Jephian Lin
    • Create new note
    • Create a note from template
      • Sharing URL Link copied
      • /edit
      • View mode
        • Edit mode
        • View mode
        • Book mode
        • Slide mode
        Edit mode View mode Book mode Slide mode
      • Customize slides
      • Note Permission
      • Read
        • Only me
        • Signed-in users
        • Everyone
        Only me Signed-in users Everyone
      • Write
        • Only me
        • Signed-in users
        • Everyone
        Only me Signed-in users Everyone
      • Engagement control Commenting, Suggest edit, Emoji Reply
    • Invite by email
      Invitee

      This note has no invitees

    • Publish Note

      Share your work with the world Congratulations! 🎉 Your note is out in the world Publish Note

      Your note will be visible on your profile and discoverable by anyone.
      Your note is now live.
      This note is visible on your profile and discoverable online.
      Everyone on the web can find and read all notes of this public team.
      See published notes
      Unpublish note
      Please check the box to agree to the Community Guidelines.
      View profile
    • Commenting
      Permission
      Disabled Forbidden Owners Signed-in users Everyone
    • Enable
    • Permission
      • Forbidden
      • Owners
      • Signed-in users
      • Everyone
    • Suggest edit
      Permission
      Disabled Forbidden Owners Signed-in users Everyone
    • Enable
    • Permission
      • Forbidden
      • Owners
      • Signed-in users
    • Emoji Reply
    • Enable
    • Versions and GitHub Sync
    • Note settings
    • Note Insights
    • Engagement control
    • Transfer ownership
    • Delete this note
    • Save as template
    • Insert from template
    • Import from
      • Dropbox
      • Google Drive
      • Gist
      • Clipboard
    • Export to
      • Dropbox
      • Google Drive
      • Gist
    • Download
      • Markdown
      • HTML
      • Raw HTML
Menu Note settings Versions and GitHub Sync Note Insights Sharing URL Create Help
Create Create new note Create a note from template
Menu
Options
Engagement control Transfer ownership Delete this note
Import from
Dropbox Google Drive Gist Clipboard
Export to
Dropbox Google Drive Gist
Download
Markdown HTML Raw HTML
Back
Sharing URL Link copied
/edit
View mode
  • Edit mode
  • View mode
  • Book mode
  • Slide mode
Edit mode View mode Book mode Slide mode
Customize slides
Note Permission
Read
Only me
  • Only me
  • Signed-in users
  • Everyone
Only me Signed-in users Everyone
Write
Only me
  • Only me
  • Signed-in users
  • Everyone
Only me Signed-in users Everyone
Engagement control Commenting, Suggest edit, Emoji Reply
  • Invite by email
    Invitee

    This note has no invitees

  • Publish Note

    Share your work with the world Congratulations! 🎉 Your note is out in the world Publish Note

    Your note will be visible on your profile and discoverable by anyone.
    Your note is now live.
    This note is visible on your profile and discoverable online.
    Everyone on the web can find and read all notes of this public team.
    See published notes
    Unpublish note
    Please check the box to agree to the Community Guidelines.
    View profile
    Engagement control
    Commenting
    Permission
    Disabled Forbidden Owners Signed-in users Everyone
    Enable
    Permission
    • Forbidden
    • Owners
    • Signed-in users
    • Everyone
    Suggest edit
    Permission
    Disabled Forbidden Owners Signed-in users Everyone
    Enable
    Permission
    • Forbidden
    • Owners
    • Signed-in users
    Emoji Reply
    Enable
    Import from Dropbox Google Drive Gist Clipboard
       owned this note    owned this note      
    Published Linked with GitHub
    Subscribed
    • Any changes
      Be notified of any changes
    • Mention me
      Be notified of mention me
    • Unsubscribe
    Subscribe
    # 秩與核數 Rank and nullity ![Creative Commons License](https://i.creativecommons.org/l/by/4.0/88x31.png) This work by Jephian Lin is licensed under a [Creative Commons Attribution 4.0 International License](http://creativecommons.org/licenses/by/4.0/). $\newcommand{\trans}{^\top} \newcommand{\adj}{^{\rm adj}} \newcommand{\cof}{^{\rm cof}} \newcommand{\inp}[2]{\left\langle#1,#2\right\rangle} \newcommand{\dunion}{\mathbin{\dot\cup}} \newcommand{\bzero}{\mathbf{0}} \newcommand{\bone}{\mathbf{1}} \newcommand{\ba}{\mathbf{a}} \newcommand{\bb}{\mathbf{b}} \newcommand{\bc}{\mathbf{c}} \newcommand{\bd}{\mathbf{d}} \newcommand{\be}{\mathbf{e}} \newcommand{\bh}{\mathbf{h}} \newcommand{\bp}{\mathbf{p}} \newcommand{\bq}{\mathbf{q}} \newcommand{\br}{\mathbf{r}} \newcommand{\bx}{\mathbf{x}} \newcommand{\by}{\mathbf{y}} \newcommand{\bz}{\mathbf{z}} \newcommand{\bu}{\mathbf{u}} \newcommand{\bv}{\mathbf{v}} \newcommand{\bw}{\mathbf{w}} \newcommand{\tr}{\operatorname{tr}} \newcommand{\nul}{\operatorname{null}} \newcommand{\rank}{\operatorname{rank}} %\newcommand{\ker}{\operatorname{ker}} \newcommand{\range}{\operatorname{range}} \newcommand{\Col}{\operatorname{Col}} \newcommand{\Row}{\operatorname{Row}} \newcommand{\spec}{\operatorname{spec}} \newcommand{\vspan}{\operatorname{span}} \newcommand{\Vol}{\operatorname{Vol}} \newcommand{\sgn}{\operatorname{sgn}} \newcommand{\idmap}{\operatorname{id}} \newcommand{\am}{\operatorname{am}} \newcommand{\gm}{\operatorname{gm}} \newcommand{\mult}{\operatorname{mult}} \newcommand{\iner}{\operatorname{iner}}$ ```python from lingeo import random_good_matrix ``` ## Main idea Recall that the number of of pivots of a matrix is the number of nonzero rows in its reduced echelon form. Let $A$ be an $m\times n$ matrix with $r$ pivots. Since we know bases of its four fundamental subspaces, we have 1. $\dim(\Row(A)) = \dim(\Col(A)) = r$. 2. $\dim(\ker(A)) = n - r$. 3. $\dim(\ker(A\trans)) = m - r$. The value $r$ is the **rank** of $A$, denoted as $\rank(A)$, the value $n - r$ is the **nullity** of $A$, denoted as $\nul(A) = n - r$, while $m - r$ is usually referred to as the **left nullity** of $A$. Note that $r$ is also the number of leading variables, and $n - r$ is also the number of free variables. ##### Dimension theorem (matrix form) Let $A$ be an $m\times n$ matrix. Then $\rank(A) + \nul(A) = n$, the number of columns. ## Side stories - low-rank matrix - row rank and column rank ## Experiments ##### Exercise 1 執行下方程式碼。 試著看出 $A$ 的秩、核數、以及左核數。 <!-- eng start --> Run the code below. Find the rank, nullity, and the left nullity of $A$. <!-- eng end --> --- :::warning Math error: What is your $r = 1$? Also, tell the reader what are your $m$ and $n$. Typesetting: - [x] Put numbers in math mode `$...$` . ::: ##### Exercise 1(a) - answer here By running the code above, we obtain that $$A=\begin{bmatrix} 1 & 5 & -5 & -5 \\ 3 & 15 & -14 &-15 \\ 6 & 30 & -27 & -29 \end{bmatrix}.$$ By calculation, the Reduced Echelon Form of $A$ is $$\begin{bmatrix} 1 & 5 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}. $$ By observing the rref of $A,$ $$\rank(A) =3.$$ Since $A$ is an $m\times n$ matrix with $m = 3$ and $n = 4$, we have $$ \nul(A) = n - \rank(A) = 1 $$ and $$ \nul(A\trans) = m - \rank(A) = 0. $$ --- ```python ### code set_random_seed(0) print_ans = False r = choice([3,2,1,0]) m,n,r = 3,4,r A = random_good_matrix(m,n,r) print("A =") show(A) if print_ans: print("rank =", r) print("nullity =", n - r) print("left nullity =", m - r) ``` ## Exercises ##### Exercise 2 令 $A$ 為一矩陣且其秩為 $r$。 回顧 $r$ 同時是列空間和行空間的維度。 以下討論秩的一些基本性質。 <!-- eng start --> Let $A$ be a matrix of rank $r$. Recall that $r$ is the dimension of $\Col(A)$ and the dimension of $\Row(A)$. Here we study some basic properties of rank. <!-- eng end --> ##### Exercise 2(a) 說明 $\rank \begin{bmatrix} A & O \end{bmatrix} = \rank \begin{bmatrix} A \\ O \end{bmatrix} = r$。 更一般來說 $\rank \begin{bmatrix} A & O \\ O & O \end{bmatrix} = r$。 <!-- eng start --> Explain why $\rank \begin{bmatrix} A & O \end{bmatrix} = \rank \begin{bmatrix} A \\ O \end{bmatrix} = r$. More generally, $\rank \begin{bmatrix} A & O \\ O & O \end{bmatrix} = r$. <!-- eng end --> --- :::warning Math error: It is good that you give an example at the beginning, but how exactly do you "apply it to a general case"? - [x] Then, $\rank\begin{bmatrix} A & O \end{bmatrix}$ is, --> Then, $\begin{bmatrix} A & O \end{bmatrix}$ is (rank is NOT the matrix --- revise this throughout.) Writing: - [x] Suppose $A\rightarrow R.$ --> Suppose $A\rightarrow R$, where the arrow means $R$ is the reduced echelon form of $A$. Typesetting: - [x] Put numbers in math mode `$...$` . ::: ##### Exercise 2(a) - answer here Suppose $$A\space=\begin{bmatrix} 1 & 5 & -5 & -5 \\ 3 & 15 & -14 &-15 \\ 6 & 30 & -27 & -29 \end{bmatrix}, \space \rank(A) = 3. $$ $O$ is a zero matrix of appropriate sizes. Let $$ \begin{bmatrix} A & O \end{bmatrix} = \begin{bmatrix} 1 & 5 & -5 & -5 & 0 & 0 & 0 \\ 3 & 15 & -14 & -15 & 0 & 0 & 0\\ 6 & 30 & -27 & -29 & 0 & 0 & 0 \end{bmatrix}, $$ then the $rref$ of the above matrix is, $$\begin{bmatrix} 1 & 5 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 1 & 0 & 0 & 0 \end{bmatrix}. $$ By observation, $\rank \begin{bmatrix} A & O \end{bmatrix} = 3$, for the number of leading variables is $3$. Same as above, let $$ \begin{bmatrix} A \\ O\end{bmatrix} = \begin{bmatrix} 1 & 5 & 0 & 0\\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}, $$ then, by the same reason, $$\rank \begin{bmatrix} A \\ O \end{bmatrix} = 3. $$ Again, let $$ \begin{bmatrix} A & O \\ O & O \end{bmatrix} = \begin{bmatrix} 1 & 5 & 0 & 0 & 0 & 0 & 0\\ 0 & 0 & 1 & 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 1 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}, $$ then $$ \rank \begin{bmatrix} A & O \\ O & O \end{bmatrix}\space =\space 3 . $$ In the preceding condition, it is clear that $$ \rank \begin{bmatrix} A & O \end{bmatrix} = \rank \begin{bmatrix} A \\ O \end{bmatrix} =\rank \begin{bmatrix} A & O \\ O & O \end{bmatrix} \space = \space \rank (A) = \space 3. $$ Thus, we apply it to a general case, where $A$ is a arbitrary $m\times n$ matrix and $O$ is a zero matrix of appropriate sizes. :::warning - [x] Let $A\rightarrow R, \space R$ is the reduced echelon form of $A$ . --> Let $A\rightarrow R$, ==where== $R$ is the reduced echelon form of $A$. - [x] $\begin{bmatrix} A & O \end{bmatrix}\rightarrow\begin{bmatrix} R & O \end{bmatrix},\space and \begin{bmatrix} A \\ O \end{bmatrix}\rightarrow \begin{bmatrix} R \\ O \end{bmatrix}.$ --> $\begin{bmatrix} A & O \end{bmatrix}\rightarrow\begin{bmatrix} R & O \end{bmatrix}$, and $\begin{bmatrix} A \\ O \end{bmatrix}\rightarrow \begin{bmatrix} R \\ O \end{bmatrix}.$ (see source code) - [x] By observing $R, \space \begin{bmatrix} R & O \end{bmatrix} \space and\begin{bmatrix} R \\ O \end{bmatrix},\space$ --> By observing $R$, $\begin{bmatrix} R & O \end{bmatrix}$ and $\begin{bmatrix} R \\ O \end{bmatrix}$, (see source code) ::: Let $A\rightarrow R$, where $R$ is the reduced echelon form of $A$ . Then, $\begin{bmatrix} A & O \end{bmatrix}\rightarrow\begin{bmatrix} R & O \end{bmatrix}$, and $\begin{bmatrix} A \\ O \end{bmatrix}\rightarrow \begin{bmatrix} R \\ O \end{bmatrix}.$ By observing that $R$, $\begin{bmatrix} R & O \end{bmatrix}$ and $\begin{bmatrix} R \\ O \end{bmatrix}$ have the same number of pivots, we know that $\rank \begin{bmatrix} A & O \end{bmatrix}=\rank \begin{bmatrix} A \\ O \end{bmatrix}=\rank(A).$ Let $$ \begin{bmatrix} A & O \\ O & O \end{bmatrix} =\begin{bmatrix} B & O \end{bmatrix}, $$ where $B = \begin{bmatrix} A \\ O \end{bmatrix}$. Then, by preceding observation, $$ \rank\begin{bmatrix} B & O \end{bmatrix} = \rank (B) = \rank (A). $$ Thus, $$ \rank \begin{bmatrix} A & O \end{bmatrix} = \rank \begin{bmatrix} A \\ O \end{bmatrix} =\rank \begin{bmatrix} A & O \\ O & O \end{bmatrix} = \space \rank(A). $$ --- ##### Exercise 2(b) 說明對大小適當的矩陣 $B,C,D$ 來說﹐ $\rank \begin{bmatrix} A & B \end{bmatrix} \geq r$ 且 $\rank \begin{bmatrix} A \\ C \end{bmatrix} \geq r$。 更一般來說 $\rank \begin{bmatrix} A & B \\ C & D \end{bmatrix} \geq r$。 <!-- eng start --> For matrices $B$, $C$, and $D$ of appropriate sizes, show that $\rank \begin{bmatrix} A & B \end{bmatrix} \geq r$ and $\rank \begin{bmatrix} A \\ C \end{bmatrix} \geq r$. More generally, $\rank \begin{bmatrix} A & B \\ C & D \end{bmatrix} \geq r$. <!-- eng end --> --- :::warning Math error: Combining $A$ with $B$, $C$ and $D$ doesn't affect the $r$ pivots that $rref$ of $A$ has. The sentence above is vague. What do you mean by the pivots that the _rref_ of $A$ has? ::: ##### Exercise 2(b) - answer here We know $\dim \Col(A) = \dim \Row(A) = r$. Also, $B$, $C$, and $D$ are matrices of appropriate sizes. Suppose $$\begin{bmatrix} A & B \end{bmatrix} = \begin{bmatrix} | & & | &| & & |\\ \ba_1 & \cdots &\ba_n&\bb_1& \cdots&\bb_n\\ | & & | &| & & | \end{bmatrix}.$$ We can see that $\Col(\begin{bmatrix} A & B \end{bmatrix}) \supseteq \Col(A)$ and $\dim\Col(\begin{bmatrix} A & B \end{bmatrix}) \geq \dim\Col(A) = r.$ Suppose $$\begin{bmatrix} A \\ C \end{bmatrix} = \begin{bmatrix} - & \ba_1 & - \\ ~ & \vdots & \\ - & \ba_m & -\\ - & \bc_1 & - \\ ~ & \vdots & \\ - & \bc_m & - \end{bmatrix}. $$ We can see that $\Row(\begin{bmatrix} A \\ C \end{bmatrix}) \supseteq \Row(A)$ and $\dim\Row(\begin{bmatrix} A \\ C \end{bmatrix}) \geq \dim\Row(A) = r.$ As a result, combining $A$ with $B$, $C$ or $D$ might increase the row space or the column space. In other words, $\dim\Col(A)$ and $\dim\Row(A)$ may increase after combining with $B$, $C$ and $D$. Therefore, $\rank \begin{bmatrix} A & B \end{bmatrix} \geq r$, $\rank \begin{bmatrix} A \\ C \end{bmatrix} \geq r$ and $\rank \begin{bmatrix} A & B \\ C & D \end{bmatrix} \geq r$. --- ##### Exercise 3 證明所有秩為 $1$ 的 $m\times n$ 矩陣 $A$ 都可寫成 $A = \bu\bv\trans$﹐ 其中 $\bu\in\mathbb{R}^m$ 而 $\bv\in\mathbb{R}^n$ 被視為是行向量。 <!-- eng start --> Show that every $m\times n$ matrix of rank $1$ can be written as $\bu\bv\trans$ for some column vectors $\bu\in\mathbb{R}^m$ and $\bv\in\mathbb{R}^n$. <!-- eng end --> --- :::warning Writing: - [x] Thus, each row equals to $k\bv\trans$ for some $k$. --> Thus, each row can be written as $k_i\bv$ for some vector $\bv$ and scalar $k_i$. - [x] What is the purpose of the first sentence "Suppose ..."? Typesetting: - [x] Use normal font for numbers, instead of boldface. - [x] Put math expressions in math mode. ::: ##### Exercise 3 - answer here According to the question, we know $\rank(A) = \dim \Row(A) = \dim \Col(A) = 1$. Therefore, we may assume $\Row(A) = \vspan(\{\bv\trans\})$ for some vector $\bv$. Thus, each row equals to $k\bv\trans$ for some $k$. $$A=\begin{bmatrix} k_1\bv\trans \\ k_2\bv\trans \\ \vdots\\ k_m\bv\trans \end{bmatrix} =\begin{bmatrix} k_1 \\ k_2 \\ \vdots\\ k_m \end{bmatrix} \begin{bmatrix} \bv\trans \end{bmatrix}. $$ Therefore, we know every $m\times n$ matrix of rank $1$ can be written as $\bu\bv\trans$ for some column vectors $\bu = \begin{bmatrix} k_1 \\ k_2 \\ \vdots\\ k_m \end{bmatrix}\in\mathbb{R}^m$ and $\bv\in\mathbb{R}^n$. --- ##### Exercise 4 如果沒有先前的理論證明﹐很難想像列空間和行空間的維度永遠是一樣的。 (而且它們還一個在 $\mathbb{R}^m$ 中、另一個在 $\mathbb{R}^n$ 裡!) 依照以下的方式再次看出這兩個空間的維度相同。 <!-- eng start --> Without the theoretical foundation, it is hard to believe that the row space and the column space have the same dimension. (In particular, the row space is in $\mathbb{R}^m$, while the column space is in $\mathbb{R}^n$!) Use the given instructions to show again that their dimensions are the same. <!-- eng end --> ##### Exercise 4(a) 令 $A$ 為一 $m\times n$ 矩陣、 $Q$ 為一 $m\times m$ 可逆矩陣、 $P$ 為一 $n\times n$ 可逆矩陣。 回顧為什麼 $QA$ 和 $A$ 的列空間相同。 同理 $AP$ 和 $A$ 的行空間相同。 <!-- eng start --> Let $A$ be an $m\times n$ matrix, $Q$ an $m\times m$ invertible matrix, and $P$ an $n\times n$ invertible matrix. Review why $QA$ and $A$ has the same row space, while $AP$ and $A$ have the same column space. <!-- eng end --> --- :::warning Math: Wrong direction of inclusion. Writing: - [x] , *i.e.* --> . Therefore, - [x] Since $Q$ is invertible, --> Since $Q$ is invertible, we also have $A = Q^{-1}(QA)$ and - [x] row column --> row ::: ##### Exercise 4(a) - answer here Suppose $$A\space=\begin{bmatrix} - & \br_1 & - \\ ~ & \vdots & \\ - & \br_m & - \end{bmatrix}, $$ $$ Q = \begin{bmatrix} q_{11} & \ldots & q_{1m} \\ \vdots & ~ & \vdots \\ q_{m1} & \ldots & q_{mm} \end{bmatrix}, $$ $$ QA = \begin{bmatrix} q_{11}\br_1 + q_{12}\br_2 + ... + q_{1m}\br_m \\ \vdots \\ q_{m1}\br_1 + q_{m2}\br_2 + ... + q_{mm}\br_m \end{bmatrix} . $$ By observation, it is clear that every row of $QA$ is a linear combination of the row of $A$. Therefore, $$ (ⅰ) \space \Row(A) \supseteq \Row(QA). $$ Since $Q$ is invertible, we also have $A=Q^{-1}(QA).$ Thus, $$ (ⅱ) \space \Row(A) \subseteq \Row(QA). $$ By 2 properties, $( ⅰ )$ & $( ⅱ )$, $$ \space \Row(A) = \Row(QA). $$ --- ##### Exercise 4(b) 令 $Q$ 為一可逆矩陣且 $S = \{\bu_1,\ldots,\bu_k\}$ 是線性獨立的向量集合。 證明 $\{ Q\bu_1,\ldots,Q\bu_k \}$ 也線性獨立。 令 $A$ 為一 $m\times n$ 矩陣、 $Q$ 為一 $m\times m$ 可逆矩陣、 $P$ 為一 $n\times n$ 可逆矩陣。 藉此證明 $AP$ 和 $A$ 的列空間維度相同。 同理 $QA$ 和 $A$ 的行空間維度相同。 <!-- eng start --> Let $Q$ be an invertible matrix and $S = \{\bu_1,\ldots,\bu_k\}$ a linearly independent set of vectors. Show that $\{ Q\bu_1,\ldots,Q\bu_k \}$ is also linearly independent. Let $A$ be an $m\times n$ matrix, $Q$ an $m\times m$ invertible matrix, and $P$ an $n\times n$ invertible matrix. Show that the row spaces of $AP$ and $A$ have the same dimension, while the column spaces of $QA$ and $A$ have the same dimension. <!-- eng end --> ##### Exercise 4(c) 說明任一個 $m\times n$ 矩陣 $A$ 都可以利用列運算及行算運變成 $$ R = \begin{bmatrix} I_r & O_{r, n-r} \\ O_{m-r, r} & O_{m-r, n-r} \\ \end{bmatrix}. $$ 藉由基本矩陣的幫忙﹐可以找到 $m\times m$ 的可逆矩陣 $E$ 和 $n\times n$ 的可逆矩陣 $F$ 使得 $R = E A F$。 <!-- eng start --> Explain why every $m\times n$ matrix $A$ reduces to $$ R = \begin{bmatrix} I_r & O_{r, n-r} \\ O_{m-r, r} & O_{m-r, n-r} \\ \end{bmatrix} $$ by some row operations and column operations. By recording the corresponding elementary matrices, one may find an $m\times m$ invertible matrix $E$ and an $n\times n$ invertible matrix such that $R = E A F$. <!-- eng end --> ##### Exercise 4(d) 可以看出 $R$ 的行空間和列空間維度相同。 證明 $A$ 的行空間和列空間維度也相同。 <!-- eng start --> It is not hard to see that the row space and the column space of $R$ have the same dimension. Use this fact to show that the row space and the column space of $A$ have the same dimension. <!-- eng end --> ##### Exercise 5 證明以下關於秩的不等式。 <!-- eng start --> Prove the following inequalities about rank. <!-- eng end --> ##### Exercise 5(a) 證明 $\rank(A + B) \leq \rank(A) + \rank(B)$。 <!-- eng start --> Prove that $\rank(A + B) \leq \rank(A) + \rank(B)$. <!-- eng end --> ##### Exercise 5(b) 證明 $\rank(AB) \leq \min \{\rank(A), \rank(B)\}$。 <!-- eng start --> Prove that $\rank(AB) \leq \min \{\rank(A), \rank(B)\}$. <!-- eng end --> :::info collaboration: 1 4 problems: 4 - done: 3, 2(a), 2(b), 4(a) - pending: moderator: 1 quality control: 1 :::

    Import from clipboard

    Paste your markdown or webpage here...

    Advanced permission required

    Your current role can only read. Ask the system administrator to acquire write and comment permission.

    This team is disabled

    Sorry, this team is disabled. You can't edit this note.

    This note is locked

    Sorry, only owner can edit this note.

    Reach the limit

    Sorry, you've reached the max length this note can be.
    Please reduce the content or divide it to more notes, thank you!

    Import from Gist

    Import from Snippet

    or

    Export to Snippet

    Are you sure?

    Do you really want to delete this note?
    All users will lose their connection.

    Create a note from template

    Create a note from template

    Oops...
    This template has been removed or transferred.
    Upgrade
    All
    • All
    • Team
    No template.

    Create a template

    Upgrade

    Delete template

    Do you really want to delete this template?
    Turn this template into a regular note and keep its content, versions, and comments.

    This page need refresh

    You have an incompatible client version.
    Refresh to update.
    New version available!
    See releases notes here
    Refresh to enjoy new features.
    Your user state has changed.
    Refresh to load new user state.

    Sign in

    Forgot password

    or

    By clicking below, you agree to our terms of service.

    Sign in via Facebook Sign in via Twitter Sign in via GitHub Sign in via Dropbox Sign in with Wallet
    Wallet ( )
    Connect another wallet

    New to HackMD? Sign up

    Help

    • English
    • 中文
    • Français
    • Deutsch
    • 日本語
    • Español
    • Català
    • Ελληνικά
    • Português
    • italiano
    • Türkçe
    • Русский
    • Nederlands
    • hrvatski jezik
    • język polski
    • Українська
    • हिन्दी
    • svenska
    • Esperanto
    • dansk

    Documents

    Help & Tutorial

    How to use Book mode

    Slide Example

    API Docs

    Edit in VSCode

    Install browser extension

    Contacts

    Feedback

    Discord

    Send us email

    Resources

    Releases

    Pricing

    Blog

    Policy

    Terms

    Privacy

    Cheatsheet

    Syntax Example Reference
    # Header Header 基本排版
    - Unordered List
    • Unordered List
    1. Ordered List
    1. Ordered List
    - [ ] Todo List
    • Todo List
    > Blockquote
    Blockquote
    **Bold font** Bold font
    *Italics font* Italics font
    ~~Strikethrough~~ Strikethrough
    19^th^ 19th
    H~2~O H2O
    ++Inserted text++ Inserted text
    ==Marked text== Marked text
    [link text](https:// "title") Link
    ![image alt](https:// "title") Image
    `Code` Code 在筆記中貼入程式碼
    ```javascript
    var i = 0;
    ```
    var i = 0;
    :smile: :smile: Emoji list
    {%youtube youtube_id %} Externals
    $L^aT_eX$ LaTeX
    :::info
    This is a alert area.
    :::

    This is a alert area.

    Versions and GitHub Sync
    Get Full History Access

    • Edit version name
    • Delete

    revision author avatar     named on  

    More Less

    Note content is identical to the latest version.
    Compare
      Choose a version
      No search result
      Version not found
    Sign in to link this note to GitHub
    Learn more
    This note is not linked with GitHub
     

    Feedback

    Submission failed, please try again

    Thanks for your support.

    On a scale of 0-10, how likely is it that you would recommend HackMD to your friends, family or business associates?

    Please give us some advice and help us improve HackMD.

     

    Thanks for your feedback

    Remove version name

    Do you want to remove this version name and description?

    Transfer ownership

    Transfer to
      Warning: is a public team. If you transfer note to this team, everyone on the web can find and read this note.

        Link with GitHub

        Please authorize HackMD on GitHub
        • Please sign in to GitHub and install the HackMD app on your GitHub repo.
        • HackMD links with GitHub through a GitHub App. You can choose which repo to install our App.
        Learn more  Sign in to GitHub

        Push the note to GitHub Push to GitHub Pull a file from GitHub

          Authorize again
         

        Choose which file to push to

        Select repo
        Refresh Authorize more repos
        Select branch
        Select file
        Select branch
        Choose version(s) to push
        • Save a new version and push
        • Choose from existing versions
        Include title and tags
        Available push count

        Pull from GitHub

         
        File from GitHub
        File from HackMD

        GitHub Link Settings

        File linked

        Linked by
        File path
        Last synced branch
        Available push count

        Danger Zone

        Unlink
        You will no longer receive notification when GitHub file changes after unlink.

        Syncing

        Push failed

        Push successfully