Ya-Wen Jeng
    • Create new note
    • Create a note from template
      • Sharing URL Link copied
      • /edit
      • View mode
        • Edit mode
        • View mode
        • Book mode
        • Slide mode
        Edit mode View mode Book mode Slide mode
      • Customize slides
      • Note Permission
      • Read
        • Only me
        • Signed-in users
        • Everyone
        Only me Signed-in users Everyone
      • Write
        • Only me
        • Signed-in users
        • Everyone
        Only me Signed-in users Everyone
      • Engagement control Commenting, Suggest edit, Emoji Reply
      • Invitee
    • Publish Note

      Share your work with the world Congratulations! 🎉 Your note is out in the world Publish Note

      Your note will be visible on your profile and discoverable by anyone.
      Your note is now live.
      This note is visible on your profile and discoverable online.
      Everyone on the web can find and read all notes of this public team.
      See published notes
      Unpublish note
      Please check the box to agree to the Community Guidelines.
      View profile
    • Commenting
      Permission
      Disabled Forbidden Owners Signed-in users Everyone
    • Enable
    • Permission
      • Forbidden
      • Owners
      • Signed-in users
      • Everyone
    • Suggest edit
      Permission
      Disabled Forbidden Owners Signed-in users Everyone
    • Enable
    • Permission
      • Forbidden
      • Owners
      • Signed-in users
    • Emoji Reply
    • Enable
    • Versions and GitHub Sync
    • Note settings
    • Engagement control
    • Transfer ownership
    • Delete this note
    • Save as template
    • Insert from template
    • Import from
      • Dropbox
      • Google Drive
      • Gist
      • Clipboard
    • Export to
      • Dropbox
      • Google Drive
      • Gist
    • Download
      • Markdown
      • HTML
      • Raw HTML
Menu Note settings Sharing URL Create Help
Create Create new note Create a note from template
Menu
Options
Versions and GitHub Sync Engagement control Transfer ownership Delete this note
Import from
Dropbox Google Drive Gist Clipboard
Export to
Dropbox Google Drive Gist
Download
Markdown HTML Raw HTML
Back
Sharing URL Link copied
/edit
View mode
  • Edit mode
  • View mode
  • Book mode
  • Slide mode
Edit mode View mode Book mode Slide mode
Customize slides
Note Permission
Read
Only me
  • Only me
  • Signed-in users
  • Everyone
Only me Signed-in users Everyone
Write
Only me
  • Only me
  • Signed-in users
  • Everyone
Only me Signed-in users Everyone
Engagement control Commenting, Suggest edit, Emoji Reply
Invitee
Publish Note

Share your work with the world Congratulations! 🎉 Your note is out in the world Publish Note

Your note will be visible on your profile and discoverable by anyone.
Your note is now live.
This note is visible on your profile and discoverable online.
Everyone on the web can find and read all notes of this public team.
See published notes
Unpublish note
Please check the box to agree to the Community Guidelines.
View profile
Engagement control
Commenting
Permission
Disabled Forbidden Owners Signed-in users Everyone
Enable
Permission
  • Forbidden
  • Owners
  • Signed-in users
  • Everyone
Suggest edit
Permission
Disabled Forbidden Owners Signed-in users Everyone
Enable
Permission
  • Forbidden
  • Owners
  • Signed-in users
Emoji Reply
Enable
Import from Dropbox Google Drive Gist Clipboard
   owned this note    owned this note      
Published Linked with GitHub
3
Subscribed
  • Any changes
    Be notified of any changes
  • Mention me
    Be notified of mention me
  • Unsubscribe
Subscribe
# BN128 curve --- C implementation 16, September, 2019 ## Definition: ### BN - Barreto, Naehrig et al. [Pairing-Friendly Elliptic Curves of Prime Order](https://cryptojedi.org/papers/pfcpo.pdf) - 提出 embedding degree <font color=red>$k=12$</font>,存在有效率的演算法架構出橢圓曲線 - 其中: - prime $p=36x^4+36x^3+24x^2+6x+1$ (架構出質數體的質數) - order $n=36x^4+36x^3+18x^2+6x+1$ (橢圓曲線中的點個數) - trace $t=6x^2+1$ (trace of the Frobenius) - $n = p+ 1−t$ - 在Ethereum的`alt_bn128`曲線中 <font color=red>$x=4965661367192848881$</font> (用[quickmath-solve polynomial](http://www.quickmath.com/webMathematica3/quickmath/equations/solve/intermediate.jsp#c=solve_basicsolveequation&v1=36z%255E4%2520%2B%252036z%255E3%2520%2B%252024z%255E2%2520%2B%25206z%2520%2B%25201%253D21888242871839275222246405745257275088696311157297823662689037894645226208583&v2=z)得出的解) - 因此: - $p=21888242871839275222246405745257275088696311157297823662689037894645226208583$ - $n=21888242871839275222246405745257275088548364400416034343698204186575808495617$ - $t=147946756881789318990833708069417712967$ - [*sage implementation*](https://cocalc.com): ```python= sgae: x = 4965661367192848881 sgae: p = 36*x^4+36*x^3+24*x^2+6*x+1 sgae: n = 36*x^4+36*x^3+18*x^2+6*x+1 sage: t = 6*x^2+1 ``` ### Field - [herumi/ate-pairing](https://github.com/herumi/ate-pairing) - `include/bn.h`中的`BN_SUPPORT_SNARK`部分: - $\mathbb{F}_{p^2} = \mathbb{F}_{p}[u]\ /\ (u^2 + 1)$ - $\mathbb{F}_{p^6} = \mathbb{F}_{p^2}[v]\ /\ (v^3 - \xi)\text{ where }\xi=u+9$ - $\mathbb{F}_{p^{12}} = \mathbb{F}_{p^6}[w]\ /\ (w^2 - v)$ - 根據定義: - $u^2=1$ - $v^3=\xi=u+9$ - $w^2=v$ - *sage implementatoin*: ```python= # GF(p) p的質數體,x為generator sage: P.<x> = PolynomialRing(GF(p)) # 用GF(p) extension 建構Fp2,u為generator sage: F2.<u> = GF(p).extension(x^2 + 1) # Fp2的Polynomial ring P,t為generator sage: P.<t> = F2[] # 用Fp2 extension 建構Fp6,v為generator sage: F6.<v> = F2.extension(t^3 - u-9) # 若可以則執行下列: # Fp6的Polynomial Ring P,y為generator sage: P.<y> = F6[] # 用Fp6 extension 建構Fp12,w為generator sage: F12.<w> = F6.extension(y^2 - v) ``` > extension只能用同field的元素 > 如構成 $\mathbb{F}_{p^6}$ 的有: $\mathbb{F}_{p}$ extend而來的生成元 `a` 及 $\mathbb{F}_{p^2}$ 生成元`t` > 構成 $\mathbb{F}_{p^12}$ 的有: $\mathbb{F}_{p^2}$ extend而來的生成元 `b` 及 $\mathbb{F}_{p^6}$ 生成元`y` ### Elliptic Curve - [Ethereum Yellow Paper](https://ethereum.github.io/yellowpaper/paper.pdf) P.21 - curve: $y^2=x^3+3$ - $C_1\equiv \{(X,Y)\in F_p\times F_p | Y^2=X^3+3\}\bigcup\{(0,0)\}$ $P_1\equiv(1,2)\text{ on }C_1$ - $F_{p^2}$ be a field $F_p[i]\ /\ (i^2+1)$ $C_2\equiv \{(X,Y)\in F_{p^2}\times F_{p^2} | Y^2=X^3+3(i+9)^{-1}\}\bigcup\{(0,0)\}$ $P_2\equiv(11559732032986387107991004021392285783925812861821192530917403151452391805634\times i$ $+10857046999023057135944570762232829481370756359578518086990519993285655852781,$ $4082367875863433681332203403145435568316851327593401208105741076214120093531 \times i$ $+8495653923123431417604973247489272438418190587263600148770280649306958101930)$ - *sage implementation*: ```python= # G1 sage: F1 = GF(21888242871839275222246405745257275088696311157297823662689037894645226208583) sage: G1 = EllipticCurve(F1,[0,3]) sage: P1 = G1(1,2) # G2 sage: F2 = GF(21888242871839275222246405745257275088696311157297823662689037894645226208583^2,"i",modulus=x^2 + 1) sage: TwistB = 3*F2("9+i")^(-1) sage: G2 = EllipticCurve(F2,[0,TwistB]) sage: P2x = F2("11559732032986387107991004021392285783925812861821192530917403151452391805634*i + 10857046999023057135944570762232829481370756359578518086990519993285655852781") sage: P2y = F2("4082367875863433681332203403145435568316851327593401208105741076214120093531*i + 8495653923123431417604973247489272438418190587263600148770280649306958101930") sage: P2 = G2(P2x,P2y) ``` ### Pairing - [EIP-197](https://github.com/ethereum/EIPs/blob/master/EIPS/eip-197.md) - 定義: ``` Input: (a1, b1, a2, b2, ..., ak, bk) from (G_1 x G_2)^k Output: If the length of the input is incorrect or any of the inputs are not elements of the respective group or are not encoded correctly, the call fails. Otherwise, return one if log_P1(a1) * log_P2(b1) + ... + log_P1(ak) * log_P2(bk) = 0 (in F_q) and zero else. ``` - 因此目標為計算 $k$ 組 $G_1,G_2$ 點的pairing - 目標: <font color=red>$e(a_1, b_1)\ *\ ...\ *\ e(a_k, b_k) = 1$</font> - 其中 $log_P(x)$ 為滿足 $n\cdot P=x$ 的最小 $n$ - $log_{P_1}(a_1) * log_{P_2}(b_1) + ... + log_{P_1}(a_k) * log_{P_2}(b_k) = 0 \text{ (in }\mathbb{F}_q)$ $e(P_1, P_2)^{(log_{P_1}(a_1) * log_{P_2}(b_1) + ... + log_{P_1}(a_k) * log_{P_2}(b_k))} = 1 \text{ (in }\mathbb{G}_T)$ $=e(log_{P_1}(a1) * P_1, log_{P_2}(b_1) * P_2) * ... * e(log_{P_1}(a_k) * P_1, log_{P_2}(b_k) * P_2))$ $=e(a_1, b_1)\ \cdot\ ...\ \cdot\ e(a_k, b_k)$ ## Packages ### [`ate-pairing`](https://github.com/herumi/ate-pairing) - C++ - 建構[`libff`](https://github.com/scipr-lab/libff), [`libsnark`](https://github.com/scipr-lab/libsnark)的基礎 - default: $x = -(2^{62} + 2^{55} + 1)$ - SNARK: `$ make -j SUPPORT_SNARK=1` - optimal ate-pairing - loop count為 $29793968203157093288=(6z+2)$ - [sample code](https://github.com/herumi/ate-pairing/blob/master/test/sample.cpp) - print出結果: ```cpp= Fp12 e1; opt_atePairing(e1, b1, a1); std::cout<<"e1:\n"<<std::hex<<e1; // std::hex 將輸出轉成10進位 ``` ### [`py_ecc`](https://github.com/ethereum/py_ecc) - Python - field及elliptic curve都如同ethereum用的bn128 - optimal ate-pairing - sample: ```python from py_ecc.bn128 import * p = curve_order x = randint(1, p-1) # out secret key H_m = multiply(G1, randint(1, p-1)) # lets pretend it's HashToPoint P = multiply(G2, x) # our public key in G2 S = multiply(H_m, x) # our signature in G1 a = pairing(P, H_m) b = pairing(G2, S) assert a == b # Verify signature ``` ### [`bn256`](https://www.cryptojedi.org/crypto/index.shtml#bncurves) - C - download: ```bash= wget http://cryptojedi.org/crypto/data/bn256-20090824.tar.bz2 tar xjvf bn256-20090824.tar.bz2 cd bn256-20090824 make ``` - default: bn256 curve - ate-pairing,optimal ate-pairing, tate-pairing, eta-pairing - compile: `gcc bn256.c -lgmp` - **用此library改驗證contract** ### [`pbc`](https://crypto.stanford.edu/pbc/) - C - BN curve defined in [Type F pairing](https://crypto.stanford.edu/pbc/manual/ch08s08.html) (參數`beta`,`alpha`尚未確認為何) - sample: ```cpp= $ pbc/pbc $ init_pairing_f(); $ g := rnd(G1); $ g; [79852913720140618033238675189472612021317443593, 108845852893881268898046458273434478449744261041] $ h := rnd(G2); $ h; [[66738494328564557862145166514672743296967736031, 138628962866914872444577256854665138260901670758], [44108488804575150857180778316233085344147224102, 73374821578866986221123150061800643945355771561]] $ pairing(g,h); [[127244296846151320229451765231937407345264275337, 194516214605916518197434454512307639138513347685], [72123392631556257776993010580007966809196163433, 103133235071738349318869312483762541080166756669], [115470402213399488913960527477665437360341563634, 200045067655991734256248847368109781819590012108], [165249791411356411563096446612379783127179161114, 90879321830240188846380135482009532401892893033], [14435220015022740410783909886514751711701242926, 60515085796840445289165108813993241043979134259], [49371634445738451451225200934854581888610639833, 127714555993719752867082276854684686305396949588]] $ a := rnd(Zr); $ b := rnd(Zr); $ pairing(g^a,h^b); [[88424061323103803164426643017917154342437690388, 17300053332458983889698342671869711927095355785], [105794066241143284372826714937348966757146275247, 98584892219681632258828536835126690818980273309], [183812827043409431154961438096794763381657047935, 5296345413835424569297807155298296475996049089], [119183393812191428328100091251793077351089043188, 22627592276984654933875258547844800793012505017], [107533753564271022761938415005984406018901618293, 149300949962179025507296347427720414700427056977], [154979478921340615280616064447497122078583184353,159326123140227494966318218788156290320376454546]] $ pairing(g,h)^(a*b); [[88424061323103803164426643017917154342437690388, 17300053332458983889698342671869711927095355785], [105794066241143284372826714937348966757146275247, 98584892219681632258828536835126690818980273309], [183812827043409431154961438096794763381657047935, 5296345413835424569297807155298296475996049089], [119183393812191428328100091251793077351089043188, 22627592276984654933875258547844800793012505017], [107533753564271022761938415005984406018901618293, 149300949962179025507296347427720414700427056977], [154979478921340615280616064447497122078583184353, 159326123140227494966318218788156290320376454546]] ``` ## Pairing - $$e:\mathbb{G}_2\times\mathbb{G}_1\longrightarrow\mathbb{G}_T$$ - $\mathbb{G}_T$ 即上述架構的 $F_{p^{12}}$ - 性質: - $e(P, Q + R) = e(P, Q) * e(P, R)$ - $e(P + S, Q) = e(P, Q) * e(S, Q)$ - $e(a\cdot P,Q)=e(P,Q)^a$ - $e(a\cdot P,b\cdot Q)=e(P,Q)^{ab}$ - Reference: - [The Eta Pairing Revisited](https://eprint.iacr.org/2006/110.pdf) -- Tate-pairing, Ate-pairing - [High-Speed Software Implementation of the Optimal Ate Pairing over Barreto–Naehrig Curves](https://eprint.iacr.org/2010/354.pdf) -- Opt Ate-pairing ### Tate-pairing - $$(Q,P)\longmapsto f_{r,Q}(P)^{\frac{q^k-1}{r}}$$ ### Weil-pairing - $$w_r(Q,P)=\frac{f_{r,Q}{(P)}}{f_{r,P}{(Q)}}$$ ### Ate-pairing - $$(Q,P)\longmapsto f_{t-1,Q}(P)^{\frac{q^k-1}{r}}$$ ### Optimal Ate-pairing - $$(Q,P)\longmapsto(f_{6t+2,Q}(P)\cdot l_{[6t+2]Q,\pi_p(Q)}(P)\cdot l_{[6t+2]Q+\pi_p(Q),-\pi_p^2(Q)}(P))^{\frac{q^k-1}{r}}$$ ## Algorithm ### Frobenius - 定義: Raising elements of $\mathbb{F}_{p^e}$ to there $p$-th powers gives a self-map of $\mathbb{F}_{p^e}$; it is called the Frobenius map and written as $F$. $$F:\mathbb{F}_{p^e}→\mathbb{F}_{p^e},x↦x^p$$ - trace of Frobenius of the curve ```sage sage: E=EllipticCurve(GF(101),[2,3]) sage: E.trace_of_frobenius() 6 ``` - `fp6e_frobenius_p`: - algorithm: [High-Speed Software Implementation of the Optimal Ate Pairing over Barreto–Naehrig Curves](https://eprint.iacr.org/2010/354.pdf) - $\textbf{Algorithm 28}\text{ :Frobenius raised to }p\text{ of }f\in\mathbb{F}_{p^{12}}=\mathbb{F}_{p^6}[w]/(w^2-\gamma)$ - sage code: ```python= # point1 is in F6 sage: F6.frobenius_endomorphism()(point1) sage: F6.frobenius_endomorphism(1)(point1) # equal # return another point in F6 ``` - `fp6e_frobenius_p2`: - algorithm: - $\textbf{Algorithm 29}\text{ :Frobenius raised to }p^2\textit{ of }f\in\mathbb{F}_{p^{12}}=\mathbb{F}_{p^6}[w]/(w^2-\gamma)$ - sage code: ```python= # point1 is in F6 sage: F6.frobenius_endomorphism(2)(point1) # return another point in F6 ``` - `fp6e_frobenius_p3`: - 雖然有演算法,但也可用`frobenius_p1`和`frobenius_p2`建構出`frobenius_p3` - rule: $f^{p^3}(x)=f^{p}(f^{p^2}(x))$ - sage code: ```python= sage: f61 = F6.frobenius_endomorphism()(point1) sage: f62 = F6.frobenius_endomorphism(2)(point1) sage: f631 = F6.frobenius_endomorphism(3)(point1) sage: f632 = F6.frobenius_endomorphism()(f62) sage: f631 == f632 True ``` ### Miller's Loop - [$\text{Miller's algorithm:}$ (P.3-6)](https://www.math.u-bordeaux.fr/~damienrobert/csi2017/pairings.pdf) - **Input**: $r\in\mathbb{N},I=[log r],P=(x_P,y_P)\in E[r](K),Q=(x_Q,y_Q)\in E(K)$ - **Output:** $f_{r,P}(Q)$ - 1. Compute the binary decomposition: $r:=\sum_{i=0}^Ib_i2^i$. Let $T=P,f=1$ - For $i$ in $[I-1..0]$: (a) $f=f^2\mu_{T,T}(Q)$ (b) $T=2T$ (c ) if $b_i=1$: i. $f=f\mu_{T,P}(Q)$ ii. $T=T+P$ - return $f$ - py_ecc code: ```python=85 def miller_loop(Q: Point2D[FQ12], P: Point2D[FQ12]) -> FQ12: ... R = Q # type: Point2D[FQ12] f = FQ12.one() for i in range(log_ate_loop_count, -1, -1): f = f * f * linefunc(R, R, P) R = double(R) if ate_loop_count & (2**i): f = f * linefunc(R, Q, P) R = add(R, Q) ... ``` ### Line function - Linear function $l_{Q,Q}(P)\in \mathbb{F}_{p^{12}}$ - algorithm: [High-Speed Software Implementation of the Optimal Ate Pairing over Barreto–Naehrig Curves P. 28 $\text{Algorithm 26, 27}$](https://eprint.iacr.org/2010/354.pdf) - *sage implementation (bn256)*: ```python= # Algorithm 26 Point doubling and line evaluation x_p = F1("19036326650351419380309844008588046887500192473820022916684059283212312810755") y_p = F1("24416690099424885538680537874355857700418235418382750960697588420893490979447") X_Q = F2("66020635303426444812813329252614299010925071937759307499201344123165041483630 * a + 19412881731638021337230777338399549073276632608516152708419727813812179213342") Y_Q = F2("9496995991393763151014644875678504226651962851610752566278875877566242661313 * a + 64547729877332878386921358349209593549688364540149661508455335221364968200136") Z_Q = F2("28265609773395302082323410388877418050796517628590810004689763505562099393371 * a + 11608911084161395568477488481039820448251922441323271942259565147644676056919") tmp0 = X_Q^2 tmp1 = Y_Q^2 tmp2 = tmp1^2 tmp3 = (tmp1+X_Q)^2-tmp0-tmp2 tmp3 = 2*tmp3 tmp4 = 3*tmp0 tmp6 = X_Q +tmp4 tmp5 = tmp4^2 X_T = tmp5-2*tmp3 Z_T = (Y_Q+Z_Q)^2-tmp1-Z_Q^2 Y_T = (tmp3-X_T)*tmp4-8*tmp2 tmp3 = -2*(tmp4*Z_Q^2) tmp3 = tmp3*x_p tmp6 = tmp6^2-tmp0-tmp5-4*tmp1 tmp0 = 2*(Z_T*Z_Q^2) tmp0 = tmp0*y_p # return ((tmp6*b)+tmp3)*c+tmp0 and (X_T,Y_T,Z_T) # tmp6 = 39467808497513321971418495975092757910573795172620731653284844774590128544949*a + 16064578912625871412495875021273158087538297781312732719918703103255685212978 # tmp3 = 26900272025442231202136810059174826466870068404883709542831107009130992101024*a + 36820176082059830702390334368466688997958373791692089380588742415783206487213 # tmp0 = 42540957778736336440218600222726529148774731933627463366204312833488321059843*a + 17279992842561602300512709260017417861197710148394396110364376447336168241241 # X_T = 59939262272742075282293750272562916432861452573095215973543955503737179845918*a + 71849103101821744092544346176918665246275637177231140546732043562364871274010 # Y_T = 55118971710910072378614458628513479971221383112282002676433416805306813327600*a + 22474579714957608756815244332228042411943570322630763049703532407058892183412 # Z_T = 58472854990350142177940989350497195394893722422701615335663755883768116801021*a + 15698510426968927131396167416642403602632680084454872605963655368201407093488 ``` ```python= # Algorithm 27 Point addition and line evaluation x_p = F1("19036326650351419380309844008588046887500192473820022916684059283212312810755") y_p = F1("24416690099424885538680537874355857700418235418382750960697588420893490979447") X_R = F2("60468327060250697695777504843760602312778240813685687476754545290340736660117 * a + 75207288700540388172087626426077159416239342674220757084925862172259324791798"); Y_R = F2("11747159676870954034830968911985740355803730873092166329012919399968203758626 * a + 77437491087823200008673050455309591478143842462808890777525559574909739529050"); Z_R = F2("48197990245400830303642899484867393594767420425921999847413039690362552391954 * a + 5774166803647311766191305052111952966489183189940295269365880795628328435859"); X_Q = F2("621974397985525318194063125170198577902540556498747469157675653746576620880 * a + 6251805185683980258298929625871846172079392273578387836099945035602364239135") Y_Q = F2("49990908316789968724860573235913273901071484323829192314337721068681689250452 * a + 19258290530482130955008764894053126575339703184772660063788583927864324464626") Z_Q = F2("0 *a + 1") t0 = X_Q*Z_R^2 t1 = (Y_Q+Z_R)^2-Y_Q^2-Z_R^2 t1 = t1*Z_R^2 t2 = t0-X_R t3 = t2^2 t4 = 4*t3 t5 = t4*t2 t6 = t1-2*Y_R t9 = t6*X_Q t7 = X_R*t4 X_T = t6^2-t5-2*t7 Z_T = (Z_R+t2)^2-Z_R^2-t3 t10 = Y_Q+Z_T t8 = (t7-X_T)*t6 t0 = 2*(Y_R*t5) Y_T = t8-t0 t10 = t10^2-Y_Q^2-Z_T^2 t9 = 2*t9-t10 t10 = 2*(Z_T*y_p) t6 = -1*t6 t1 = 2*(t6*x_p) t9 t1 t10 # return ((t9*b)+t1)*c+t10 and (X_T,Y_T,Z_T) # t9 = 76479445506672858954637202806298445894378948504602958825436274313311101562445*a + 64652353141305220762250925929760150731422897775111546669321115421764662312129 # t1 = 31824713071612796591909199573998992099967176584471593726257655335602275248320*a + 59393640435344032559925061282433789629607126201787190693026971066582909965704 # t10 = 6526929262762995979386081461373064697408294715716098178260463132377538058359*a + 70402627597488067633993521117962910027448315214449308123592677402636620499031 # X_T = 66020635303426444812813329252614299010925071937759307499201344123165041483630*a + 19412881731638021337230777338399549073276632608516152708419727813812179213342 # Y_T = 9496995991393763151014644875678504226651962851610752566278875877566242661313*a + 64547729877332878386921358349209593549688364540149661508455335221364968200136 # Z_T = 28265609773395302082323410388877418050796517628590810004689763505562099393371*a + 11608911084161395568477488481039820448251922441323271942259565147644676056919 ``` ### Final Exponential - $f$ raised to $f^{\frac{p^{12}-1}{n}}$ - $\frac{p^{12}-1}{r}=(p^6-1)\cdot (p^2+1)\cdot \frac{p^4-p^2+1}{r}$ - [High-Speed Software Implementation of the Optimal Ate Pairing over Barreto–Naehrig Curves P. 32 $\text{Algorithm 31}$](https://eprint.iacr.org/2010/354.pdf) - $f^{(p^6-1)}=\bar{f}\cdot f^{-1}$ - $\bar{f}$: 共軛 - $f^{-1}\cdot f=1$ - [Implementing Cryptographic Pairings over Barreto-Naehrig Curves P.7 $\text{Algorithm 3}$](https://eprint.iacr.org/2007/390.pdf) - $p$ 和 $n$ 為 $x$ generate而來 - $\frac{p^4-p^2+1}{r}=p^3 + (6x^2 + 1)p^2 + (36x^3 − 18x^2 + 12x + 1)p + (36x^3 − 30x^2 + 18x − 2)$ ## Parameters ### BN_P - prime $p=36x^4+36x^3+24x^2+6x+1$ - ```python= sgae: x = 4965661367192848881 sgae: p = 36*x^4+36*x^3+24*x^2+6*x+1 ``` - `#define BN_P "21888242871839275222246405745257275088696311157297823662689037894645226208583"` ### BN_PINV32 - `p^{-1} mod 2^{GMP_LIMB_BITS}` used in Montgomery reduction `GMP_LIMB_BITS = 32` - ```python= sgae: (-p)^(-1) % 2^(32) ``` - `#define BN_PINV32 3834012553UL` ### BN_PINV64 - `p^{-1} mod 2^{GMP_LIMB_BITS}` used in Montgomery reduction `GMP_LIMB_BITS = 32` - ```python= sgae: (-p)^(-1) % 2^(64) ``` - `#define BN_PINV64 9786893198990664585UL` ### ALPHA - $\alpha:\mathbb{F}_{p^2} = \mathbb{F}_{p}[u]\ /\ (u^2 - \alpha)$ - $\alpha=-1$ by definition - `#define ALPHA (-1) // constant coefficient in the irreducible polynomial x^2 - alpha, used to construct F_{p^2}` ### BN_X - $x=4965661367192848881$ (用[quickmath-solve polynomial](http://www.quickmath.com/webMathematica3/quickmath/equations/solve/intermediate.jsp#c=solve_basicsolveequation&v1=36z%255E4%2520%2B%252036z%255E3%2520%2B%252024z%255E2%2520%2B%25206z%2520%2B%25201%253D21888242871839275222246405745257275088696311157297823662689037894645226208583&v2=z)得出的解) - `#define BN_X "4965661367192848881" // parameter x used to generate the curve (see "Pairing-Friendly Elliptic Curves of Prime Order")` ### BN_N - order $p=36x^4+36x^3+18x^2+6x+1$ - ```python= sgae: x = 4965661367192848881 sgae: p = 36*x^4+36*x^3+18*x^2+6*x+1 ``` - `#define BN_N "21888242871839275222246405745257275088548364400416034343698204186575808495617" // prime order of E(F_p)` ### BN_TRACE - trace $t=6x^2+1$ (trace of the Frobenius) - ```python= sage: G1.trace_of_frobenius() 147946756881789318990833708069417712967 ``` - `#define BN_TRACE "147946756881789318990833708069417712967" // trace of Frobenius of the curve` ### BN_XI - $\mathbb{F}_{p^6} = \mathbb{F}_{p^2}[v]\ /\ (v^3 - \xi)\text{ where }\xi=u+9$ - $\xi$ : Xi - `#define BN_XI "1", "9"` ### BN_YPMINUS1 - $Y^{p-1}$ lies in $\mathbb{F}_{p^2}$ where $\mathbb{F}_{p^6}[Y]=\mathbb{F}_{p^2}[Y]/(Y^3-\xi)$ - ```python= # construct Fp6 = Fp[v] / (v^3 - xi) sage: P.<t> = F2[] sage: F6.<b> = F2.extension(t^3 - a-9) sage: b^(p-1) 10307601595873709700152284273816112264069230130616436755625194854815875713954*a + 21575463638280843010398324269430826099269044274347216827212613867836435027261 ``` - `#define BN_YPMINUS1 "10307601595873709700152284273816112264069230130616436755625194854815875713954", "21575463638280843010398324269430826099269044274347216827212613867836435027261"` > `b`是 $\mathbb{F}_{p^6}[Y]=\mathbb{F}_{p^2}[Y]/(Y^3-\xi)$ 裡的生成元,即 $Y$,因此取 $Y$ 的 $p-1$ 次方 > $\mathbb{F}_{p^6}$ 其實是由`a`的二次方+`b`的三次方組合而成,例如: > ```sage sage: for i in range(10): sage: print b^i 1 b b^2 a + 1 (a + 1)*b (a + 1)*b^2 2*a + 82434016654300679721217353503190038836571781811386228921167322412819029493182 (2*a + 82434016654300679721217353503190038836571781811386228921167322412819029493182)*b (2*a + 82434016654300679721217353503190038836571781811386228921167322412819029493182)*b^2 a + 82434016654300679721217353503190038836571781811386228921167322412819029493178 ``` > 剛好 $(p-1)\ mod\ 3=0$,沒有`b`次方項只有`a`次方項 > ### BN_ZETA - Third root of unity in $F_p$ fulfilling $Z^{p^2} = -\zeta * Z$ - $\zeta=Z^{p^2-1}$ - sage: ```python= # 若能執行則執行: sage: P.<y> = F6[] sage: F12.<c> = F6.extension(y^2 - b) sage: c^((p^2)-1) ``` - 無法用sage generate出F12,因此`c^((p^2)-1)`無法使用 - 由`extension(y^2-b)`得知:$y^2=b$ - 原來的 $c^{p^2-1}$ 可變成 $b^{\frac{p^2-1}{2}}$ - 可算出 $\zeta=-b^{\frac{p^2-1}{2}}$,為 $2203960485148121921418603742825762020974279258880205651966$ - `#define BN_ZETA "2203960485148121921418603742825762020974279258880205651966"` ### BN_TAU - def: $\tau$ = `"0", "0", "0", "1", "0", "0" // constant tau used to construct F_p^12 as F_p^6[Z]/ (Z^2 - tau)` - `fp6e_multau(a) = a*tau` - where `tau=(0*a+0)*b^2+(0*a+1)*b+(0*a+0)` $$(0*a+0)*b^2+(0*a+1)*b+(0*a+0)\\=b$$ - `a` is in $\mathbb{F}_{p^6}$ - sage code: ```python= # point1 is in F6 pointx = (0*a+0)*b^2+(0*a+1)*b+(0*a+0) point1 * pointx # return fp6e_multau(point1) ``` - ref: [Multiplication and Squaring on Pairing-Friendly Fields](https://pdfs.semanticscholar.org/3e01/de88d7428076b2547b60072088507d881bf1.pdf) - `#define BN_TAU "0", "0", "0", "1", "0", "0" // constant tau used to construct F_p^12 as F_p^6[Z]/ (Z^2 - tau)` ### BN_ZPMINUS1 - `BN_ZPMINUS1`: $c^{p-1}=b^{\frac{p-1}{2}}$ - ```python= sage: # c^(p-1) sage: # (p-1)/2 = 10944121435919637611123202872628637544348155578648911831344518947322613104291 sage: b^10944121435919637611123202872628637544348155578648911831344518947322613104291 # c^2 = b ``` - `#define BN_ZPMINUS1 "16469823323077808223889137241176536799009286646108169935659301613961712198316", "8376118865763821496583973867626364092589906065868298776909617916018768340080" // Z^(p-1)` ### BN_ZPMINUS1INV - `BN_ZPMINUS1`: $c^{1-p}=b^{\frac{1-p}{2}}$ - ```python= sage: # c^(1-p) sage: # (1-p)/2 = -10944121435919637611123202872628637544348155578648911831344518947322613104291 sage: b^(-10944121435919637611123202872628637544348155578648911831344518947322613104291) # c^2 = b ``` - `#define BN_ZPMINUS1INV "5722266937896532885780051958958348231143373700109372999374820235121374419868", "18566938241244942414004596690298913868373833782006617400804628704885040364344" // Z^(1-p)` ### BN_CURVEGEN - base point of $G_1$,定義在[ethereum yellow paper](https://ethereum.github.io/yellowpaper/paper.pdf)中 - $P_1=(1,2)$ - <font color=red>需轉換為**Jacobian coordinates**</font> - Affine to Jacobian: $(X,Y)\Rightarrow(X,Y,1)$ - Jacobian to Affine: $(X,Y,Z)\Rightarrow(\frac{X}{Z^2},\frac{Y}{Z^3})$ - ref: [How can convert affine to Jacobian coordinates?](https://crypto.stackexchange.com/questions/19598/how-can-convert-affine-to-jacobian-coordinates) - `#define BN_CURVEGEN "1", "2", "1"` ### BN_TWISTGEN_X - base point of $G_2$,定義在[ethereum yellow paper](https://ethereum.github.io/yellowpaper/paper.pdf)中 - $P_2=(11559732032986387107991004021392285783925812861821192530917403151452391805634\times i$ $+10857046999023057135944570762232829481370756359578518086990519993285655852781,$ $4082367875863433681332203403145435568316851327593401208105741076214120093531 \times i$ $+8495653923123431417604973247489272438418190587263600148770280649306958101930)$ - `#define BN_TWISTGEN_X "11559732032986387107991004021392285783925812861821192530917403151452391805634", "10857046999023057135944570762232829481370756359578518086990519993285655852781"` ### BN_TWISTGEN_Y - 同上 - `#define BN_TWISTGEN_Y "4082367875863433681332203403145435568316851327593401208105741076214120093531", "8495653923123431417604973247489272438418190587263600148770280649306958101930"` ### BN_ZETA2 - $\zeta^2$ - $\zeta=2203960485148121921418603742825762020974279258880205651966$ - ```python= sage: P("2203960485148121921418603742825762020974279258880205651966^2") ``` - `#define BN_ZETA2 "21888242871839275220042445260109153167277707414472061641714758635765020556616" // zeta^2` ### BN_Z2P - $c^{2p}=b^p$ - sage: ```python= sage: print(" BN_Z2P // Z^(2p)") sage: # c^(2p) sage: b^21888242871839275222246405745257275088696311157297823662689037894645226208583 BN_Z2P // Z^(2p) (10307601595873709700152284273816112264069230130616436755625194854815875713954*a + 21575463638280843010398324269430826099269044274347216827212613867836435027261)*b ``` - code: ```cpp=80 #define BN_Z2P "10307601595873709700152284273816112264069230130616436755625194854815875713954", "21575463638280843010398324269430826099269044274347216827212613867836435027261" // Z^(2p) ``` ### BN_Z3P - $c^{3p}=b^\frac{3p-1}{2}\times c$ - sgae: ```python= sage: print(" BN_Z3P // Z^(3p)") sage: # c^(3p) sage: # ((3*p-1)/2) sage: b^32832364307758912833369608617885912633044466735946735494033556841967839312874 BN_Z3P // Z^(3p) (3505843767911556378687030309984248845540243509899259641013678093033130930403*a + 2821565182194536844548159561693502659359617185244120367078079554186484126554)*b ``` - code: ```cpp=81 #define BN_Z3P "3505843767911556378687030309984248845540243509899259641013678093033130930403", "2821565182194536844548159561693502659359617185244120367078079554186484126554" // Z^(3p) ``` ## Notes - `py_ecc`及`ate-pairing`是用<font color=red>**Opt ate-pairing**</font>,loop count為29793968203157093288(6z+2) - 原來有`fp2e_mulxi`這個函數,但因此函數還沒實作 $\alpha$ 為其他數的可能性,因此用`fp2e_mul(rop,op,xi)`代替,效果一樣 - 注意哪些函數的input需要符合<font color=red>**affine coordinate**</font>(ex. `curvepoint_fp_mixadd`) 在呼叫函數前可以用`curvepoint_fp_makeaffine(op)` 轉成affine coordinate - 在原verifier.sol有此行code: ```javascript= Pairing.G1Point memory vk_x = Pairing.G1Point(0, 0); for (uint i = 0; i < input.length; i++) vk_x = Pairing.addition(vk_x, Pairing.scalar_mul(vk.IC[i + 1], input[i])); ``` $(0,0)$ 不在 $Y^2=X^3+3$ 上,為ethereum yellow paper定義的<font color=red>無窮原點</font> 在此code中若是無窮原點則jacobian的 $Z$ 座標為零(根據橢圓曲線定義$g_1^n=(0,0),$用`curve_gen`的 $n$ 次方檢查無窮原點為何) 在此code`vk_x=(x,y,0)`在第一個loop不能用加法,會出錯。 改寫成 ```cpp= if(fpe_iszero(vk_x->m_z)){ curvepoint_fp_set(vk_x, tmp0); } else{ curvepoint_fp_mixadd(vk_x, vk_x, tmp0); curvepoint_fp_makeaffine(vk_x); } ``` 若非零才加法,零則直接指定 ## Appendix -- \<gmp\> ### \<gmp\> on macOS 0. Install - [Install gmp on Mac OSX](http://macappstore.org/gmp/) - `ruby -e "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/master/install)" < /dev/null 2> /dev/null` - `brew install gmp` 1. Compile ``` gcc code.c -L. -lpbc -lgmp ``` 2. Execution ``` ./a.out ``` ``` Enter Elliptic Curve Parameters i.e. a,b and p Enter Choice of Operation Enter 1 For Point Addition Operation Enter 2 For Scalar Multiplication Operation 1 Enter Points P(x,y) and/or Q(x,y) to beAdded Resultant Point is 53245742458311851613963450768604695125869175507241963909214915539587838403999,86019658436333621282556383871045654836888327576374321095942401925234007301028 ``` ``` Enter Elliptic Curve Parameters i.e. a,b and p Enter Choice of Operation Enter 1 For Point Addition Operation Enter 2 For Scalar Multiplication Operation 2 Enter Points P(x,y) and/or Q(x,y) to beAdded Enter m to Find mP 1 Resultant Point is 55066263022277343669578718895168534326250603453777594175500187360389116729240,32670510020758816978083085130507043184471273380659243275938904335757337482424 ``` - code ```cpp= #include<stdio.h> #include<stdlib.h> #include<gmp.h> struct Elliptic_Curve { mpz_t a; mpz_t b; mpz_t p; }; struct Point { mpz_t x; mpz_t y; }; struct Elliptic_Curve EC; void Select_EC(); void Point_Addition(struct Point P,struct Point Q,struct Point* R); void Point_Doubling(struct Point P,struct Point *R); void Scalar_Multiplication(struct Point P,struct Point* R, mpz_t m); int main(void) { int choice; mpz_init(EC.a); mpz_init(EC.b); mpz_init(EC.p); Select_EC(); printf("\n Enter Choice of Operation\n"); printf("\n Enter 1 For Point Addition Operation\n"); printf("\n Enter 2 For Scalar Multiplication Operation\n"); scanf("%d",&choice); struct Point P,R; mpz_init(P.x); mpz_init(P.y); mpz_init_set_ui(R.x,0); mpz_init_set_ui(R.y,0); printf("\n Enter Points P(x,y) and/or Q(x,y) to beAdded\n"); mpz_init_set_str (P.x, "55066263022277343669578718895168534326250603453777594175500187360389116729240", 10); mpz_init_set_str (P.y, "32670510020758816978083085130507043184471273380659243275938904335757337482424", 10); //gmp_scanf("%Zd",&P.x); //gmp_scanf("%Zd",&P.y); if(choice==1) { struct Point Q; mpz_init(Q.x); mpz_init(Q.y); mpz_init_set_str (Q.x, "48840125481190545212233038815866595080052446190700286140915905752173158787212", 10); mpz_init_set_str (Q.y, "55258565891714835096390285893857201264507235115974921462591453996678450950230", 10); // gmp_scanf("%Zd",&Q.x); // gmp_scanf("%Zd",&Q.y); Point_Addition(P,Q,&R); } else { printf("\n Enter m to Find mP\n"); mpz_t m; mpz_init(m); gmp_scanf("%Zd",&m); Scalar_Multiplication(P,&R,m); } gmp_printf("\n Resultant Point is %Zd,%Zd",R.x,R.y); } void Select_EC() { printf("\n Enter Elliptic Curve Parameters i.e. a,b and p"); mpz_init_set_str (EC.a, "0", 10); mpz_init_set_str (EC.b, "7", 10); mpz_init_set_str (EC.p, "115792089237316195423570985008687907853269984665640564039457584007908834671663", 10); //gmp_scanf("%Zd",&EC.a); //gmp_scanf("%Zd",&EC.b); //gmp_scanf("%Zd",&EC.p); } void Point_Addition(struct Point P,struct Point Q,struct Point* R) { mpz_mod(P.x,P.x,EC.p); mpz_mod(P.y,P.y,EC.p); mpz_mod(Q.x,Q.x,EC.p); mpz_mod(Q.y,Q.y,EC.p); mpz_t temp,slope; mpz_init(temp); mpz_init_set_ui(slope,0); if(mpz_cmp_ui(P.x,0)==0 && mpz_cmp_ui(P.y,0)==0) { mpz_set(R->x,Q.x); mpz_set(R->y,Q.y); return;} if(mpz_cmp_ui(Q.x,0)==0 && mpz_cmp_ui(Q.y,0)==0) { mpz_set(R->x,P.x); mpz_set(R->y,P.y); return;} if(mpz_cmp_ui(Q.y,0)!=0) {mpz_sub(temp,EC.p,Q.y);mpz_mod(temp,temp,EC .p);} else mpz_set_ui(temp,0); // gmp_printf("\n temp=%Zd\n",temp); if(mpz_cmp(P.y,temp)==0 && mpz_cmp(P.x,Q.x)==0) { mpz_set_ui(R->x,0); mpz_set_ui(R->y,0); return;} if(mpz_cmp(P.x,Q.x)==0 && mpz_cmp(P.y,Q.y)==0) { Point_Doubling(P,R); return; } else { mpz_sub(temp,P.x,Q.x); mpz_mod(temp,temp,EC.p); mpz_invert(temp,temp,EC.p); mpz_sub(slope,P.y,Q.y); mpz_mul(slope,slope,temp); mpz_mod(slope,slope,EC.p); mpz_mul(R->x,slope,slope); mpz_sub(R->x,R->x,P.x); mpz_sub(R->x,R->x,Q.x); mpz_mod(R->x,R->x,EC.p); mpz_sub(temp,P.x,R->x); mpz_mul(R->y,slope,temp); mpz_sub(R->y,R->y,P.y); mpz_mod(R->y,R->y,EC.p); return; } } void Point_Doubling(struct Point P,struct Point *R) { mpz_t slope,temp; mpz_init(temp); mpz_init(slope); if(mpz_cmp_ui(P.y,0)!=0) { mpz_mul_ui(temp,P.y,2); mpz_invert(temp,temp,EC.p); mpz_mul(slope,P.x,P.x); mpz_mul_ui(slope,slope,3); mpz_add(slope,slope,EC.a); mpz_mul(slope,slope,temp); mpz_mod(slope,slope,EC.p); mpz_mul(R->x,slope,slope); mpz_sub(R->x,R->x,P.x); mpz_sub(R->x,R->x,P.x); mpz_mod(R->x,R->x,EC.p); mpz_sub(temp,P.x,R->x); mpz_mul(R->y,slope,temp); mpz_sub(R->y,R->y,P.y); mpz_mod(R->y,R->y,EC.p); } else { mpz_set_ui(R->x,0); mpz_set_ui(R->y,0); } } void Scalar_Multiplication(struct Point P,struct Point* R, mpz_t m) { struct Point Q,T; mpz_init(Q.x); mpz_init(Q.y); mpz_init(T.x); mpz_init(T.y); long no_of_bits,loop; no_of_bits=mpz_sizeinbase(m,2); mpz_set_ui(R->x,0);mpz_set_ui(R->y,0); if(mpz_cmp_ui(m,0)==0) return; mpz_set(Q.x,P.x); mpz_set(Q.y,P.y); if(mpz_tstbit(m,0)==1) {mpz_set(R->x,P.x);mpz_set(R->y,P.y);} for(loop=1;loop<no_of_bits;loop++) { mpz_set_ui(T.x,0); mpz_set_ui(T.y,0); Point_Doubling(Q,&T); gmp_printf("\n %Zd %Zd %Zd %Zd ",Q.x,Q.y,T.x,T.y); mpz_set(Q.x,T.x); mpz_set(Q.y,T.y); mpz_set(T.x,R->x); mpz_set(T.y,R->y); if(mpz_tstbit(m,loop)) Point_Addition(T,Q,R); } } // int contract_main(int argc, char **argv){ // mpz_init(EC.a); mpz_init(EC.b); mpz_init(EC.p); // mpz_init_set_str (EC.a, "0", 10); // mpz_init_set_str (EC.b, "7", 10); // mpz_init_set_str (EC.p, "115792089237316195423570985008687907853269984665640564039457584007908834671663", 10); // struct Point P,R; // mpz_init(P.x); // mpz_init(P.y); // mpz_init_set_ui(R.x,0); // mpz_init_set_ui(R.y,0); // mpz_init_set_str (P.x, "55066263022277343669578718895168534326250603453777594175500187360389116729240", 10); // mpz_init_set_str (P.y, "32670510020758816978083085130507043184471273380659243275938904335757337482424", 10); // //gmp_scanf("%Zd",&P.x); // //gmp_scanf("%Zd",&P.y); // struct Point Q; // mpz_init(Q.x); // mpz_init(Q.y); // mpz_init_set_str (Q.x, "48840125481190545212233038815866595080052446190700286140915905752173158787212", 10); // mpz_init_set_str (Q.y, "55258565891714835096390285893857201264507235115974921462591453996678450950230", 10); // //gmp_scanf("%Zd",&Q.x); // //gmp_scanf("%Zd",&Q.y); // Point_Addition(P,Q,&R); // gmp_printf("\n Resultant Point is %Zd,%Zd",R.x,R.y); // //printf("%d, %d",R.x,R.y); // return 0; // } ``` ### \<gmp\> on linux 1. download from [gmplib](https://gmplib.org/) 2. download `lzip`: ```bash sudo apt install lzip ``` 3. Conver `gmp-6.1.2.tar.lz` to `gmp-6.1.2.tar` ```bash sudo lzip -d gmp-6.1.2.tar.lz ``` 4. Unzip `gmp-6.1.2.tar` ```bash tar -xvf gmp-6.1.2.tar ``` 5. Install GMP ```bash cd gmp-6.1.2/ sudo ./configure sudo make sudo make check sudo make install ``` ### \<gmp\> tutorial #### Headers and Libraries - header: `#include <gmp.h>` - C compile: `gcc code.c -lgmp` - C++ compile `g++ code.cc -lgmpxx -lgmp` - 若GMP被安裝在非標準的地方,則用`-I`及`-L`使編譯時指向正確的資料夾 #### Nomenclature and Types - `mpz_t`: 一般整數(Integers) - 函數開頭為 `mpz_` - `mpq_t`: 有理數(Rational number) - 函數開頭為 `mpq_` - `mpf_t`: 浮點數(Floating point number) - 函數開頭為 `mpf_` #### Variable Conventions - input和output可以吃相同的變數 - 如整數乘法`mpz_mul`,若想要對`x`平方 則用`mpz_mul(x,x,x);` - 在assign到一個GMP變數前,必須呼叫一個**初始化函數** 在用完該變數後,要呼叫清除函數 - 範例: ```cpp= mpz_t n; mpz_init(n); // Initializing mpz_mul(n,...); mpz_clear(n); //clearing ``` #### Parameter Conventions - 是call-by-reference - 函數呼叫只返回座標,所以用法是將回傳結果`result`放入函數參數中 - 範例: ```cpp= void foo(mpz_t result, const mpz_t param, unsigned long n){ mpz_mul_ui(result, param, n); } int main(void){ mpz_t r,n; // init mpz_init(r); mpz_init_set_str (n,"123456",0); // call function foo foo(r,n,20L); // print gmp_printf("%Zd\n",r); return 0; } ``` #### Demonstration programs 1. `demos/` 資料夾中有範例程式 ```bash cd demos/ ``` 2. make ```bash sudo make pexpr ``` 3. 執行 ```bash ./pexpr 68^975+10 ``` #### Integer functions - `void mpz_init(mpz_t x)`: Initialize x, and set its value to 0 - `void mpz_clear(mpz_t x)`: free the space - `void mpz_set_str(mpz_t rop, const char *str, int base)`: set the value of $rop$ from $str$ - `int mpz_init_set_str(mpz_t rop, const char *str, int base)`: initialize $rop$ and set value like `mpz_set_str` (-1 if an error occurs) - `void mpz_add(mpz_t rop, const mpz_t op1, const mpz_t op2)`: $rop:=op1+op2$ - `void mpz_powm(mpz_t rop, const mpz_t base, const mpz_t exp, const mpz_t mod)`: $rop:=base^{exp}\ \text{mod}\ mod$ - formatted output ```cpp= mpz_t z; gmp_printf("%s is an mpz %Zd\n","here",z); ``` - formatted input ```cpp= // to read say "a(5)=1234" int n; mpz_t z; gmp_scanf("a(%d)=%Zd\n",&n,z); ```

Import from clipboard

Paste your markdown or webpage here...

Advanced permission required

Your current role can only read. Ask the system administrator to acquire write and comment permission.

This team is disabled

Sorry, this team is disabled. You can't edit this note.

This note is locked

Sorry, only owner can edit this note.

Reach the limit

Sorry, you've reached the max length this note can be.
Please reduce the content or divide it to more notes, thank you!

Import from Gist

Import from Snippet

or

Export to Snippet

Are you sure?

Do you really want to delete this note?
All users will lose their connection.

Create a note from template

Create a note from template

Oops...
This template has been removed or transferred.
Upgrade
All
  • All
  • Team
No template.

Create a template

Upgrade

Delete template

Do you really want to delete this template?
Turn this template into a regular note and keep its content, versions, and comments.

This page need refresh

You have an incompatible client version.
Refresh to update.
New version available!
See releases notes here
Refresh to enjoy new features.
Your user state has changed.
Refresh to load new user state.

Sign in

Forgot password

or

By clicking below, you agree to our terms of service.

Sign in via Facebook Sign in via Twitter Sign in via GitHub Sign in via Dropbox Sign in with Wallet
Wallet ( )
Connect another wallet

New to HackMD? Sign up

Help

  • English
  • 中文
  • Français
  • Deutsch
  • 日本語
  • Español
  • Català
  • Ελληνικά
  • Português
  • italiano
  • Türkçe
  • Русский
  • Nederlands
  • hrvatski jezik
  • język polski
  • Українська
  • हिन्दी
  • svenska
  • Esperanto
  • dansk

Documents

Help & Tutorial

How to use Book mode

Slide Example

API Docs

Edit in VSCode

Install browser extension

Contacts

Feedback

Discord

Send us email

Resources

Releases

Pricing

Blog

Policy

Terms

Privacy

Cheatsheet

Syntax Example Reference
# Header Header 基本排版
- Unordered List
  • Unordered List
1. Ordered List
  1. Ordered List
- [ ] Todo List
  • Todo List
> Blockquote
Blockquote
**Bold font** Bold font
*Italics font* Italics font
~~Strikethrough~~ Strikethrough
19^th^ 19th
H~2~O H2O
++Inserted text++ Inserted text
==Marked text== Marked text
[link text](https:// "title") Link
![image alt](https:// "title") Image
`Code` Code 在筆記中貼入程式碼
```javascript
var i = 0;
```
var i = 0;
:smile: :smile: Emoji list
{%youtube youtube_id %} Externals
$L^aT_eX$ LaTeX
:::info
This is a alert area.
:::

This is a alert area.

Versions and GitHub Sync
Get Full History Access

  • Edit version name
  • Delete

revision author avatar     named on  

More Less

Note content is identical to the latest version.
Compare
    Choose a version
    No search result
    Version not found
Sign in to link this note to GitHub
Learn more
This note is not linked with GitHub
 

Feedback

Submission failed, please try again

Thanks for your support.

On a scale of 0-10, how likely is it that you would recommend HackMD to your friends, family or business associates?

Please give us some advice and help us improve HackMD.

 

Thanks for your feedback

Remove version name

Do you want to remove this version name and description?

Transfer ownership

Transfer to
    Warning: is a public team. If you transfer note to this team, everyone on the web can find and read this note.

      Link with GitHub

      Please authorize HackMD on GitHub
      • Please sign in to GitHub and install the HackMD app on your GitHub repo.
      • HackMD links with GitHub through a GitHub App. You can choose which repo to install our App.
      Learn more  Sign in to GitHub

      Push the note to GitHub Push to GitHub Pull a file from GitHub

        Authorize again
       

      Choose which file to push to

      Select repo
      Refresh Authorize more repos
      Select branch
      Select file
      Select branch
      Choose version(s) to push
      • Save a new version and push
      • Choose from existing versions
      Include title and tags
      Available push count

      Pull from GitHub

       
      File from GitHub
      File from HackMD

      GitHub Link Settings

      File linked

      Linked by
      File path
      Last synced branch
      Available push count

      Danger Zone

      Unlink
      You will no longer receive notification when GitHub file changes after unlink.

      Syncing

      Push failed

      Push successfully