sysprog
      • Sharing URL Link copied
      • /edit
      • View mode
        • Edit mode
        • View mode
        • Book mode
        • Slide mode
        Edit mode View mode Book mode Slide mode
      • Customize slides
      • Note Permission
      • Read
        • Owners
        • Signed-in users
        • Everyone
        Owners Signed-in users Everyone
      • Write
        • Owners
        • Signed-in users
        • Everyone
        Owners Signed-in users Everyone
      • Engagement control Commenting, Suggest edit, Emoji Reply
    • Invite by email
      Invitee

      This note has no invitees

    • Publish Note

      Share your work with the world Congratulations! 🎉 Your note is out in the world Publish Note

      Your note will be visible on your profile and discoverable by anyone.
      Your note is now live.
      This note is visible on your profile and discoverable online.
      Everyone on the web can find and read all notes of this public team.
      See published notes
      Unpublish note
      Please check the box to agree to the Community Guidelines.
      View profile
    • Commenting
      Permission
      Disabled Forbidden Owners Signed-in users Everyone
    • Enable
    • Permission
      • Forbidden
      • Owners
      • Signed-in users
      • Everyone
    • Suggest edit
      Permission
      Disabled Forbidden Owners Signed-in users Everyone
    • Enable
    • Permission
      • Forbidden
      • Owners
      • Signed-in users
    • Emoji Reply
    • Enable
    • Versions and GitHub Sync
    • Note settings
    • Note Insights
    • Engagement control
    • Transfer ownership
    • Delete this note
    • Insert from template
    • Import from
      • Dropbox
      • Google Drive
      • Gist
      • Clipboard
    • Export to
      • Dropbox
      • Google Drive
      • Gist
    • Download
      • Markdown
      • HTML
      • Raw HTML
Menu Note settings Versions and GitHub Sync Note Insights Sharing URL Help
Menu
Options
Engagement control Transfer ownership Delete this note
Import from
Dropbox Google Drive Gist Clipboard
Export to
Dropbox Google Drive Gist
Download
Markdown HTML Raw HTML
Back
Sharing URL Link copied
/edit
View mode
  • Edit mode
  • View mode
  • Book mode
  • Slide mode
Edit mode View mode Book mode Slide mode
Customize slides
Note Permission
Read
Owners
  • Owners
  • Signed-in users
  • Everyone
Owners Signed-in users Everyone
Write
Owners
  • Owners
  • Signed-in users
  • Everyone
Owners Signed-in users Everyone
Engagement control Commenting, Suggest edit, Emoji Reply
  • Invite by email
    Invitee

    This note has no invitees

  • Publish Note

    Share your work with the world Congratulations! 🎉 Your note is out in the world Publish Note

    Your note will be visible on your profile and discoverable by anyone.
    Your note is now live.
    This note is visible on your profile and discoverable online.
    Everyone on the web can find and read all notes of this public team.
    See published notes
    Unpublish note
    Please check the box to agree to the Community Guidelines.
    View profile
    Engagement control
    Commenting
    Permission
    Disabled Forbidden Owners Signed-in users Everyone
    Enable
    Permission
    • Forbidden
    • Owners
    • Signed-in users
    • Everyone
    Suggest edit
    Permission
    Disabled Forbidden Owners Signed-in users Everyone
    Enable
    Permission
    • Forbidden
    • Owners
    • Signed-in users
    Emoji Reply
    Enable
    Import from Dropbox Google Drive Gist Clipboard
       owned this note    owned this note      
    Published Linked with GitHub
    12
    Subscribed
    • Any changes
      Be notified of any changes
    • Mention me
      Be notified of mention me
    • Unsubscribe
    Subscribe
    --- title: 你所不知道的 C 語言:數值系統 image: https://imgur.com/IpzUymh.png description: 回歸第一手資料,透過反思 C 語言程式設計的細節,重新學習電腦原理 tags: DYKC, CLANG, C LANGUAGE, binary, bitwise, floating, ieee754 --- # [你所不知道的 C 語言](https://hackmd.io/@sysprog/c-prog/):數值系統篇 Copyright (**慣C**) 2017, 2019 [宅色夫](http://wiki.csie.ncku.edu.tw/User/jserv) ==[直播錄影(上)](https://youtu.be/IdLoJ_-uLM0)== ==[直播錄影(下)](https://youtu.be/5YNuRRZ-RdU)== ## 從一則新聞、動畫,和漫畫談起 * [1/2+1/3,要孩子怎麼討論?](https://www.facebook.com/thinkinggarden/videos/1542561642443824/) ![image](https://hackmd.io/_uploads/SJJpGHL0T.png =70%x) > [出處](https://www.smbc-comics.com/comic/2013-06-05) 不同程式語言給出相似的執行結果: [Floating Point Math](http://0.30000000000000004.com/) Python 3.12 在 GNU/Linux 的執行: ```python >>> 1 - 0.1 0.9 >>> 0.1 - 0.01 0.09000000000000001 ``` 後者顯然比預期數值 `0.09` 略大 ```python >>> 0.1 - 0.01 - 0.1 -0.009999999999999995 ``` 而 `0.1 - 0.01 - 0.1` 又會得到比預期數值 `-0.01` 略大的結果,有辦法讓電腦精準地表達和運算數值嗎? ## 電腦不是只有二進位 電腦科學家 Donald E. Knuth 在《[The Art of Computer Programming](https://en.wikipedia.org/wiki/The_Art_of_Computer_Programming)》第 2 卷說: > "Perhaps the prettiest number system of all is the balanced ternary notation" 這裡的 ternary 意思是三個的、三個一組的、三重的,也稱為 base-3,顧名思義,不是只有 0 或 1,而是將可能的狀態擴充為 `0`, `1`, `2`,在 balanced ternary 中,就是 `-1`, `0`, `+1` 等三個可能狀態,又可以簡寫為 `-`, `0`, `+`。 > the ternary values as being "balanced" around the mid-point of 0. The same rules apply to ternary as to any other numeral system: The right-most symbol, R, has it's own value and each successive symbol has it's value multiplied by the base, B, raised to the power of it's distance, D from R. 在三進位中,一個十進位的數 $n$ 可表示為 $n=\sum\limits_ia_i\cdot3^i, a = 0, 1, 2$ 針對數值儲存效率,採用 [radix economy](https://www.wikiwand.com/en/Radix_economy) 提供量化評估,如下: ![image](https://hackmd.io/_uploads/HyUEYELCT.png) 其中 $E(b, N)$ 代表是以 $b$ 為基底的數值系統,表示常數 $N$ 時需付出的儲存空間代價,可見在各數字範圍內以 $e$ 為底的效果皆是最好,另外在 $N$ 為 ```1 to 6``` 以及 ```1 to 43``` 時 $2$ 為基底比 $3$ 為基底的數值系統效率更好。使用數學定義來推導出比較公式: 假設我們要比較基底 $b_1$ 及 $b_2$ 時,比較方法可以寫成 $$ \frac{E(b_1, N)}{E(b_2, N)}\approx\frac{b_1\log_{b_1}(N)}{b_2\log_{b_2}(N)}=\frac{(\frac{b_1\ln(N)}{\ln(b_1)})}{(\frac{b_2\ln(N)}{\ln(b_2)})}=\frac{b_1\ln(b_2)}{b_2\ln(b_1)} $$ 可見上式去掉常數 $N$ 的影響,讓我們可對數值系統進行更全面比較。接著,為了讓此數值可以重用,所有數值系統都可藉由與 $e$ 相互比較,得知其儲存效率。 $$ \frac{E(b)}{E(e)}=\frac{b\ln(e)}{e\ln(b)}=\frac{b}{\ln(b)} $$ 接著再對照上表的 $\frac{E(b)}{E(e)}$ 項目,可發現扣除 $e$,$3$ 的儲存效率最好,換言之,這也是三進位系統的立足點。三進位系統最初由 1959 年莫斯科國立大學的一群科學家設計的 [Setun 電腦](https://en.wikipedia.org/wiki/Setun)所採納,儘管該團隊後來在 1965 年解散,但由於這種數值系統的種種優點,後來出現了一個名為 [Nutes](https://github.com/yoelmatveyev/nutes) 的虛擬處理器,它採用三進位數值系統作為其 [OISC](https://hackmd.io/@sysprog/oisc-machine) (單一指令集電腦) 指令架構,本質上是 Turing-complete,且它利用三進位數值系統易於正負轉換的特性,使其能夠輕鬆實作 subtract, and, branch, if, negative 等已被證明可用 OISC 指令架構所實作的指令。 balanced ternary 與一般三進位不同之處在於 $a = T(-1), 0, 1$,其整數與分數的表示法都跟二進位一樣,但在表示一個數的負數時較二進位方便: - [ ] 二進位 $(6)_{10} = (0110)_2$ $(-6)_{10} = (1010)_2$ - [ ] 平衡三進位 $(6)_{10} = (1T0)_{bal3} = 1 \cdot 3^2 + (-1) \cdot 3^1 + 0$ $(-6)_{10} = (T10)_{bal3} = (-1) \cdot 3^2 + (1) \cdot 3^1 + 0$ 由上可知,在 balanced ternary 中要取一個數的負數,只要將全部的位元乘以 $-1$ 即可,比二進位的負數操作快速簡單。考慮以下 balanced ternary: > `+++-0` = (1 * 3^4^) + (1 * 3^3^) + (1 * 3^2^) + (-1 * 3^1^) + 0 > = 81 + 27 + 9 + -3 > = 114 乍看沒什麼特別的,但當我們考慮 `-114` 的表示法時,就有趣: > `---+0` = (-1 * 3^4^) + (-1 * 3^3^) + (-1 * 3^2^) + (1 * 3^1^) + 0 > = -81 + -27 + -9 + 3 > = -114 也就是把所有的 `+` 和 `-` 對調,就不用像在 2 進位表示法中,需要特別考慮 signed 和 unsigned。 balanced ternary 的作用不僅在一致的方式去表達數值,還可用於浮點數。以下是 10 進位的 `0.2` 對應的 balanced ternary 表示法: > `0.+--+` = 0 + (1 * (3^-1^)) + (-1 * (3^-2^)) + (-1 * (3^-3^)) + (1 * (3^-4^)) > = 0.33 + -0.11 + -0.03 + 0.01 > = 0.2 如何表達 10 進位的 `0.8` 呢?既然 `0.8 = 1 - 0.2`,我們做以下表示: > `+.-++-` = 1 + (-1 * (3^-1^)) + (1 * (3^-2^)) + (1 * (3^-3^)) + (-1 * (3^-4^)) = 1 + -0.33 + 0.11 + 0.03 + -0.01 = 0.8 把最開頭的 `0` 換成 `+1`,然後小數點後的 `+` 和 `-` 對調即可。 接著評估 balanced ternary 計算正負轉換效率,此處針對二進位採用二補數、三進位採用平衡三進位表示負數。以十進位數值 `123` 為例,在二進位八位元的表示法,其表示為 `01111011` ,平衡三進位八位元則表示為`001TTTT0`,若想將 $123_{10}$ 反轉為負數型態,平衡三進位僅須針對所有位元進行反轉,獲得 `00T11110`,計算量為「8 次位元反轉」。相較之下,二進位計算二補數時得,要反轉所有位元,隨後遞增一,獲得`10000100`,計算量為「8 次位元反轉加上一次遞增操作」。 若想要量化這份差距,首先假設在位元數相同的狀況下,兩者位元反轉所花時間相同,因此差距就主要體現在 `+1` 的過程中,實際的所花的時間以期望值表示,令 $n$ 位元的狀況下,二進位加法的進位次數期望值為 $E(n)$,則 $E(n)$ 可寫成: $$ \Sigma_{k=0}^{n-1}((\frac{1}{2})^{k+1}\times k) + (\frac{1}{2})^n\times n $$ 化簡後可得: $$ 1 - (\frac{1}{2})^n $$ 至此,因為二進位轉換時會多進行一次加法,因此轉換效率上,平衡三進位將略勝一籌,這個看似微小的落差,在人工智慧的運算上會予以顯著地放大。 延伸閱讀: * [The Balanced Ternary Machines of Soviet Russia](https://dev.to/buntine/the-balanced-ternary-machines-of-soviet-russia) * [The Era of 1-bit LLMs: All Large Language Models are in 1.58 Bits](https://arxiv.org/pdf/2402.17764.pdf), Microsoft Research ## 數值表達方式和阿貝爾群 數學中的「群」是個由我們定義的二元運算的集合,這裡的二元運算稱為「加法」,表示為符號 `+`。為了讓一個集合 G 成為群,必須定義加法運算並使之具有以下 4 個特性: 1. 封閉性: 若 a 和 b 是集合 G 中的元素,於是 `(a + b)` 也是集合 G 中的元素; 2. 結合律: `(a + b) + c = a + (b + c)`; 3. 存在單位元素 0,使得 `a + 0 = 0 + a = a`; 4. 每個元素都有反元素 (或稱「逆元」),也就是說:對於任意 a,存在 b,使得 `a + b = 0`; 倘若我們追加下述條件: 5. 交換律: `a + b = b + a`; 那麼,稱這個群為阿貝爾群 (Abelian group)。 嚴格定義後,我們再回顧通常概念的「加法」時,就可發現,整數的集合 `Z` 就是一個群 (同時也是個阿貝爾群),但是,自然數的集合 (`N`) 就不是群,因為 N 不滿足上述第 4 個特性。 為何我們要大費周章去表達「群」的特性呢?一旦我們證明它具備上述 4 個特性,那麼就可自由地獲取到一些其他特性。像是: * 單位元素是唯一的; * 反元素也是唯一的,即:對於每一個 a,存在唯一的一個 b,使得 `a + b = 0` (我們可以將 b 寫成 -a)。 以電腦的數值系統來說,整數 (包含 sign 和 2's complement) 加法形成阿貝爾群,實數 (`R`) 的加法也形成阿貝爾群,但我們必須考慮四捨五入 (或無條件捨入) 對這些屬性的影響。更甚者,由於 overflow 的考慮,導致儘管 x 和 y 都是實數,結果可能截然不同。 回到電腦的資料表示法,假設我們用 4 個 bits 來表示,像是 `0000` 表示 `0`,我們可以額外引入一個 bit 來表示 +/- (sign bit),但事實上我們可將上述特性考慮進去,引入反元素,讓每個正整數都可有一個對應的反元素,也是負數,這也是為何對應的正整數 bit-wise not 後 +1。`1000` 是唯一沒有對應正整數的數值,因此有號數的負整數會比正整數多一個。 在 IEEE 754 的單精度運算浮點數中 ([好看的解說影片](https://www.youtube.com/watch?v=VlX4OlKvzAk),我說板書),表達式 (3.14 + 1e10) - 1e10 求值會得到 0.0 —— 因為捨入,數值 3.14 會丟失。另一方面,表達式 3.14 + (1e10 - 1e10) 會得到數值 3.14。 > 延伸閱讀: [浮點數的美麗與哀愁](https://champyen.blogspot.com/2017/04/blog-post.html) 作為阿貝爾群,大多數值的浮點數加法都有反元素,但是 INF (無窮) 和 NaN 是例外情況,因為對任何 x,都有 NaN + fx = NaN; 浮點數加法不具有結合性,這是缺乏的最重要「群」特性。知道這些後,對我們寫程式有什麼影響呢? 衝擊可大了! 假設 C 語言編譯器即將處理以下程式碼: ```c x = a + b + c; y = b + c + d; ``` 編譯器可能為了省下一道浮點數運算,而產生以下中間程式碼: (code motion 技巧,詳見 [編譯器和最佳化原理篇](https://hackmd.io/s/Hy72937Me)) ```c t = b + c; x = a + t; y = t + d; ``` 但對於 x 來說,這樣的計算方式可能會導致和原始數值截然不同的結果,因為它運用了加法運算的不同的結合方式! 單精度浮點數運算中: * (1e20 * 1e20) * 1e20 為 +INF * 1e20 * (1e20 * 1e-20) 為 1e20 * 1e20 * (1e20 - 1e20) 為 0.0 * 1e20 * 1e20 - 1e20 * 1e20 為 NaN ## Integer Overflow * [神一樣的進度條](https://www.facebook.com/JservFans/photos/a.743333619126308.1073741828.638604962932508/908325589293776/) * [波音 787 不再「夢幻」](https://www.facebook.com/JservFans/posts/907938812665787) * 波音 787 的電力控制系統在 248 天電力沒中斷的狀況下,會自動關機,為此 FAA (美國聯邦航空管理局) 告知應每 120 天重開機,看來「重開機治百病」放諸四海都通用?這當然是飛安的治標辦法,我們工程人員當然要探究治本議題。 * 任教於美國 [Carnegie Mellon University](https://www.facebook.com/carnegiemellonu/) (CMU) 的 Phil Koopman 教授指出,這其實就是 integer overflow,再次驗證「失之毫釐,差之千里」的道理。 * 我們先將 248 天換成秒數: * 248 days * 24 hours/day * 60 minute/hour * 60 seconds/minute = 21,427,200 * 這個數字若乘上 100,繼續觀察: * `0x7FFFFFFF` (32-bit 有號數最大值) = 2147483647 / (24 * 60 * 60 * 100) = 24855 / 100 = 248.55 days. * 看出來了嗎?每 1/100 秒紀錄在 32-bit signed integer,然後遇到 overflow * [Counter Rollover Bites Boeing 787](http://betterembsw.blogspot.tw/2015/05/counter-rollover-bites-boeing-787.html) * [Deep Impact ](https://www.facebook.com/JservFans/posts/904562523003416)(2005) * [Ariane 5](https://www.facebook.com/JservFans/posts/904552413004427) (1996) * [detail report](http://csapp.cs.cmu.edu/3e/docs/ariane5rep.html) : a data conversion from 64-bit floating point to 16-bit signed integer value 其他 integer overflow 案例: * [OpenSSH 2002 security hole](http://www.openssh.com/txt/preauth.adv) * [Year 2038 problem](https://en.wikipedia.org/wiki/Year_2038_problem) * [Youtube Gangnam Style overflows](http://arstechnica.com/business/2014/12/gangnam-style-overflows-int_max-forces-youtube-to-go-64-bit/) * [Diablo III Real Money Action House integer overflow](http://gamasutra.com/blogs/MaxWoolf/20130508/191959/Diablo_III_Economy_Broken_by_an_Integer_Overflow_Bug.php) * [Lempel-Ziv-Oberhumer (LZO) algorithm](http://thehackernews.com/2014/06/20-years-old-vulnerability-in-lzo.html) * [OpenSSL integer underflow leading to buffer overflow in base64 decoding](https://bugzilla.redhat.com/show_bug.cgi?id=1202395) * [Trend Micro Discovers Vulnerability That Renders Android Devices Silent](http://blog.trendmicro.com/trendlabs-security-intelligence/trend-micro-discovers-vulnerability-that-renders-android-devices-silent/) * [IPv4 address exhaustion](https://en.wikipedia.org/wiki/IPv4_address_exhaustion) , [A bug and a crash --- The explosion of Ariane 5 rocket](http://www.around.com/ariane.html) * [Integer overflow in Mozilla Firefox 3.5.x before 3.5.11 and 3.6.x before 3.6.7](http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-2753) * [CVE-2015-1593 - Linux ASLR integer overflow: Reducing stack entropy by four](http://hmarco.org/bugs/linux-ASLR-integer-overflow.html) * [Integer overflow in Bitcoin software](http://cve.circl.lu/cve/CVE-2010-5139), [Bitcoinwiki - Value overflow incident](https://en.bitcoin.it/wiki/Value_overflow_incident) * [SSH CRC32 attack detection code contains remote integer overflow](http://www.kb.cert.org/vuls/id/945216) * [.NET Framework EncoderParameter integer overflow vulnerability](http://www.akitasecurity.nl/advisory/AK20110801/_net_framework_encoderparameter_integer_overflow_vulnerability.html) * [The classic videogame Donkey Kong has an infamous ’kill screen’, where the game stops working. But why? =>integer overflow](http://mentalfloss.com/uk/games/31376/why-does-donkey-kong-break-on-level-22) * [Adobe Flash Player casi32 Integer Overflow](http://www.rapid7.com/db/modules/exploit/windows/browser/adobe_flash_casi32_int_overflow) * [ngx_http_close_connection integer overflow](http://www.oschina.net/news/39973/ngx_http_close_connection-integer-overflow) * [PHP Integer Overflow Affects Tenable’s Security Center](https://www.tenable.com/security/tns-2014-10) * [Therac-25 radiation overdose](https://en.wikibooks.org/wiki/Professionalism/Therac-25#cite_note-medical-devices-1) * [CVE-2014-3669: Integer overflow in unserialize() PHP function](https://www.htbridge.com/blog/cve_2014_3669_integer_overflow_in_unserialize_php_function.html) * [MS15-034 – Range Header Integer Overflow](https://sathisharthars.wordpress.com/tag/range-header-integer-overflow/) * [Python Integer Overflow in ’bufferobject.c’ Lets Users Obtain Potentially Sensitive Information](http://www.securitytracker.com/id/1033118) * [Super Mario Bros life](https://www.reddit.com/r/programming/comments/1aigv9/integer_overflow_in_an_rpg_defeat_a_boss_by/) ## Integer Overflow 案例分析 * 2002 年 FreeBSD [53] ```cpp #define KSIZE 1024 char kbuf[KSIZE]; int copy_from_kernel(void *user_dest, int maxlen) { int len = KSIZE < maxlen ? KSIZE : maxlen; memcpy(user_dest, kbuf, len); return len; } ``` :::info 假設懷有惡意的程式設計師將「負」的數值作為 maxlen 帶入 `copy_from_kernel`,會有什麼問題? ::: * 2002 年 External data representation (XDR) [62] ```cpp void *copy_elements(void *ele_src[], int ele_cnt, int ele_size) { void *result = malloc(ele_cnt * ele_size); if (result==NULL) return NULL; void *next = result; for (int i = 0; i < ele_cnt; i++) { memcpy(next, ele_src[i], ele_size); next += ele_size; } return result; } ``` :::info 假設懷有惡意的程式設計師將 ele_cnt = 2^20^ +1, ele_size = 2^12^ 帶入,會有什麼問題? ::: ## 二進位 :::success 搭配觀看影片 [How to count to 1000 on two hands](https://www.youtube.com/watch?v=1SMmc9gQmHQ),記得開啟 YouTube 字幕 ::: 萊布尼茲在 1678 年發明二進位表示法,他研究 Pascal 在 1642 年設計製造的十進位數字計算機,並在 1671 年設計出能作加減乘除的分級計算機設計。藉由多次的加減來實現乘除,還可以求平方根。這過程中,他發現平時用起來很方便的十進位計數法,搬到機械上去實在太麻煩。 為了解答「能否用較少的數碼來表示一個數呢?」這問題,萊布尼茲在 1678 年發明二進位計數法,也就是二進位。如此一來,用 0 和 1 兩個數碼就可以表示出一切數。比如用 `10` 表示 2,`11` 表示 3,`100` 表示 4,`101` 表示 5,以此類推。 > 大清國康熙時期,派遣傳教士白晉 (法語: Joachim Bouvet) 回到法國,白晉在 1701 年寄了一封附上兩張易經六十四卦圖的信給萊布尼茲,萊布尼茲受到啟發,稱讚八卦是「世上流傳下來的科學中最古老的紀念物」。 George Boole 在1800年介紹「邏輯代數」,後來成為「布林代數」(Boolean Algebra) Claude E. Shannon 於 1938 年發表布林代數對於二進位函數的應用。 ## 運用 bit-wise operator * [實作二進位加法器](https://hellolynn.hpd.io/2017/08/15/%e4%bb%a5c%e5%af%a6%e4%bd%9c%e4%ba%8c%e9%80%b2%e4%bd%8d%e5%8a%a0%e6%b3%95/) * C 語言中,`x & (x - 1) == 0` 的數學意義 * power of two * signed v.s. unsigned * 將字元轉成小寫: 免除使用分支 ```cpp ('a' | ' ') // 得到 'a' ('A' | ' ') // 得到 'a' ``` * 將字元轉為大寫: 免除使用分支 ```cpp ('a' & '_') // 得到 'A' ('A' & '_') // 得到 'A' ``` * 大小寫互轉: 避免使用分支 ```cpp ('a' ^ ' ') // 得到 'A' ('A' ^ ' ') // 得到 'a' ``` * [XOR swap](https://en.wikipedia.org/wiki/XOR_swap_algorithm) * 交換兩個記憶體空間內的數值,可完全不用額外的記憶體來實作 ```cpp void xorSwap(int *x, int *y) { *x ^= *y; *y ^= *x; *x ^= *y; } ``` * 需要這種手法的情境: 1. 指令集允許 XOR swap 產生較短的編碼 (某些 DSP); 2. 考慮到暫存器數量在某些硬體架構 (如 ARM) 非常有限,register allocation 就變得非常棘手,這時透過 XOR swap 可降低這方面的衝擊; 3. 在微處理器中,記憶體是非常珍貴的資源,此舉可降低記憶體的使用量; 4. 在加解密的實作中,需要常數時間的執行時間,因此保證 swap 兩個數值的執行成本要固定 (取決於指令週期數量); * 避免 overflow * 比方說 `(x + y) / 2` 這樣的運算,有個致命問題在於 (x + y) 可能會導致 overflow (考慮到 x 和 y 都接近 [UINT32_MAX](https://msdn.microsoft.com/en-us/library/mt764276.aspx),亦即 32-bit 表示範圍的上限之際) * [Binary search 的演算法提出之後十年才被驗證](https://www.comp.nus.edu.sg/~sma5503/recitations/01-crct.pdf) * 於是我們可以改寫為以下: ```cpp (x & y) + ((x ^ y) >> 1) ``` * 用加法器來思考: `x & y` 是進位, `x ^ y` 是位元和, `>> 1` 是向右移一位 * 位元相加不進位的總和: `x ^ y`; 位元相加產生的進位值: `(x & y) << 1` * `x + y = ( x ^ y ) + (( x & y ) << 1)` * 所以 (x + y) / 2 = `(x + y) >> 1` = `(x ^ y + (x & y) << 1) >> 1` = `(x & y) + ((x ^ y) >> 1)` * 以下 C 語言程式的 DETECT 巨集能做什麼? ```cpp #if LONG_MAX == 2147483647L #define DETECT(X) \ (((X) - 0x01010101) & ~(X) & 0x80808080) #else #if LONG_MAX == 9223372036854775807L #define DETECT(X) \ (((X) - 0x0101010101010101) & ~(X) & 0x8080808080808080) #else #error long int is not a 32bit or 64bit type. #endif #endif ``` * 巨集 `DETECT` 在偵測什麼? * Detect NULL 測試這程式時,要注意到由於 **LONG_MAX** 定義在 `<limits.h>` 裡面,因此要記得作 `#include` 這個巨集的用途是在偵測是否為 0 或者說是否為 NULL char ’\0’,也因此,我們可以在 iOS 的原始程式碼 [strlen](https://github.com/apple-oss-distributions/Libc/blob/Libc-583/arm/string/strlen.s) 的實作中看到這一段。那,為什麼這一段程式碼可以用來偵測 NULL char ? 我們先思考 strlen() 該怎麼實作,以下實作一個簡單的版本 ```c unsigned int strlen(const char *s) { char *p = s; while (*p != '\0') p++; return (p - s); } ``` 這樣的版本有什麼問題?雖然看起來精簡,但是因為他一次只檢查 1byte,所以一旦字串很長,他就會處理很久。另外一個問題是,假設是在 32-bit 的 CPU 上,一次是處理 4-byte (32-bit) 大小的資訊,不覺得這樣很浪費嗎? 為了可以思考這樣的程式,我們由已知的計算方式來逆推原作者可能的思考流程,首先先將計算再簡化一點點,將他從 **(((X) - 0x01010101) & ~(X) & 0x80808080)** 變成 ``` ((X) - 0x01) & ~(X) & 0x80 ``` 還是看不懂,將以前學過的笛摩根定理套用上去,於是這個式子就變成了 ``` ~( ~(X - 0x01) | X ) & 0x80  ``` 再稍微調整一下順序 ``` ~( X | ~(X - 0x01) ) & 0x80  ``` 所以我們就可進行分析 * `X | ~(X - 0x01)` => 取得最低位元是否為 0 ,並將其他位元設為 1 * X = 0000 0011 => 1111 1111 * X = 0000 0010 => 1111 1110 * 想想 0x80 是什麼? 0x80 是 1000 0000 ,也就是 1-byte 的最高位元 上面這兩組組合起來,我們可以得到以下結果 * X = 0    => 1000 0000  => 0x80 * X = 1     => 0000 0000 => 0 * X = 2    => 0000 0000 => 0 * ....... * X = 255 => 0000 0000 => 0 於是我們知道,原來這樣的運算,如果一個 byte 是 0,那經由這個運算得到的結果會是 0x80,反之為 0。 不妨換另一種想法看 ``` ((X) - 0x01) & ~(X) & 0x80 ``` * `((X) - 0x01)` => 只在 X=0 或 X>0x80時,最高位元才會得到1, 0b1xxx xxxx * `~X` =>只在 X<0x80時,最高位元才會得到1, 0b1xxx xxxx 綜合上述兩點,只有X=0時,其運算結果得到0x80 再將這個想法擴展到 32-bit,是不是可以想到說在 32bit 的情況下,0 會得到 0x80808080 這樣的答案?我們只要判斷這個數值是不是存在,就可以找到 ’\0’ 在哪了! 參考資料: * [Hacker’s Delight](http://www.amazon.com/Hackers-Delight-Edition-Henry-Warren/dp/0321842685)   * [](http://www.hackersdelight.org/corres.txt)[http://www.hackersdelight.org/corres.txt](http://www.hackersdelight.org/corres.txt) * [FreeBSD 的 strlen(3)](https://blog.delphij.net/2012/04/freebsd-strlen3.html)  * [Bug 60538  - [SH] improve support for cmp/str insn ](https://gcc.gnu.org/bugzilla/show_bug.cgi?id=60538) * [Bit Twiddling Hacks](https://graphics.stanford.edu/~seander/bithacks.html#ZeroInWord) 應用: * [newlib 的 strlen](https://github.com/eblot/newlib/blob/master/newlib/libc/string/strlen.c) * [newlib 的 strcpy](https://github.com/eblot/newlib/blob/master/newlib/libc/string/strcpy.c) * SSE 4.2 最佳化版本: [Implementing strcmp, strlen, and strstr using SSE 4.2 instructions](https://www.strchr.com/strcmp_and_strlen_using_sse_4.2) ## 算術完全可用數位邏輯實作 只能使用位元運算子和遞迴,在 C 程式中實作兩個整數的加法,可行嗎? 回顧 [加法器](https://kopu.chat/2017/08/15/%E4%BB%A5c%E5%AF%A6%E4%BD%9C%E4%BA%8C%E9%80%B2%E4%BD%8D%E5%8A%A0%E6%B3%95/) 的實作: ![](https://i.imgur.com/eQpT5GI.png) 思考以下程式碼: ```cpp int add(int a, int b) { if (b == 0) return a; int sum = a ^ b; /* 相加但不進位 */ int carry = (a & b) << 1; /* 進位但不相加 */ return add(sum, carry); } ``` 延伸閱讀: [How to simulate a 4-bit binary adder in C](http://stackoverflow.com/questions/14695051/how-to-simulate-a-4-bit-binary-adder-in-c) ## Count Leading Zero 當我們計算 $\log_2 N$ (以 2 為底的對數) 時, 其實只要算高位有幾個 0's bits. 再用 31 減掉即可。 ```c int BITS = 31; while (BITS) { if (N & 0x80000000) break; N <<= 1; BITS--; } ``` 當要算 $\log_{10} N$ 時, 因為 32-bit unsigned integer 最大只能顯示 4294967295U,所以 32-bit LOG10() 的值只有可能是 0 ~ 9. 這時可透過查表法,以省去除法的成本。 ```cpp unsigned int vals[] = { 1UL, 10UL, 100UL, 1000UL, 10000UL, 100000UL, 1000000UL, 10000000UL, 100000000UL, 1000000000UL, }; for (i = 0; i < (nr - 1); ++i) { // 9 if (N >= vals[i] && N < vals[i + 1]) { // 8 break; // 1 } } ``` 換句話說,計算 $\log_2 N$ 時,知道「高位開頭有幾個 0」就成為計算的關鍵操作。 延伸閱讀: [Fast computing of log2 for 64-bit integers](http://stackoverflow.com/questions/11376288/fast-computing-of-log2-for-64-bit-integers) * 類似 De Bruijn 演算法 * 64-bit version ```cpp const int tab64[64] = { 63, 0, 58, 1, 59, 47, 53, 2, 60, 39, 48, 27, 54, 33, 42, 3, 61, 51, 37, 40, 49, 18, 28, 20, 55, 30, 34, 11, 43, 14, 22, 4, 62, 57, 46, 52, 38, 26, 32, 41, 50, 36, 17, 19, 29, 10, 13, 21, 56, 45, 25, 31, 35, 16, 9, 12, 44, 24, 15, 8, 23, 7, 6, 5 }; int log2_64 (uint64_t value) { value |= value >> 1; value |= value >> 2; value |= value >> 4; value |= value >> 8; value |= value >> 16; value |= value >> 32; return tab64[((uint64_t)((value - (value >> 1 ))*0x07EDD5E59A4E28C2)) >> 58]; } ``` * 32-bit version ```cpp const int tab32[32] = { 0, 9, 1, 10, 13, 21, 2, 29, 11, 14, 16, 18, 22, 25, 3, 30, 8, 12, 20, 28, 15, 17, 24, 7, 19, 27, 23, 6, 26, 5, 4, 31 }; int log2_32 (uint32_t value) { value |= value >> 1; value |= value >> 2; value |= value >> 4; value |= value >> 8; value |= value >> 16; return tab32[(uint32_t)(value*0x07C4ACDD) >> 27]; } ``` gcc 提供 built-in Function: * [int __builtin_clz (unsigned int x)](http://gcc.gnu.org/onlinedocs/gcc/Other-Builtins.html) * Returns the number of leading 0-bits in x, starting at the most significant bit position. * If x is 0, the result is undefined. 可用來實作 log2: ```cpp #define LOG2(X) ((unsigned) \ (8 * sizeof (unsigned long long) - \ __builtin_clzll(X) - 1)) ``` 那該如何實作 clz 呢? - [ ] iteration version ```cpp int clz(uint32_t x) { int n = 32, c = 16; do { uint32_t y = x >> c; if (y) { n -= c; x = y; } c >>= 1; } while (c); return (n - x); } ``` - [ ] binary search technique ```cpp int clz(uint32_t x) { if (x == 0) return 32; int n = 0; if (x <= 0x0000FFFF) { n += 16; x <<= 16; } if (x <= 0x00FFFFFF) { n += 8; x <<= 8; } if (x <= 0x0FFFFFFF) { n += 4; x <<= 4; } if (x <= 0x3FFFFFFF) { n += 2; x <<= 2; } if (x <= 0x7FFFFFFF) { n += 1; x <<= 1; } return n; } ``` - [ ] byte-shift version ```cpp int clz(uint32_t x) { if (x == 0) return 32; int n = 1; if ((x >> 16) == 0) { n += 16; x <<= 16; } if ((x >> 24) == 0) { n += 8; x <<= 8; } if ((x >> 28) == 0) { n += 4; x <<= 4; } if ((x >> 30) == 0) { n += 2; x <<= 2; } n = n - (x >> 31); return n; } ``` * [ffs](http://man7.org/linux/man-pages/man3/ffs.3.html)() 會回傳給定數值的 first bit set 的位置 * 例如 128 在 32-bit 表示為 `0b10000000`,ffs(128)會回傳 8 * 129 在 32bit 表示為 `0b10000001,`ffs(129) 會回傳 1 延伸閱讀: [Bit scanning equivalencies](https://fgiesen.wordpress.com/2013/10/18/bit-scanning-equivalencies/) ## 省去迴圈 考慮以下 C 程式,解說在 32-bit 架構下具體作用(不是逐行註解),以及能否避開用迴圈? ```cpp int func(unsigned int x) { int val = 0; int i = 0; for (i = 0; i < 32; i++) { val = (val << 1) | (x & 0x1); x >>= 1; } return val; } ``` 這段程式的作用是逐位元反轉順序,如下面測試所示,顛倒後位元不足 32bit 者,全部補 0 ```shell ------input number 99-------- 2bit= 1100011 val = 11000110000000000000000000000000 ------output number -973078528-------- ------input number 198-------- 2bit= 11000110 val = 1100011000000000000000000000000 ------output number 1660944384-------- ------input number 297-------- 2bit= 100101001 val = 10010100100000000000000000000000 ------output number -1803550720-------- ------input number 396-------- 2bit= 110001100 val = 110001100000000000000000000000 ------output number 830472192-------- ------input number 4294967281-------- 2-bit= 11111111111111111111111111110001 val = 10001111111111111111111111111111 ------output number -1879048193-------- ``` 參考 [Reverse integer bitwise without using loop](http://stackoverflow.com/questions/21511533/reverse-integer-bitwise-without-using-loop),將原本的 for 迴圈變更為 bit-wise 操作: ```cpp new = num; new = ((new & 0xffff0000) >> 16) | ((new & 0x0000ffff) << 16); new = ((new & 0xff00ff00) >> 8) | ((new & 0x00ff00ff) << 8); new = ((new & 0xf0f0f0f0) >> 4) | ((new & 0x0f0f0f0f) << 4); new = ((new & 0xcccccccc) >> 2) | ((new & 0x33333333) << 2); new = ((new & 0xaaaaaaaa) >> 1) | ((new & 0x55555555) << 1); ``` 在不使用迴圈的情況下,可以做到一樣的功能。 延伸閱讀: * [你所不知道的 C 語言: 浮點數運算](https://hackmd.io/@sysprog/c-floating-point) * [CS:APP 第 2 章重點提示和練習](https://hackmd.io/@sysprog/CSAPP-ch2) Bits Twiddling Hacks 解析: [(一)](https://hackmd.io/@0xff07/ORAORAORAORA), [(二)](https://hackmd.io/@0xff07/MUDAMUDAMUDA), [(三)](https://hackmd.io/@0xff07/WRYYYYYYYYYY) ## 加解密的應用 - [ ] Caesar shift cipher * 把 A-Z 這 26 個字母表示成 A=0, B=1, ..., Z=25,然後給任意一個 KEY,把訊息的字母加上 KEY 之後 mod 26 就會得到加密之後的訊息。假設 KEY=19,那麼原本的訊息例如 HELLO (7 4 11 11 14) 經過 cipher 後 (26 23 30 30 33) mod 26 => (0 23 4 4 7) 會變成 AXEEH 的加密訊息。 - [ ] XOR * 假設有一張黑白的相片是由很多個0 ~255 的 pixel 組成 (0 是黑色,255 是白色),這時候可以用任意的 KEY (00000000~2~ - 11111111~2~) 跟原本的每個 pixel 做運算,如果使用 AND (每個 bit 有 75% 機率會變成 `0`),所以圖會變暗。如果使用 OR (每個 bit 有 75% 機率會變 `1`),圖就會變亮。這兩種幾乎都還是看的出原本的圖片,但若是用 XOR 的話,每個 bit 變成 0 或 1 的機率都是 50%,所以圖片就會變成看不出東西的雜訊。 ![](https://hackpad-attachments.s3.amazonaws.com/embedded2016.hackpad.com_Sc7AmIvN7EN_p.578574_1463033229650_13199369_1147773728576962_1986608170_o.jpg) 上圖左 1 是原圖,左 2 是用 AND 做運算之後,右 2 是用 OR 做運算之後,右 1 是用 XOR,可見使用 XOR 的加密效果最好。 已知 X, Y 是 random variable over {0,1}^n^,X 是 independent uniform distribution,則 Z = X xor Y 也會是 uniform distribution。附圖是用 truth table 列舉證明,n = 2 的真值表: ![](https://i.imgur.com/KNFlEpc.png) 於是我們可以對 X 作 xor, 將任意分佈的 random number 轉為 uniform distribution 完整證明: [How to prove uniform distribution of 𝑚⊕𝑘 if 𝑘 is uniformly distributed?](https://math.stackexchange.com/a/441990) 參考資料:[Ciphers vs. codes](https://www.khanacademy.org/computing/computer-science/cryptography/ciphers/a/ciphers-vs-codes) ## 待整理 * [awesome-bits](https://github.com/keon/awesome-bits): A curated list of awesome bitwise operations and tricks

    Import from clipboard

    Paste your markdown or webpage here...

    Advanced permission required

    Your current role can only read. Ask the system administrator to acquire write and comment permission.

    This team is disabled

    Sorry, this team is disabled. You can't edit this note.

    This note is locked

    Sorry, only owner can edit this note.

    Reach the limit

    Sorry, you've reached the max length this note can be.
    Please reduce the content or divide it to more notes, thank you!

    Import from Gist

    Import from Snippet

    or

    Export to Snippet

    Are you sure?

    Do you really want to delete this note?
    All users will lose their connection.

    Create a note from template

    Create a note from template

    Oops...
    This template has been removed or transferred.
    Upgrade
    All
    • All
    • Team
    No template.

    Create a template

    Upgrade

    Delete template

    Do you really want to delete this template?
    Turn this template into a regular note and keep its content, versions, and comments.

    This page need refresh

    You have an incompatible client version.
    Refresh to update.
    New version available!
    See releases notes here
    Refresh to enjoy new features.
    Your user state has changed.
    Refresh to load new user state.

    Sign in

    Forgot password

    or

    By clicking below, you agree to our terms of service.

    Sign in via Facebook Sign in via Twitter Sign in via GitHub Sign in via Dropbox Sign in with Wallet
    Wallet ( )
    Connect another wallet

    New to HackMD? Sign up

    Help

    • English
    • 中文
    • Français
    • Deutsch
    • 日本語
    • Español
    • Català
    • Ελληνικά
    • Português
    • italiano
    • Türkçe
    • Русский
    • Nederlands
    • hrvatski jezik
    • język polski
    • Українська
    • हिन्दी
    • svenska
    • Esperanto
    • dansk

    Documents

    Help & Tutorial

    How to use Book mode

    Slide Example

    API Docs

    Edit in VSCode

    Install browser extension

    Contacts

    Feedback

    Discord

    Send us email

    Resources

    Releases

    Pricing

    Blog

    Policy

    Terms

    Privacy

    Cheatsheet

    Syntax Example Reference
    # Header Header 基本排版
    - Unordered List
    • Unordered List
    1. Ordered List
    1. Ordered List
    - [ ] Todo List
    • Todo List
    > Blockquote
    Blockquote
    **Bold font** Bold font
    *Italics font* Italics font
    ~~Strikethrough~~ Strikethrough
    19^th^ 19th
    H~2~O H2O
    ++Inserted text++ Inserted text
    ==Marked text== Marked text
    [link text](https:// "title") Link
    ![image alt](https:// "title") Image
    `Code` Code 在筆記中貼入程式碼
    ```javascript
    var i = 0;
    ```
    var i = 0;
    :smile: :smile: Emoji list
    {%youtube youtube_id %} Externals
    $L^aT_eX$ LaTeX
    :::info
    This is a alert area.
    :::

    This is a alert area.

    Versions and GitHub Sync
    Get Full History Access

    • Edit version name
    • Delete

    revision author avatar     named on  

    More Less

    Note content is identical to the latest version.
    Compare
      Choose a version
      No search result
      Version not found
    Sign in to link this note to GitHub
    Learn more
    This note is not linked with GitHub
     

    Feedback

    Submission failed, please try again

    Thanks for your support.

    On a scale of 0-10, how likely is it that you would recommend HackMD to your friends, family or business associates?

    Please give us some advice and help us improve HackMD.

     

    Thanks for your feedback

    Remove version name

    Do you want to remove this version name and description?

    Transfer ownership

    Transfer to
      Warning: is a public team. If you transfer note to this team, everyone on the web can find and read this note.

        Link with GitHub

        Please authorize HackMD on GitHub
        • Please sign in to GitHub and install the HackMD app on your GitHub repo.
        • HackMD links with GitHub through a GitHub App. You can choose which repo to install our App.
        Learn more  Sign in to GitHub

        Push the note to GitHub Push to GitHub Pull a file from GitHub

          Authorize again
         

        Choose which file to push to

        Select repo
        Refresh Authorize more repos
        Select branch
        Select file
        Select branch
        Choose version(s) to push
        • Save a new version and push
        • Choose from existing versions
        Include title and tags
        Available push count

        Pull from GitHub

         
        File from GitHub
        File from HackMD

        GitHub Link Settings

        File linked

        Linked by
        File path
        Last synced branch
        Available push count

        Danger Zone

        Unlink
        You will no longer receive notification when GitHub file changes after unlink.

        Syncing

        Push failed

        Push successfully