⭐️⭐️⭐️ The essense of quantum theory is the probability of state purification.
Quantum probability for outcome \(m\) for entangled state
\[p_m=\langle\psi_{AB}|E_{Am}\otimes\mathbb{1}_{AB}|\psi_{AB}\rangle=\text{tr}_AE_{Am}\rho_A\neq\langle\psi_{AB}|E_{Am}|\psi_{AB}\rangle \\
\rho_A=\text{tr}_B|\psi_{AB}\rangle\langle\psi_{AB}|\]
projective measurement on \(B\) in complete basis \(\{|b_B\rangle\}\) for \(B\)
\[P_b=\mathbb{1}_{A}\otimes|b_B\rangle\langle b_B|\]
🧐 How does a mixed state evolve when system \(A\) evolves unitarily on its own?
🧐 How does a mixed state change by a projective measurement on system \(A\) only?
⭐️⭐️⭐️ Same mixed quantum state of A may have different ensemble preparations by B
⭐️⭐️⭐️ In fact, there are infinitely many ensembles for one non-pure density operator !
they can be non-orthogonal basis.
\[\sum_bp_b|\psi_{Ab}\rangle\langle\psi_{Ab}|=\rho_A=\sum_bp_{b'}|\psi_{Ab}'\rangle\langle\psi_{Ab}'|\]
⭐️⭐️⭐️ Decoherence = Loss of purity ~ entanglement + inaccessible information
🧐 Can a given mixed state \(\rho_A\) of some system \(A\) be prepared from some entangled bipartite state \(|\psi_{AB}\rangle\) by discarding some system \(B\)?
🧐 Can a given mixed state \(\rho_A\) of some system \(A\) be prepared from some entangled bipartite state \(|\psi_{AB}\rangle\) by discarding a fixed system \(B\)?
⭐️⭐️⭐️ Every pure bipartite state \(|\psi_{AB}\rangle\) has a canonical/Schmidt decomposition \[|\psi_{AB}\rangle=\sum_k\sqrt{\lambda_k}|k_A\rangle|k_B\rangle\text{ with ONBs }\{|k_A\rangle\}, \{|k_B\rangle\}\]
nonzero eigenvalues of \(\rho_A\) and \(\rho_B\) are always equal because \(|\psi_{AB}\rangle\) is pure.
\[\text{marginal }\rho_A=\text{tr}_B|\psi_{AB}\rangle\langle\psi_{AB}|\text{ purification}\]
\[
\begin{aligned}
&\text{entangled pure state} &|\psi_{AB}\rangle=\sum_b\sqrt{p_b}|\psi_{Ab}\rangle|b_B\rangle \\
&\text{pure ensemble} &\{p_b,|\psi_b\rangle\langle\psi_b|\} \\
&\text{mixed state} &\rho_A=\sum_bp_b|\psi_b\rangle\langle\psi_b|=\text{tr}_B|\psi_{AB}\rangle\langle\psi_{AB}|
\end{aligned}
\]
\(\text{entangled pure state }\)\(\xrightarrow[basis \{|b_B\rangle\}]{Discard}\) \(\text{ pure ensemble }\) \(\xrightarrow[basis \{outcomes\ b\}]{Discard}\) \(\text{ mixed state}\)
\(\text{mixed state}\) \(\xrightarrow[into\ ensembles]{Discompose}\)\(\text{ pure ensemble }\)\(\xrightarrow[ensembles]{Purify}\) \(\text{ entangled pure state }\)
⭐️⭐️⭐️ No information without disturbance
or
or
By clicking below, you agree to our terms of service.
New to HackMD? Sign up
Syntax | Example | Reference | |
---|---|---|---|
# Header | Header | 基本排版 | |
- Unordered List |
|
||
1. Ordered List |
|
||
- [ ] Todo List |
|
||
> Blockquote | Blockquote |
||
**Bold font** | Bold font | ||
*Italics font* | Italics font | ||
~~Strikethrough~~ | |||
19^th^ | 19th | ||
H~2~O | H2O | ||
++Inserted text++ | Inserted text | ||
==Marked text== | Marked text | ||
[link text](https:// "title") | Link | ||
 | Image | ||
`Code` | Code |
在筆記中貼入程式碼 | |
```javascript var i = 0; ``` |
|
||
:smile: | ![]() |
Emoji list | |
{%youtube youtube_id %} | Externals | ||
$L^aT_eX$ | LaTeX | ||
:::info This is a alert area. ::: |
This is a alert area. |
On a scale of 0-10, how likely is it that you would recommend HackMD to your friends, family or business associates?
Please give us some advice and help us improve HackMD.
Syncing