Jephian Lin
    • Create new note
    • Create a note from template
      • Sharing URL Link copied
      • /edit
      • View mode
        • Edit mode
        • View mode
        • Book mode
        • Slide mode
        Edit mode View mode Book mode Slide mode
      • Customize slides
      • Note Permission
      • Read
        • Only me
        • Signed-in users
        • Everyone
        Only me Signed-in users Everyone
      • Write
        • Only me
        • Signed-in users
        • Everyone
        Only me Signed-in users Everyone
      • Engagement control Commenting, Suggest edit, Emoji Reply
    • Invite by email
      Invitee

      This note has no invitees

    • Publish Note

      Share your work with the world Congratulations! 🎉 Your note is out in the world Publish Note

      Your note will be visible on your profile and discoverable by anyone.
      Your note is now live.
      This note is visible on your profile and discoverable online.
      Everyone on the web can find and read all notes of this public team.
      See published notes
      Unpublish note
      Please check the box to agree to the Community Guidelines.
      View profile
    • Commenting
      Permission
      Disabled Forbidden Owners Signed-in users Everyone
    • Enable
    • Permission
      • Forbidden
      • Owners
      • Signed-in users
      • Everyone
    • Suggest edit
      Permission
      Disabled Forbidden Owners Signed-in users Everyone
    • Enable
    • Permission
      • Forbidden
      • Owners
      • Signed-in users
    • Emoji Reply
    • Enable
    • Versions and GitHub Sync
    • Note settings
    • Note Insights
    • Engagement control
    • Transfer ownership
    • Delete this note
    • Save as template
    • Insert from template
    • Import from
      • Dropbox
      • Google Drive
      • Gist
      • Clipboard
    • Export to
      • Dropbox
      • Google Drive
      • Gist
    • Download
      • Markdown
      • HTML
      • Raw HTML
Menu Note settings Versions and GitHub Sync Note Insights Sharing URL Create Help
Create Create new note Create a note from template
Menu
Options
Engagement control Transfer ownership Delete this note
Import from
Dropbox Google Drive Gist Clipboard
Export to
Dropbox Google Drive Gist
Download
Markdown HTML Raw HTML
Back
Sharing URL Link copied
/edit
View mode
  • Edit mode
  • View mode
  • Book mode
  • Slide mode
Edit mode View mode Book mode Slide mode
Customize slides
Note Permission
Read
Only me
  • Only me
  • Signed-in users
  • Everyone
Only me Signed-in users Everyone
Write
Only me
  • Only me
  • Signed-in users
  • Everyone
Only me Signed-in users Everyone
Engagement control Commenting, Suggest edit, Emoji Reply
  • Invite by email
    Invitee

    This note has no invitees

  • Publish Note

    Share your work with the world Congratulations! 🎉 Your note is out in the world Publish Note

    Your note will be visible on your profile and discoverable by anyone.
    Your note is now live.
    This note is visible on your profile and discoverable online.
    Everyone on the web can find and read all notes of this public team.
    See published notes
    Unpublish note
    Please check the box to agree to the Community Guidelines.
    View profile
    Engagement control
    Commenting
    Permission
    Disabled Forbidden Owners Signed-in users Everyone
    Enable
    Permission
    • Forbidden
    • Owners
    • Signed-in users
    • Everyone
    Suggest edit
    Permission
    Disabled Forbidden Owners Signed-in users Everyone
    Enable
    Permission
    • Forbidden
    • Owners
    • Signed-in users
    Emoji Reply
    Enable
    Import from Dropbox Google Drive Gist Clipboard
       owned this note    owned this note      
    Published Linked with GitHub
    Subscribed
    • Any changes
      Be notified of any changes
    • Mention me
      Be notified of mention me
    • Unsubscribe
    Subscribe
    # 常見的向量空間 ![Creative Commons License](https://i.creativecommons.org/l/by/4.0/88x31.png) This work by Jephian Lin is licensed under a [Creative Commons Attribution 4.0 International License](http://creativecommons.org/licenses/by/4.0/). {%hackmd 5xqeIJ7VRCGBfLtfMi0_IQ %} ```python from lingeo import random_int_list from linspace import vtop, vtom ``` ## Main idea Let $\mathcal{P}_d$ be the set of all polynomials of degree at most $d$ (with real coefficients). Let $+$ and $\cdot$ be the regular polynomial addition and scalr multiplication, respectively. Then $(\mathcal{P}_d, +, \cdot)$ is a vector space, usually denoted as just $\mathcal{P}_d$. It is known that $\beta = \{1, x, \ldots, x^d\}$ is a basis of $\mathcal{P}_d$, so $\dim(\mathcal{P}_d) = d + 1$. The zero vector in $\mathcal{P}_d$ is $0 = 0 + 0x + \cdots + 0x^d$. We usually call $\beta$ the **standard basis** of $\mathcal{P}_d$. It is easy to see that essentially every polynomial stores $d+1$ coefficients, and its behavior is very similar to a vector in $\mathbb{R}^{d+1}$. When $p = a_0 + a_1x + \cdots + a_dx^d$, we define $\operatorname{ptov}(p) = (a_0,\ldots,a_d)$. Let $\mathcal{M}_{m,n}$ be the set of all $m\times n$ matrices (over $\mathbb{R}$). Let $+$ and $\cdot$ be the regular matrix addition and scalr multiplication, respectively. Then $(\mathcal{M}_{m,n}, +, \cdot)$ is a vector space, usually denoted as just $\mathcal{M}_{m,n}$. Let $E_{ij}$ be the matrix whose $ij$-entry is $1$ while other entries are $0$. It is known that $\beta = \{E_{11}, \ldots, E_{1n}, \ldots, E_{m1}, \ldots1, E_{mn}\}$ is a basis of $\mathcal{M}_{m,n}$, so $\dim(\mathcal{M}_{m,n}) = mn$. The zero vector in $\mathcal{M}_{m,n}$ is $O_{m,n}$, the $m\times n$ zero matrix. We usually call $\beta$ the **standard basis** of $\mathcal{M}_{m,n}$. Again, every $m\times n$ matrix stores $mn$ coefficients, and behaves almost the same as a vector in $\mathbb{R}^{mn}$. When $M = \begin{bmatrix} a_{ij} \end{bmatrix}$, we define $\operatorname{mtov}(p) = (a_{11},\ldots,a_{1n},\ldots,a_{m1},\ldots,a_{mn})$. ## Side stories - gcd of polynomials - matrix equation ## Experiments ##### Exercise 1 執行以下程式碼。 己知 $A{\bf v} = {\bf b}$。 ```python ### code set_random_seed(0) print_ans = False m,n = 4,3 A = matrix(m, random_int_list(m*n)) v = vector(random_int_list(n)) b = A * v print("A =") show(A) print("v = (c1, c2, c3) =", v) print("b =", b) print("p1 =", vtop(A.transpose()[0])) print("p2 =", vtop(A.transpose()[1])) print("p3 =", vtop(A.transpose()[2])) print("M1, M2, M3 =") pretty_print(vtom(A.transpose()[0],2,2), ", ", vtom(A.transpose()[1],2,2), ", ", vtom(A.transpose()[2],2,2) ) if print_ans: print("c1p1 + c2p2 + c3p3 =", vtop(b)) print("c1M1 + c2M2 + c3M3 =") show(vtom(b,2,2)) ``` :::warning - [x] 以seed(0)為例: --> 以 `seed(0)` 為例: ::: 以 `seed(0)` 為例: $$ A = \begin{bmatrix} -4&3&5\\ -5&-5&0\\ 3&-3&3\\ 4&-4&-3\end{bmatrix},$$ $$v=(c_1,c_2,c_3)=(2,4,-4),$$ $$b=(-16,-30,-18,4),$$ $$p_1 = 4x^3+3x^2-5x-4, p_2 = -4x^3-3x^2-5x+3, p_3 = -3x^3+3x^2+5, $$ $$ M_1,M_2,M_3=\begin{bmatrix} -4&-5\\ 3&4\end{bmatrix},\begin{bmatrix} 3&-5\\ -3&-4\end{bmatrix},\begin{bmatrix} 5&0\\ 3&-3\end{bmatrix}. $$ ##### Exercise 1(a) 求 $c_1p_1 + c_2p_2 + c_3p_3$。 $= 2(4x^3+3x^2-5x-4)+4(-4x^3-3x^2-5x+3)-4(-3x^3+3x^2+5)$ $= 4x^3-18x^2-30x-16.$ ##### Exercise 1(b) 求 $c_1M_1 + c_2M_2 + c_3M_3$。 $=2\begin{bmatrix} -4&-5\\ 3&4\end{bmatrix}+4\begin{bmatrix} 3&-5\\ -3&-4\end{bmatrix}-4\begin{bmatrix} 5&0\\ 3&-3\end{bmatrix}$ $=\begin{bmatrix} -16&-30\\ -18&4\end{bmatrix}.$ ## Exercises ##### Exercise 2 令 $U$ 為 $\mathcal{P}_3$ 中所有 $p_1 = (x+1)(x+2)$ 的倍式、 $V$ 為 $\mathcal{P}_3$ 中所有 $p_2 = (x+1)(x+3)$ 的倍式。 ##### Exercise 2(a) 說明 $U$ 和 $V$ 都是 $\mathcal{P}_3$ 的子空間、 並判斷它們的維度。 :::warning - [x] 我不懂你的 component 是什麼意思。 First, $U$ contains the zero polynomial $0 = p_1\cdot 0$. Let $f$ be an element in $U$. Then $f$ can be written as $p_1q$ for some polynomial $q$ of degree at most $1$. Thus, for any scalar $c$, $cp = ???$, so $cp$ is also an element in $U$. On the other hand, let $f$ and $g$ be two elements in $U$. Then $f = p_1q_f$ and $g = p_1q_g$ for some polynomials $q_f$ and $q_g$ of degree at most $1$. Thus, $f + g = ???$, so $f + g$ is also an element in $U$. Therefore, $U$ is a subspace. ::: Ans: First, $U$ contains the zero polynomial $0 = p_1\cdot 0$. Let $f$ be an element in $U$. Then $f$ can be written as $qp_1$ for some polynomials $q$ of degree at most $1$. Thus, for any scalar $c$, $cf = (cq)p_1$, which is also an element in $U$. On the other hand, let $f$ and $g$ be elements in $U$. Then $f = q_fp_1$ and $g=q_gp_1$ for some polynomials $q_f$ and $q_g$ of degree at most $1$, and $f+g=q_fp_1+q_gp_1=(q_f+q_g)p_1$, which is also an element in $U$. Therefore, $U$ is a subspace in $\mathcal{P}_3$. Elements in $U$ can be all expressed as $(c_1+c_2x)p_1=c_1p_1+(c_2x)p_1$. We find that $p_1$ and $xp_1$ are two independent elements spanning the vector space $U$. Also, each elements $(c_1+c_2x)p_1$ in $U$ can be expressed as $\operatorname{ptov}((c_1+c_2x)p_1)$ in $\mathbb{R}^4$. We find that $\operatorname{ptov}((c_1+c_2x)p_1)$ can be viewed as the linear combination of two independent vectors $c_1\cdot\operatorname{ptov}(p_1)+c_2\cdot\operatorname{ptov}(xp_1)$. These two independent vectors $\operatorname{ptov}(p_1)$ and $\operatorname{ptov}(xp_1)$ span the subspace which contains all possible $\operatorname{ptov}((c_1+c_2x)p_1)$. Therefore, the dimension of $U$ is $2$. The arguments above hold for $V$ as well. <!-- $p_1$ is one of the component in $U$, now let $c$ be any real constant, then $cp_1$ including $0$($0p_1$) is also in both the set $U$ and $\mathcal{P}_3$, so $U$ is a subspace in $\mathcal{P}_3$. The argument also holds for $V$ with one of its component $p_2$. --> ##### Exercise 2(b) 令 $A$ 為一個 $4\times 2$ 矩陣其各行向量為 $\operatorname{ptov}(p_1)$ 和 $\operatorname{ptov}(xp_1)$、 $B$ 為一個 $4\times 2$ 矩陣其各行向量為 $\operatorname{ptov}(p_2)$ 和 $\operatorname{ptov}(xp_2)$。 令 ${\bf b} = (1,1,0,0)$。 求 $\begin{bmatrix} A & B \end{bmatrix}{\bf x} = {\bf b}$ 中 ${\bf x}$ 的一個解﹐ 並找到兩個一次以下的多項式 $a$ 和 $b$ 使得 $ap_1 + bp_2 = 1 + x$。 :::warning - [x] ${\bf x_p}+{\bf r}{\bf x_n}$ --> $\bx_p + r\bx_n$ (純量、下標 不要粗體) - [x] choosing $r = -1$ to give a solution $x = (2,1,-1,-1)$, then --> By choosing $r = -1$, we get a solution $\bx = (2,1,-1,-1)$. Then ::: Ans: Let $$ A = \begin{bmatrix} 2&0\\ 3&2\\ 1&3\\ 0&1\\ \end{bmatrix} ,B = \begin{bmatrix} 3&0\\ 4&3\\ 1&4\\ 0&1\\ \end{bmatrix}, $$ and $$ \begin{bmatrix} A&B \end{bmatrix}{\bf x} = \begin{bmatrix} 2&0&3&0\\ 3&2&4&3\\ 1&3&1&4\\ 0&1&0&1\\ \end{bmatrix} \begin{bmatrix} c_1\\ c_2\\ c_3\\ c_4\\ \end{bmatrix}. $$ We find that the equation above is corresponding to the polynomial operation $(2+3x+x^2)(c_1+c_2x)+(3+4x+x^2)(c_3+c_4x)$, so the matrix multiplication $\begin{bmatrix} A&B \end{bmatrix}{\bf x} = {\bf b}$ can be viewed as polynomial equation $ap_1+bp_2$ producing $\operatorname{vtop}({\bf b})=(1+x)$. Solutions to $\begin{bmatrix} A&B \end{bmatrix}{\bf x} = {\bf b}$ are $$ {\bf x} = {\bf x}_p+r{\bf x}_n = \begin{bmatrix} -1\\0\\1\\0 \end{bmatrix}+ r\begin{bmatrix} -3\\-1\\2\\1 \end{bmatrix}. $$ By choosing $r = -1$, we get a solution $\bx = (2,1,-1,-1)$. Then polynomials $a$ and $b$ are $c_1+c_2x = 2+x$ and $c_3+c_4x = -1+-x$. ##### Exercise 2(c) 找出一個 $\mathcal{P}_3$ 中的多項式 $q$ 使得它無法利用 $a,b\in\mathcal{P}_1$ 寫成 $q = ap_1 + bp_2$ 的形式。 :::warning - [ ] 你誤會了喔,$\mathcal{P}_1$ 是所有次數最高為 1 的多項式集合,所以 $a,b$ 可以有 $x$ 項。這題要用上一題的矩陣。 ::: Ans: The statement implies that $\operatorname{ptov}(q)$ is not in the column space of $\begin{bmatrix} A&B \end{bmatrix}$, so $\operatorname{ptov}(q)$ could be a nonzero vector in the left nullspace, plus possibly any vector in the column space of $\begin{bmatrix} A&B \end{bmatrix}$. By calculating the basis of $\ker(\begin{bmatrix} A&B \end{bmatrix}\trans)$ through row operations, we have that $\{{\bf l}\}$ is a basis of $\ker(\begin{bmatrix} A&B \end{bmatrix}\trans)$. Let $\bx$ be any vector in $\mathbb{R}^4$. Then $q$ can be chosen as any vector satisfying $$ \operatorname{ptov}(q)=c{\bf l} + \begin{bmatrix} A&B \end{bmatrix}\bx, c\neq0. $$ By choosing $c=1$ and $\bx=(1,1,1,0)$, we get $\operatorname{ptov}(q)=(4,10,4,2)$, and the polynomial $p$ is $4+10x+4x^2+2x^3$. <!--$a,b\in\mathcal{P}_1$ implies that $a$ and $b$ are constants, and all combinations $ap_1 + bp_2$ span a subspace $Q$ in $\mathcal{P}_3$. Let $Q$ be the column space of $$ \begin{bmatrix} \operatorname{ptov}(p_1) & \operatorname{ptov}(p_2) \end{bmatrix} = \begin{bmatrix} 2&3\\ 3&4\\ 1&1\\ \end{bmatrix}. $$ Then $q$ can be any vectors in $\mathbb{R}^3$ containing vectors in $Q^\perp$(spanned by $(1,-1,1)$), such as $$ \begin{bmatrix} 2\\3\\1 \end{bmatrix} + \begin{bmatrix} 1\\-1\\1 \end{bmatrix} = \begin{bmatrix} 3\\2\\2 \end{bmatrix} .$$ --> ##### Exercise 3 令 $A$ 為 $3\times 3$ 的全 $1$ 矩陣。 令 $$V = \{ X\in\mathcal{M}_{3,3} : AX = O \}. $$ ##### Exercise 3(a) 說明 $V$ 是 $\mathcal{M}_{3,3}$ 的子空間、 並判斷它的維度。 :::warning - [x] 存在 ${M}_A,{M}_B \in V$. ... 所以, --> 若 ${M}_A,{M}_B \in V$. ... 則 ::: Ans: (1)若 ${M}_A,{M}_B \in V$. $${M}_A= \begin{bmatrix} {a}_{11} & {a}_{12} & {a}_{13}\\ {a}_{21} & {a}_{22} & {a}_{23}\\ {a}_{31} & {a}_{32} & {a}_{33}\\ \end{bmatrix}, {M}_B= \begin{bmatrix} {b}_{11} & {b}_{12} & {b}_{13} \\ {b}_{21} & {b}_{22} & {b}_{23} \\ {b}_{31} & {b}_{32} & {b}_{33} \\ \end{bmatrix}.$$ 則, $$A{M}_A= \begin{bmatrix}1&1&1\\1&1&1\\1&1&1\end{bmatrix} \begin{bmatrix} {a}_{11} & {a}_{12} & {a}_{13}\\ {a}_{21} & {a}_{22} & {a}_{23}\\ {a}_{31} & {a}_{32} & {a}_{33}\\ \end{bmatrix}= \begin{bmatrix}0&0&0\\0&0&0\\0&0&0\end{bmatrix},$$ $$A{M}_B= \begin{bmatrix}1&1&1\\1&1&1\\1&1&1\end{bmatrix} \begin{bmatrix} {b}_{11} & {b}_{12} & {b}_{13} \\ {b}_{21} & {b}_{22} & {b}_{23} \\ {b}_{31} & {b}_{32} & {b}_{33} \\ \end{bmatrix}= \begin{bmatrix}0&0&0\\0&0&0\\0&0&0\end{bmatrix}.$$ 得 $$ {a}_{11}+{a}_{21}+{a}_{31}=0,\\ {a}_{12}+{a}_{22}+{a}_{32}=0,\\ ...$$ 以此類推。 $A({M}_A+{M}_B)= \begin{bmatrix}1&1&1\\1&1&1\\1&1&1\end{bmatrix} \begin{bmatrix} {a}_{11}+{b}_{11}&{a}_{12}+{b}_{12}&{a}_{13}+{b}_{13}\\ {a}_{21}+{b}_{21}&{a}_{22}+{b}_{22}&{a}_{23}+{b}_{23}\\ {a}_{31}+{b}_{31}&{a}_{32}+{b}_{32}&{a}_{33}+{b}_{33}\\ \end{bmatrix}.$ $${a}_{11}+{b}_{11}+{a}_{21}+{b}_{21}+{a}_{31}+{b}_{31}=0,\\ ({a}_{11}+{a}_{21}+{a}_{31})+({b}_{11}+{b}_{21}+{b}_{31})=0,\\ 0+0=0.$$ 以此類推至各項得出, $$A({M}_A+{M}_B)=O. $$ 所以, ${M}_A+{M}_B \in V$。 :::warning - [x] 存在 $k \in R$, --> 令 $k\in\mathbb{R}$,則 - [x] $k*0$ --> $k\cdot 0$ ::: (2)令 $k\in\mathbb{R}$, $$ A(k{M}_A)= \begin{bmatrix} 1&1&1\\1&1&1\\1&1&1\end{bmatrix} \begin{bmatrix} k{a}_{11}&k{a}_{12}&k{a}_{13}\\ k{a}_{21}&k{a}_{22}&k{a}_{23}\\ k{a}_{31}&k{a}_{32}&k{a}_{33} \end{bmatrix}. $$ $$k{a}_{11}+k{a}_{21}+k{a}_{31} \\=k({a}_{11}+{a}_{21}+{a}_{31}) \\=k\cdot 0=0. $$ 以此類推至各項得出, $$A(k{M}_A)=O. $$ 則,$k{M}_A \in V$。 :::warning - [x] 加一個(3)因為 $AO = O$,所以 $O\in V$。 ::: (3)因為 $AO = O$,所以 $O\in V$。 ##### Exercise 3(b) 把 $X$ 寫成 $$X = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \\ \end{bmatrix}. $$ 找出一個 $9\times 9$ 的矩陣 $\Psi$ 使得 $AX = O \iff \Psi\operatorname{mtov}(X) = {\bf 0}$。 :::success Great! ::: Ans: $$\Psi\operatorname{mtov}(X)= \begin{bmatrix} 1&0&0&1&0&0&1&0&0\\ 0&1&0&0&1&0&0&1&0\\ 0&0&1&0&0&1&0&0&1\\ 1&0&0&1&0&0&1&0&0\\ 0&1&0&0&1&0&0&1&0\\ 0&0&1&0&0&1&0&0&1\\ 1&0&0&1&0&0&1&0&0\\ 0&1&0&0&1&0&0&1&0\\ 0&0&1&0&0&1&0&0&1\\ \end{bmatrix} \begin{bmatrix} a\\b\\c\\d\\e\\f\\g\\h\\i \end{bmatrix}={\bf 0} $$ 所以, $$\Psi=\begin{bmatrix} 1&0&0&1&0&0&1&0&0\\ 0&1&0&0&1&0&0&1&0\\ 0&0&1&0&0&1&0&0&1\\ 1&0&0&1&0&0&1&0&0\\ 0&1&0&0&1&0&0&1&0\\ 0&0&1&0&0&1&0&0&1\\ 1&0&0&1&0&0&1&0&0\\ 0&1&0&0&1&0&0&1&0\\ 0&0&1&0&0&1&0&0&1\\ \end{bmatrix}. $$ ##### Exercise 3(c) 求出 $V$ 的一組基底。 :::warning - [ ] $V$ 裡面都是矩陣...,應該要把上一題的 $\Psi$ 的 $\ker(\Psi)$ 求出基底,再轉回矩陣。 ::: Ans: 計算$\Psi$的$\beta_k$得到, $$\ker(\Psi) = \vspan\left\{ \begin{bmatrix} -1\\0\\0\\1\\0\\0\\0\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\-1\\0\\0\\1\\0\\0\\0\\0 \end{bmatrix} \begin{bmatrix} 0\\0\\-1\\0\\0\\1\\0\\0\\0 \end{bmatrix} \begin{bmatrix} -1\\0\\0\\0\\0\\0\\1\\0\\0 \end{bmatrix} \begin{bmatrix} 0\\-1\\0\\0\\0\\0\\0\\1\\0 \end{bmatrix} \begin{bmatrix} 0\\0\\-1\\0\\0\\0\\0\\0\\1 \end{bmatrix} \right\}. $$ 因此, $$ V = \vspan\left\{ \begin{bmatrix} -1&0&0\\1&0&0\\0&0&0 \end{bmatrix}, \begin{bmatrix} 0&-1&0\\0&1&0\\0&0&0 \end{bmatrix}, \begin{bmatrix} 0&0&-1\\0&0&1\\0&0&0 \end{bmatrix}, \begin{bmatrix} -1&0&0\\0&0&0\\1&0&0 \end{bmatrix}, \begin{bmatrix} 0&-1&0\\0&0&0\\0&1&0 \end{bmatrix}, \begin{bmatrix} 0&0&-1\\0&0&0\\0&0&1 \end{bmatrix} \right\} $$ 同時可驗證此集合獨立,所以此集合為 $V$ 的基底。 ##### Exercise 4(a) 令 $V = \{ A \in \mathcal{M}_{n,n} : A^\top = A \}$ 為所有對稱矩陣所形成的集合。 驗證 $V$ 為 $\mathcal{M}_{n,n}$ 的一個子空間、 並求出它的維度。 :::warning - [x] $\mathcal{O}_{n,n}$ --> $O$ - [x] We may write $O^\top = {O}$. since $A^\top = A$, we have ${A}\in V$. In the other words, ${O}\in V$. --> Since $O^\top = {O}$ we have ${O}\in V$. - [x] If ${A}$, ${B}\in V$, ${\bf r}\in R$, then ${\bf r}A$, ${\bf r}B\in V$. --> If $A\in V$ and $r\in \mathbb{R}$, then $rA\in V$. ::: **Ans:** **1. Claim:** ${O}\in V$. Let ${O}$ be the $n\times n$ zero matrix in $\mathcal{M}_{n,n}$. Since $O^\top = {O}$, we have ${O}\in V$. **2. Claim:** If $A\in V$ and $r\in \mathbb{R}$, then $rA\in V$. Let ${A}\in V$, ${r}\in \mathbb{R}$. Since ($rA)^\top = rA^\top = rA$, we have $rA\in V$. **3. Claim:** If ${A}$, ${B}\in V$, then ${A + B}\in V$. Let ${A},{B}\in V$. Since ($A + B)^\top = A^\top + B^\top = {A} + {B}$, we have ${A + B}\in V$. As a result, $V$ is a subspace in $\mathcal{M}_{n,n}$. Since $A^\top = A$, an $n\times n$ matrix $A$ is sysmetric where its entry $a_{ij}$ = $a_{ji}$, for all $i,j$ such that $1\le i$, $j \le n$. Let $E_{ij}$ be the matrix whose $ij$-entry and $ji$-entry are $1$ while other entries are $0$. Hence, $\beta = \{E_{11}, E_{22}, \ldots, E_{nn}, E_{12}+E_{21}, \ldots, E_{n-1,n}+E_{n,n-1}\}$ is a basis of ${V}$, so $\dim(V) = \frac {n(n + 1)}{2}$. ##### Exercise 4(b) 令 $V = \{ A \in \mathcal{M}_{n,n} : A^\top = -A \}$ 為所有反對稱矩陣所形成的集合。 驗證 $V$ 為 $\mathcal{M}_{n,n}$ 的一個子空間、 並求出它的維度。 **Ans:** **1. Claim:** ${O}\in V$. Let ${O}$ be the $n\times n$ zero matrix in $\mathcal{M}_{n,n}$. Since $O^\top = {-O}$, we have ${O}\in V$. **2. Claim:** If $A\in V$ and $r\in \mathbb{R}$, then $rA\in V$. Let ${A}\in V$, ${r}\in \mathbb{R}$. Since ($rA)^\top = rA^\top = r(-A) = - (rA)$, we have $rA\in V$. **3. Claim:** If ${A}$, ${B}\in V$, then ${A} + {B}\in V$. Let ${A},{B}\in V$. Since ($A + B)^\top = A^\top + B^\top = - ({A + B})$. we have ${A} + {B}\in V$. As a result, $V$ is a subspace in $\mathcal{M}_{n,n}$. Since $A^\top = -A$, an $n\times n$ matrix $A$ is skew-sysmetric where its entry $a_{ij}$ = $-a_{ji}$, for all $i,j$ such that $1\le i$, $j \le n$ and all of the main diagonal entries must be zeroes, that is $a_{ii} = 0$ Let $E_{ij}$ be the matrix whose $ij$-entry is $1$, $ji$-entry is $-1$, while other entries are $0$. Hence, $\beta = \{E_{12}-E_{21}, \ldots, E_{n-1,n}-E_{n,n-1}\}$ is a basis of ${V}$, so $\dim(V) = \frac {n(n - 1)}{2}$. :::warning - [x] 你選的基底的元素都不是對稱矩陣 ::: ##### Exercise 5 考慮向量空間 $\mathcal{P}_3$。 令 $$D = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 3 \\ 0 & 0 & 0 & 0 \\ \end{bmatrix}. $$ :::warning 第 5 題目前空白 ::: ##### Exercise 5(a) 令 $p$ 為 $\mathcal{P}_3$ 中的一個多項式 而 $p'$ 為其微分。 驗證 $\operatorname{ptov}(p') = D\operatorname{ptov}(p)$。 答: 令 $p=a+bx+cx^2+dx^3$,其中$a,b,c,d \in \mathbb{R}$。 則 $p'=b+2cx+3dx^2$。 $$D\operatorname{ptov}(p)= \begin{bmatrix}0 & 1 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 3 \\ 0 & 0 & 0 & 0 \\ \end{bmatrix} \begin{bmatrix} a\\b\\c\\d \end{bmatrix}=\begin{bmatrix}b\\2c\\3d\\0\end{bmatrix}. $$ 則 $\operatorname{ptov}(p')=\begin{bmatrix}b\\2c\\3d\\0\end{bmatrix}=D\operatorname{ptov}(p)$。 ##### Exercise 5(b) 求 $\mathcal{P}_3$ 中所有 $p' = 0$ 的 $p$。 答: 令 $p=a+bx+cx^2+dx^3$,其中 $a,b,c,d \in \mathbb{R}$。 若 $p'=b+2cx+3dx^2=0$。 則 $b,c,d=0$,且 $a$ 為任意實數。 此時 $\mathcal{P}_3$ 中的 $p=a$,其中$a \in \mathbb{R}$。 ##### Exercise 5(c) 求 $\mathcal{P}_3$ 中所有 $p' = x$ 的 $p$。 答: 令 $p=a+bx+cx^2+dx^3$,其中 $a,b,c,d \in \mathbb{R}$。 若 $p'=b+2cx+3dx^2=x$。 則 $2c=1$,$b,d=0$,且 $a$ 為任意實數。 此時 $\mathcal{P}_3$ 中的 $p=a+\frac{1}{2}x^2$,其中 $a \in \mathbb{R}$。 :::info 目前分數 6.5 :::

    Import from clipboard

    Paste your markdown or webpage here...

    Advanced permission required

    Your current role can only read. Ask the system administrator to acquire write and comment permission.

    This team is disabled

    Sorry, this team is disabled. You can't edit this note.

    This note is locked

    Sorry, only owner can edit this note.

    Reach the limit

    Sorry, you've reached the max length this note can be.
    Please reduce the content or divide it to more notes, thank you!

    Import from Gist

    Import from Snippet

    or

    Export to Snippet

    Are you sure?

    Do you really want to delete this note?
    All users will lose their connection.

    Create a note from template

    Create a note from template

    Oops...
    This template has been removed or transferred.
    Upgrade
    All
    • All
    • Team
    No template.

    Create a template

    Upgrade

    Delete template

    Do you really want to delete this template?
    Turn this template into a regular note and keep its content, versions, and comments.

    This page need refresh

    You have an incompatible client version.
    Refresh to update.
    New version available!
    See releases notes here
    Refresh to enjoy new features.
    Your user state has changed.
    Refresh to load new user state.

    Sign in

    Forgot password

    or

    By clicking below, you agree to our terms of service.

    Sign in via Facebook Sign in via Twitter Sign in via GitHub Sign in via Dropbox Sign in with Wallet
    Wallet ( )
    Connect another wallet

    New to HackMD? Sign up

    Help

    • English
    • 中文
    • Français
    • Deutsch
    • 日本語
    • Español
    • Català
    • Ελληνικά
    • Português
    • italiano
    • Türkçe
    • Русский
    • Nederlands
    • hrvatski jezik
    • język polski
    • Українська
    • हिन्दी
    • svenska
    • Esperanto
    • dansk

    Documents

    Help & Tutorial

    How to use Book mode

    Slide Example

    API Docs

    Edit in VSCode

    Install browser extension

    Contacts

    Feedback

    Discord

    Send us email

    Resources

    Releases

    Pricing

    Blog

    Policy

    Terms

    Privacy

    Cheatsheet

    Syntax Example Reference
    # Header Header 基本排版
    - Unordered List
    • Unordered List
    1. Ordered List
    1. Ordered List
    - [ ] Todo List
    • Todo List
    > Blockquote
    Blockquote
    **Bold font** Bold font
    *Italics font* Italics font
    ~~Strikethrough~~ Strikethrough
    19^th^ 19th
    H~2~O H2O
    ++Inserted text++ Inserted text
    ==Marked text== Marked text
    [link text](https:// "title") Link
    ![image alt](https:// "title") Image
    `Code` Code 在筆記中貼入程式碼
    ```javascript
    var i = 0;
    ```
    var i = 0;
    :smile: :smile: Emoji list
    {%youtube youtube_id %} Externals
    $L^aT_eX$ LaTeX
    :::info
    This is a alert area.
    :::

    This is a alert area.

    Versions and GitHub Sync
    Get Full History Access

    • Edit version name
    • Delete

    revision author avatar     named on  

    More Less

    Note content is identical to the latest version.
    Compare
      Choose a version
      No search result
      Version not found
    Sign in to link this note to GitHub
    Learn more
    This note is not linked with GitHub
     

    Feedback

    Submission failed, please try again

    Thanks for your support.

    On a scale of 0-10, how likely is it that you would recommend HackMD to your friends, family or business associates?

    Please give us some advice and help us improve HackMD.

     

    Thanks for your feedback

    Remove version name

    Do you want to remove this version name and description?

    Transfer ownership

    Transfer to
      Warning: is a public team. If you transfer note to this team, everyone on the web can find and read this note.

        Link with GitHub

        Please authorize HackMD on GitHub
        • Please sign in to GitHub and install the HackMD app on your GitHub repo.
        • HackMD links with GitHub through a GitHub App. You can choose which repo to install our App.
        Learn more  Sign in to GitHub

        Push the note to GitHub Push to GitHub Pull a file from GitHub

          Authorize again
         

        Choose which file to push to

        Select repo
        Refresh Authorize more repos
        Select branch
        Select file
        Select branch
        Choose version(s) to push
        • Save a new version and push
        • Choose from existing versions
        Include title and tags
        Available push count

        Pull from GitHub

         
        File from GitHub
        File from HackMD

        GitHub Link Settings

        File linked

        Linked by
        File path
        Last synced branch
        Available push count

        Danger Zone

        Unlink
        You will no longer receive notification when GitHub file changes after unlink.

        Syncing

        Push failed

        Push successfully