A(z_1z_2) = A(z_1)A(z_2)$ 及
- $A(z_1 + z_2) = A(z_1) + A(z_2)$。
所以當 $p$ 是一個多項式滿足 $p(z) = 0$ 時,則有 $p(A(z)) = O$。
$Ans:$
證明- $A(z_1z_2) = A(z_1)A(z_2)$。
令 $z_1=a+bi$ 且 $z_2=c+di$,
則
\begin{aligned}
A(z_1z_2) &=A(ac-bd+bci+adi)\\
&=\begin{bmatrix}
ac-bd & -bc-ad \\
bc+ad & ac-bd
\end{bmatrix}\\
&=
\begin{bmatrix}
a & -b \\
b & a
\end{bmatrix}
\begin{bmatrix}
c & -d \\
d & c
\end{bmatrix}\\
&=A(z_1)A(z_2)。
\end{aligned}
可看出以下性質
如果有一實數 $K$ ,則
\begin{aligned}
KA(z_1)&=\begin{bmatrix}
Ka & -Kb \\
Kb & Ka
\end{bmatrix}\\
&=
\begin{bmatrix}
a & -b \\
b & a
\end{bmatrix}
\begin{bmatrix}
K & 0\\
0 & K
\end{bmatrix}\\
&=A(Kz_1)。
\end{aligned}
證明- $A(z_1 + z_2) = A(z_1) + A(z_2)$。
\begin{aligned}
A(z_1 + z_2)&=A(a+c +bi+di )\\&=
\begin{bmatrix}
a+c & -b-d \\
b+d & a+d
\end{bmatrix}\\
&=
\begin{bmatrix}
a & -b \\
b & a
\end{bmatrix}+
\begin{bmatrix}
c & -d \\
d & c
\end{bmatrix}\\
&=A(z_1)+A(z_2)。
\end{aligned}
令 $p(x)=a_nx^n+...+a_1x+a_0$
且 $p(z)=0$,
$\begin{aligned}
p(A(z)) &=a_nA(z)^n+...+a_1A(z)+a_0I\\
&=a_nIA(z^n)+...+a_1IA(z)+a_0I\\
&=A(a_nz^n+...+a_1z+a_0)\\
&=A(p(z))\\
&=A(0)\\
&=O。
\end{aligned}$
:::success
Nice work!
:::
:::info
目前分數 = 6.5 × 檢討 = 6.5
:::