or
or
By clicking below, you agree to our terms of service.
New to HackMD? Sign up
Syntax | Example | Reference | |
---|---|---|---|
# Header | Header | 基本排版 | |
- Unordered List |
|
||
1. Ordered List |
|
||
- [ ] Todo List |
|
||
> Blockquote | Blockquote |
||
**Bold font** | Bold font | ||
*Italics font* | Italics font | ||
~~Strikethrough~~ | |||
19^th^ | 19th | ||
H~2~O | H2O | ||
++Inserted text++ | Inserted text | ||
==Marked text== | Marked text | ||
[link text](https:// "title") | Link | ||
 | Image | ||
`Code` | Code |
在筆記中貼入程式碼 | |
```javascript var i = 0; ``` |
|
||
:smile: | ![]() |
Emoji list | |
{%youtube youtube_id %} | Externals | ||
$L^aT_eX$ | LaTeX | ||
:::info This is a alert area. ::: |
This is a alert area. |
On a scale of 0-10, how likely is it that you would recommend HackMD to your friends, family or business associates?
Please give us some advice and help us improve HackMD.
Do you want to remove this version name and description?
Syncing
# $\mathbb{R}^n$ 中的向量表示法
\(\mathbb{R}^n\) 中的向量表示法
This work by Jephian Lin is licensed under a Creative Commons Attribution 4.0 International License.
\(\newcommand{\trans}{^\top} \newcommand{\adj}{^{\rm adj}} \newcommand{\cof}{^{\rm cof}} \newcommand{\inp}[2]{\left\langle#1,#2\right\rangle} \newcommand{\dunion}{\mathbin{\dot\cup}} \newcommand{\bzero}{\mathbf{0}} \newcommand{\bone}{\mathbf{1}} \newcommand{\ba}{\mathbf{a}} \newcommand{\bb}{\mathbf{b}} \newcommand{\bc}{\mathbf{c}} \newcommand{\bd}{\mathbf{d}} \newcommand{\be}{\mathbf{e}} \newcommand{\bh}{\mathbf{h}} \newcommand{\bp}{\mathbf{p}} \newcommand{\bq}{\mathbf{q}} \newcommand{\br}{\mathbf{r}} \newcommand{\bx}{\mathbf{x}} \newcommand{\by}{\mathbf{y}} \newcommand{\bz}{\mathbf{z}} \newcommand{\bu}{\mathbf{u}} \newcommand{\bv}{\mathbf{v}} \newcommand{\bw}{\mathbf{w}} \newcommand{\tr}{\operatorname{tr}} \newcommand{\nul}{\operatorname{null}} \newcommand{\rank}{\operatorname{rank}} %\newcommand{\ker}{\operatorname{ker}} \newcommand{\range}{\operatorname{range}} \newcommand{\Col}{\operatorname{Col}} \newcommand{\Row}{\operatorname{Row}} \newcommand{\spec}{\operatorname{spec}} \newcommand{\vspan}{\operatorname{span}} \newcommand{\Vol}{\operatorname{Vol}} \newcommand{\sgn}{\operatorname{sgn}} \newcommand{\idmap}{\operatorname{id}} \newcommand{\am}{\operatorname{am}} \newcommand{\gm}{\operatorname{gm}} \newcommand{\mult}{\operatorname{mult}} \newcommand{\iner}{\operatorname{iner}}\)
Main idea
Recall that \(\mathcal{E}_n = \{ {\bf e}_1, \ldots, {\bf e}_n \}\) is the standard basis of \(\mathbb{R}^n\).
For any vector \({\bf v} = (c_1, \ldots, c_n)\in\mathbb{R}^n\), it can be written as
\[{\bf v} = c_1{\bf e}_1 + \cdots + c_n{\bf e}_n. \]
Similarly, let \(\beta = \{ {\bf u}_1, \ldots, {\bf u}_n \}\) be a basis of \(\mathbb{R}^n\).
Every vector \({\bf v}\in\mathbb{R}^n\) has a unique way to be written as a linear combination
\[{\bf v} = c_1{\bf u}_1 + \cdots + c_n{\bf u}_n. \]
We call the vector \((c_1,\ldots, c_n)\in\mathbb{R}^n\) the vector representation of \({\bf v}\) with respect to the basis \(\beta\), denoted as \([{\bf v}]_\beta\).
Since every vector in \(\mathbb{R}^n\) can be written as a linear combinatoin of \(\beta\) and the way of writing it is unique, it is a one-to-one correspondence between \({\bf v}\) and \([{\bf v}]_\beta\).
Let let \(\beta = \{ {\bf u}_1, \ldots, {\bf u}_n \}\) be a basis of \(\mathbb{R}^n\) and
\(A\) the \(n\times n\) matrix whose columns are vectors in \(\beta\).
Since \(\beta\) is a basis, \(A\) is invertible.
By definition, \[A[{\bf v}]_\beta = {\bf v} \text{ and } A^{-1}{\bf v} = [{\bf v}]_\beta. \]
When \(\beta\) is the standard basis of \(\mathbb{R}^n\), \(A = I_n\) nad \([{\bf v}]_\beta = {\bf v}\).
Therefore, our usual way of writting a vector is the vector representation with respect to the standard basis.
In the case when \(\beta\) is an orthonormal basis, \(A\) is an orthogonal matrix and \(A^{-1} = A^\top\).
Therefore, \[A[{\bf v}]_\beta = {\bf v} \text{ and } A^{-1}{\bf v} = [{\bf v}]_\beta. \]
Side stories
Experiments
Exercise 1
執行以下程式碼。
令 \(\beta = \{ {\bf u}_1, \ldots, {\bf u}_3 \}\) 為 \(A\) 的行向量且
已知其為 \(\mathbb{R}^3\) 的基底。
Good job
執行程式碼得 \[A = \begin{bmatrix} 1 & 3 & 1 \\ -3 & -8 & -1 \\ 0 & -1 & 1 \end{bmatrix} \] 及 \({\bf v}_1 = (4,-15,1)\)、\({\bf v}_2 = (8,-20,-3)\)、\(k=3\)
Exercise 1(a)
求出 \([{\bf v}_1]_\beta\) 及 \([{\bf v}_2]_\beta\)。
答:
假設一個矩陣 \[ \left[\begin{array}{c|c} A & I \end{array}\right] = \left[\begin{array}{ccc|ccc} 1 & 3 & 1 & 1 & 0 & 0 \\ -3 & -8 & -1 & 0 & 1 & 0 \\ 0 & -1 & -1 & 0 & 0 & 1 \end{array}\right] \] 經過列運算得\[ \left[\begin{array}{c|c} R & B \end{array}\right] = \left[\begin{array}{ccc|ccc} 1 & 0 & 0 & 7 & 2 & 5 \\ 0 & 1 & 0 & -3 & -1 & -2 \\ 0 & 0 & 1 & 3 & 1 & 1 \end{array}\right] \] 因為 \({A}\) 的各行向量為 \(\mathbb{R}^3\) 的基底,所以 \({A}\) 可逆,可以得 \[B = \begin{bmatrix} 7 & 2 & 5 \\ -3 & -1 & -2 \\ 3 & 1 & 1 \end{bmatrix} \] 為 \({A}\) 的反矩陣使得 \({AB=I_3}\) ,\({B=A^{-1}}\)。
因此 \[[{\bf v}_1]_\beta=A^{-1}{\bf v}_1=\begin{bmatrix} 7 & 2 & 5 \\ -3 & -1 & -2 \\ 3 & 1 & 1 \end{bmatrix} \begin{bmatrix} 4 \\ -15 \\ 1\end{bmatrix}= \begin{bmatrix} 3 \\ 1 \\ -2 \end{bmatrix}, \] \[[{\bf v}_2]_\beta=A^{-1}{\bf v}_2=\begin{bmatrix} 7 & 2 & 5 \\ -3 & -1 & -2 \\ 3 & 1 & 1 \end{bmatrix} \begin{bmatrix} 8 \\ -20 \\ -3\end{bmatrix}= \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}. \]
Exercise 1(b)
判斷是否 \([{\bf v}_1 + {\bf v}_2]_\beta = [{\bf v}_1]_\beta + [{\bf v}_2]_\beta\)。
答:
計算 \({\bf v}_1 + {\bf v}_2 = (12,-35,-2)\) , \[[{\bf v}_1+{\bf v}_2]_\beta=A^{-1}({\bf v}_1+{\bf v}_2)=\begin{bmatrix} 7 & 2 & 5 \\ -3 & -1 & -2 \\ 3 & 1 & 1 \end{bmatrix} \begin{bmatrix} 12 \\ -35 \\ -2\end{bmatrix}= \begin{bmatrix} 4 \\ 3 \\ -1 \end{bmatrix}\] \[[{\bf v}_1]_\beta + [{\bf v}_2]_\beta= \begin{bmatrix} 3 \\ 1 \\ -2 \end{bmatrix}+\begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}=\begin{bmatrix} 4 \\ 3 \\ -1 \end{bmatrix} \] 得 \([{\bf v}_1 + {\bf v}_2]_\beta = [{\bf v}_1]_\beta + [{\bf v}_2]_\beta\)。
Exercise 1©
判斷是否 \([k{\bf v}_1]_\beta = k[{\bf v}_1]_\beta\)。
答:
計算 \(k{\bf v}_1 = 3(4,-15,1) = (12,-45,3)\) , \[[k{\bf v}_1]_\beta=A^{-1}(k{\bf v}_1)=\begin{bmatrix} 7 & 2 & 5 \\ -3 & -1 & -2 \\ 3 & 1 & 1 \end{bmatrix} \begin{bmatrix} 12 \\ -45 \\ 3\end{bmatrix}= \begin{bmatrix} 9 \\ 3 \\ -6 \end{bmatrix}\] \[k[{\bf v}_1]_\beta = 3\begin{bmatrix} 3 \\ 1 \\ -2 \end{bmatrix}=\begin{bmatrix} 9 \\ 3 \\ -6 \end{bmatrix} \] 得 \([k{\bf v}_1]_\beta = k[{\bf v}_1]_\beta\)。
Exercise 1(d)
判斷是否 \(\langle {\bf v}_1, {\bf v}_2 \rangle = \langle [{\bf v}_1]_\beta, [{\bf v}_2]_\beta \rangle\)。
答:
計算 \[\langle {\bf v}_1, {\bf v}_2 \rangle = (4,-15,1)(8,-20,-3)= 32+300-3=329\] \[\langle [{\bf v}_1]_\beta, [{\bf v}_2]_\beta \rangle= (3,1,-2)(1,2,1)= 3+2-2=3 \] 得 \(\langle {\bf v}_1, {\bf v}_2 \rangle \neq \langle [{\bf v}_1]_\beta, [{\bf v}_2]_\beta \rangle\)。
Exercises
Exercise 2
已知 \[A = \begin{bmatrix} 1 & 0 & 1 \\ -1 & 1 & -4 \\ 5 & -2 & 12 \end{bmatrix} \] 的反矩陣為 \[A^{-1} = \begin{bmatrix} 4 & -2 & -1 \\ -8 & 7 & 3 \\ -3 & 2 & 1 \end{bmatrix}. \]
令 \(\beta\) 為 \(A\) 的行向量集合。
令 \({\bf v}_1 = (1,1,1)\)、
\({\bf v}_2 = (1,2,3)\)。
求 \([{\bf v}_1]_\beta\) 和 \([{\bf v}_2]_\beta\)。
答:
\[[{\bf v}_1]_\beta =A^{-1}{\bf v}_1= \begin{bmatrix} 4 & -2 & -1 \\ -8 & 7 & 3 \\ -3 & 2 & 1 \end{bmatrix} \begin{bmatrix} 1 \\1\\1\end{bmatrix}= \begin{bmatrix} 1\\2\\0\end{bmatrix}, \] \[[{\bf v}_2]_\beta =A^{-1}{\bf v}_2= \begin{bmatrix} 4 & -2 & -1 \\ -8 & 7 & 3 \\ -3 & 2 & 1 \end{bmatrix} \begin{bmatrix} 1 \\2\\3\end{bmatrix}= \begin{bmatrix} -3\\15\\4\end{bmatrix}. \]
Exercise 3
已知 \[A = \begin{bmatrix} \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{3}} & 0 & -\frac{2}{\sqrt{6}} \end{bmatrix} \] 為一垂直矩陣。
令 \(\beta\) 為 \(A\) 的行向量集合。
令 \({\bf v}_1 = (1,1,1)\)、
\({\bf v}_2 = (1,2,3)\)。
求 \([{\bf v}_1]_\beta\) 和 \([{\bf v}_2]_\beta\)。
答:
因為 \(A\) 為一垂直矩陣,所以 \(A\) 可逆且 \[A^{-1} = A^\top = \begin{bmatrix} \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 0 \\ \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{6}} & -\frac{2}{\sqrt{6}} \end{bmatrix}. \] 則 \[[{\bf v}_1]_\beta=A^{-1}{\bf v}_1=\begin{bmatrix} \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 0 \\ \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{6}} & -\frac{2}{\sqrt{6}} \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 1\end{bmatrix}=\begin{bmatrix} {\sqrt{3}} \\ 0 \\ 0\end{bmatrix}, \] \[[{\bf v}_2]_\beta=A^{-1}{\bf v}_2= \begin{bmatrix} \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 0 \\ \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{6}} & -\frac{2}{\sqrt{6}} \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 3\end{bmatrix}=\begin{bmatrix} 2{\sqrt{3}} \\ -\frac{1}{\sqrt{2}} \\ -\frac{3}{\sqrt{6}}\end{bmatrix}. \]
Exercise 3
令 \(\beta\) 為 \(\mathbb{R}^n\) 中的一組基底。
定義
\[\begin{aligned} f : \mathbb{R}^n &\rightarrow \mathbb{R}^n \\ {\bf v} &\mapsto [{\bf v}]_\beta \\ \end{aligned} \]
為一函數。
Exercise 3(a)
驗證 \(f\) 為一線性函數。
這裡 "假設" \(A\) 存在,要是不存在呢?
這題還不用用到矩陣表示法的概念。
請依照以下結構用定義說明:
令 \(\beta = \{\bu_1,\ldots,\bu_n\}\)。
因為 \(\beta\) 是 \(\mathbb{R}^n\) 中的基底,
所以任何 \(\bv_1,\bv_2\in\mathbb{R}^n\) 都可以寫成
\[ \begin{aligned} \bv_1 &= ???, \\ \bv_2 &= ???, \end{aligned} \] 因此對任意實數 \(k\) 都有
\[ \begin{aligned} \bv_1 + \bv_2 &= ???, \\ k\bv_1 &= ???. \end{aligned} \] 如此一來,
\[ \begin{aligned} [\bv_1]_\beta &= ???, \\ [\bv_2]_\beta &= ???, \end{aligned} \] 因此 \[ \begin{aligned}[] [\bv_1 + \bv_2]_\beta &= ???, \\ [k\bv_1]_\beta &= ???. \end{aligned} \] 因為 \[f({\bf v}_1+{\bf v}_2)=...=f({\bf v}_1)+f({\bf v}_2), \] \[kf({\bf v})=...=f(k{\bf v}), \] 所以綜上所述,\(f\) 為一線性函數得證。
答:
令 \(\beta = \{\bu_1,\ldots,\bu_n\}\)。
因為 \(\beta\) 是 \(\mathbb{R}^n\) 中的基底,
所以任何 \(\bv_1,\bv_2\in\mathbb{R}^n\) 都可以寫成
\[ \begin{aligned} \bv_1 &= c_1{\bf u}_1 + \cdots + c_n{\bf u}_n , c_i \in \mathbb{R} , i=\{1,\cdots,n\}, \\ \bv_2 &= d_1{\bf u}_1 + \cdots + d_n{\bf u}_n , d_i \in \mathbb{R} , i=\{1,\cdots,n\}, \end{aligned} \] 因此對任意實數 \(k\) 都有
\[ \begin{aligned} \bv_1 + \bv_2 &= (c_1 + d_1){\bf u}_1 + \cdots +(c_n + d_n){\bf u}_n, \\ k\bv_1 &= kc_1{\bf u}_1 + \cdots + kc_n{\bf u}_n,\\ k\bv_2 &= kd_1{\bf u}_1 + \cdots + kd_n{\bf u}_n. \end{aligned} \] 如此一來,
\[ \begin{aligned}\\ [\bv_1]_\beta &= (c_1 , \cdots , c_n ) , \\ [\bv_2]_\beta &= (d_1 , \cdots , d_n ) , \end{aligned} \] 因此 \[ \begin{aligned} \\ [\bv_1 + \bv_2]_\beta &= ((c_1+d_1) , \cdots , (c_n+d_n)), \\ [k\bv_1]_\beta &= (kc_1 , \cdots , kc_n),\\ [k\bv_2]_\beta &= (kd_1 , \cdots , kd_n). \end{aligned} \] 因為 \[f({\bf v}_1+{\bf v}_2)=[\bv_1 + \bv_2]_\beta=[\bv_1]_\beta+[\bv_2]_\beta=f({\bf v}_1)+f({\bf v}_2), \] \[kf({\bf v})=k[\bv]_\beta=[k\bv]_\beta=f(k{\bf v}), \] 所以綜上所述,\(f\) 為一線性函數得證。
Exercise 3(b)
判斷 \(f\) 是否是嵌射。
直接用定義證明。
答:
嵌射的定義:對任意定義域中的 \(\bv_1,\bv_2\) 都有「若 \(f(\bv_1) = f(\bv_2)\),則 \(\bv_1 = \bv_2\)」的性質。
令 \(\bv_1,\bv_2\in\mathbb{R}^n\)。
若 \(f({\bf v}_1) = f({\bf v}_2)= (c_1,\dots,c_n)\),則 \(\bv_1 = c_1\bu_1 + \dots + c_n\bu_n = \bv_2\)。
符合嵌射的定義,因此得證 \(f\) 是嵌射。
Exercise 3©
判斷 \(f\) 是否是映射。
直接用定義證明。
答:
令 \(\beta= \{ {\bf u}_1, \ldots, {\bf u}_n \}\),
則任何 \([{\bf v}]_\beta=(c_1, \cdots ,c_n)\) 都有 \({\bf v}=c_1{\bf u}_1+ \cdots +c_n{\bf u}_n\),
使得 \(f({\bf v})=[{\bf v}]_\beta\).
根據定義, 得證 \(f\) 是映射。
Exercise 3(d)
求出 \(f\) 的矩陣表示法 \([f]\)。
答:
依照 \([f]\) 的定義可知
\[ [f] = \begin{bmatrix} | & ~ & | \\ [\be_1]_\beta & \cdots & [\be_n]_\beta \\ | & ~ & | \\ \end{bmatrix}. \] 實際上,若 \(A\) 為由 \(\beta\) 中向量當作行向量的矩陣,
則 \(A[\bv]_\beta = \bv\) 且 \(A^{-1}\bv = [\bv]_\beta\)。
因此,我們也有 \([f] = A^{-1}\)。
Exercise 4
回顧一個 內積 \(\langle \cdot, \cdot \rangle\) 必須符合以下的條件:
Exercise 4(a)
令 \(\beta\) 為 \(\mathbb{R}^n\) 中的一組基底。
定義一個新的雙變數函數 \(\langle {\bf x}, {\bf y} \rangle_\beta = \langle [{\bf x}]_\beta, [{\bf y}]_\beta \rangle\)﹐
其中 \(\langle [{\bf x}]_\beta, [{\bf y}]_\beta \rangle\) 指的是 \(\mathbb{R}^n\) 中的標準內積。
驗證 \(\langle \cdot, \cdot \rangle_\beta\) 也是 \(\mathbb{R}^n\) 上的另一種內積。
答:
則 \([\bx]_\beta = (c_1,\ldots,c_n)\)。
則 \(\inp{\bx}{\bx}_\beta = \inp{[\bx]_\beta}{[\bx]_\beta} = c_1^2 + \cdots + c_n^2 \geq 0\),
且等式成立時只有在 \(c_1=\cdots=c_n=0\) 時。
此時 \(\bx = 0\bu_1 + \cdots +0\bu_n = \bzero\)。
Exercise 4(b)
證明當 \(\beta\) 是單位長垂直基底時﹐任意向量都有 \(\langle {\bf x}, {\bf y} \rangle_\beta = \langle {\bf x}, {\bf y} \rangle\)。
\begin{cases}...\end{cases}
時裡面要加&
答:
已知 \(\langle {\bf x}, {\bf y} \rangle_\beta = \langle [{\bf x}]_\beta, [{\bf y}]_\beta \rangle\)。
令 \({\bf x}=c_1{\bf u}_1+ \cdots + c_n{\bf u}_n\)、 \({\bf y}=d_1{\bf u}_1+ \cdots + d_n{\bf u}_n\),
其中 \(\beta={\{\bf u}_1,\cdots,{\bf u}_n\}\) 為在 \(\mathbb{R}^n\) 中的一組基底,\([{\bf x}]_\beta = ({c}_1,\cdots,{c}_n)\)、\([{\bf y}]_\beta = ({d}_1,\cdots,{d}_n)\)。
因為 \(\beta\) 是單位長垂直基底,所以 \[\langle {\bf u}_m, {\bf u}_n \rangle=\begin{cases} 1 & , m = n,\\ 0 & , m \neq n. \end{cases} \] 因此可得 \[\begin{aligned} \langle {\bf x}, {\bf y}\rangle &=(c_1{\bf u}_1 + \cdots + c_n{\bf u}_n) \cdot (d_1{\bf u}_1 + \cdots + d_n{\bf u}_n) \\ &= c_1d_1||{\bf u}_1^2|| + \cdots + c_nd_n||{\bf u}_n^2|| \\ &= c_1d_1 + \cdots + c_nd_n \\ &=({c}_1,\cdots,{c}_n) \cdot ({d}_1,\cdots,{d}_n)\\ &=\langle [{\bf x}]_\beta, [{\bf y}]_\beta \rangle \\ &=\langle {\bf x}, {\bf y} \rangle_\beta \end{aligned} \]
故得證 \(\langle {\bf x}, {\bf y} \rangle_\beta = \langle {\bf x}, {\bf y} \rangle\)。
目前分數 6