Jephian Lin
    • Create new note
    • Create a note from template
      • Sharing URL Link copied
      • /edit
      • View mode
        • Edit mode
        • View mode
        • Book mode
        • Slide mode
        Edit mode View mode Book mode Slide mode
      • Customize slides
      • Note Permission
      • Read
        • Only me
        • Signed-in users
        • Everyone
        Only me Signed-in users Everyone
      • Write
        • Only me
        • Signed-in users
        • Everyone
        Only me Signed-in users Everyone
      • Engagement control Commenting, Suggest edit, Emoji Reply
    • Invite by email
      Invitee

      This note has no invitees

    • Publish Note

      Share your work with the world Congratulations! 🎉 Your note is out in the world Publish Note

      Your note will be visible on your profile and discoverable by anyone.
      Your note is now live.
      This note is visible on your profile and discoverable online.
      Everyone on the web can find and read all notes of this public team.
      See published notes
      Unpublish note
      Please check the box to agree to the Community Guidelines.
      View profile
    • Commenting
      Permission
      Disabled Forbidden Owners Signed-in users Everyone
    • Enable
    • Permission
      • Forbidden
      • Owners
      • Signed-in users
      • Everyone
    • Suggest edit
      Permission
      Disabled Forbidden Owners Signed-in users Everyone
    • Enable
    • Permission
      • Forbidden
      • Owners
      • Signed-in users
    • Emoji Reply
    • Enable
    • Versions and GitHub Sync
    • Note settings
    • Note Insights
    • Engagement control
    • Transfer ownership
    • Delete this note
    • Save as template
    • Insert from template
    • Import from
      • Dropbox
      • Google Drive
      • Gist
      • Clipboard
    • Export to
      • Dropbox
      • Google Drive
      • Gist
    • Download
      • Markdown
      • HTML
      • Raw HTML
Menu Note settings Versions and GitHub Sync Note Insights Sharing URL Create Help
Create Create new note Create a note from template
Menu
Options
Engagement control Transfer ownership Delete this note
Import from
Dropbox Google Drive Gist Clipboard
Export to
Dropbox Google Drive Gist
Download
Markdown HTML Raw HTML
Back
Sharing URL Link copied
/edit
View mode
  • Edit mode
  • View mode
  • Book mode
  • Slide mode
Edit mode View mode Book mode Slide mode
Customize slides
Note Permission
Read
Only me
  • Only me
  • Signed-in users
  • Everyone
Only me Signed-in users Everyone
Write
Only me
  • Only me
  • Signed-in users
  • Everyone
Only me Signed-in users Everyone
Engagement control Commenting, Suggest edit, Emoji Reply
  • Invite by email
    Invitee

    This note has no invitees

  • Publish Note

    Share your work with the world Congratulations! 🎉 Your note is out in the world Publish Note

    Your note will be visible on your profile and discoverable by anyone.
    Your note is now live.
    This note is visible on your profile and discoverable online.
    Everyone on the web can find and read all notes of this public team.
    See published notes
    Unpublish note
    Please check the box to agree to the Community Guidelines.
    View profile
    Engagement control
    Commenting
    Permission
    Disabled Forbidden Owners Signed-in users Everyone
    Enable
    Permission
    • Forbidden
    • Owners
    • Signed-in users
    • Everyone
    Suggest edit
    Permission
    Disabled Forbidden Owners Signed-in users Everyone
    Enable
    Permission
    • Forbidden
    • Owners
    • Signed-in users
    Emoji Reply
    Enable
    Import from Dropbox Google Drive Gist Clipboard
       owned this note    owned this note      
    Published Linked with GitHub
    Subscribed
    • Any changes
      Be notified of any changes
    • Mention me
      Be notified of mention me
    • Unsubscribe
    Subscribe
    # $\mathbb{R}^n$ 中的矩陣表示法 ![Creative Commons License](https://i.creativecommons.org/l/by/4.0/88x31.png) This work by Jephian Lin is licensed under a [Creative Commons Attribution 4.0 International License](http://creativecommons.org/licenses/by/4.0/). {%hackmd 5xqeIJ7VRCGBfLtfMi0_IQ %} ```python from lingeo import random_int_list, random_good_matrix ``` ## Main idea Recall that if $f : \mathbb{R}^n \rightarrow \mathbb{R}^m$ is a linear function and $\{ {\bf e}_1,\ldots, {\bf e}_n\}$ is the standard basis of $\mathbb{R}^n$. Then the matrix $$[f] = \begin{bmatrix} | & ~ & | \\ f({\bf e}_1) & \cdots & f({\bf e}_n) \\ | & ~ & | \\ \end{bmatrix} $$ has the property that $f({\bf b}) = [f]{\bf b}$ for all ${\bf b}\in\mathbb{R}^n$. Sometimes $f({\bf e}_i)$ cannot be easily found, while the function $f$ is described by the bases of $\mathbb{R}^n$ and $\mathbb{R}^m$ instead. Let $f : \mathbb{R}^n \rightarrow \mathbb{R}^m$ be a linear function, $\alpha = \{ {\bf v}_1, \ldots, {\bf v}_n \}$ be a basis of $\mathbb{R}^n$, and $\beta$ a basis of $\mathbb{R}^m$. Then the matrix $$[f]_\alpha^\beta = \begin{bmatrix} | & ~ & | \\ [f({\bf v}_1)]_\beta & \cdots & [f({\bf v}_n)]_\beta \\ | & ~ & | \\ \end{bmatrix} $$ has the property that $[f({\bf b})]_\beta = [f]_\alpha^\beta [{\bf b}]_\alpha$. Therefore, we call $[f]_\alpha^\beta$ the **matrix representation** of $f$ with respect to $\alpha$ and $\beta$. The equality can be visualized by the following diagram. $$\begin{array}{ccc} {\bf b} & \xrightarrow{f} & f({\bf b}) \\ \downarrow & ~ & \downarrow \\ [{\bf b}]_\alpha & \xrightarrow{[f]_\alpha^\beta\cdot\square} & [f({\bf b})]_\beta \\ \end{array} $$ Let $\mathcal{E}_n$ and $\mathcal{E}_m$ be the standard basis of $\mathbb{R}^n$ and $\mathbb{R}^m$, respectively. Since we know - $[f]{\bf b} =f({\bf b})$, - $[\operatorname{id}]_{\mathcal{E}_n}^\alpha {\bf b} = [{\bf b}]_\alpha$, - $[\operatorname{id}]_{\mathcal{E}_m}^\beta f({\bf b}) = [f({\bf b})]_\beta$. We know $[f] = ([\operatorname{id}]_{\mathcal{E}_m}^\beta)^{-1} [f]_\alpha^\beta [\operatorname{id}]_{\mathcal{E}_n}^\alpha = [\operatorname{id}]_\beta^{\mathcal{E}_m} [f]_\alpha^\beta ([\operatorname{id}]_\alpha^{\mathcal{E}_n})^{-1}$. ## Side stories - projection ## Experiments ##### Exercise 1 執行以下程式碼。 已知 $f$ 為 $\mathbb{R}^3$ 到 $\mathbb{R}^2$ 的線性函數﹐ 而 $\alpha$ 和 $\beta$ 分別為 $\mathbb{R}^3$ 和 $\mathbb{R}^2$ 的一組基底。 **[程式碼有更新]** ```python ### code set_random_seed(0) print_ans = False m,n = 2,3 alpha = random_good_matrix(n,n,n, bound=3) beta = random_good_matrix(m,m,m, bound=3) A = matrix(m, random_int_list(m*n)) v = vector(random_int_list(n, 3)) b = alpha * v print("alpha contains %s vectors:"%n) for j in range(n): print("v%s ="%(j+1), alpha.column(j)) print("beta contains %s vectors:"%m) for i in range(m): print("u%s ="%(i+1), beta.column(i)) for j in range(n): print( "f(v%s) = "%(j+1) + " + ".join("%s u%s"%(A[i,j],i+1) for i in range(m)) ) print("b =", b) if print_ans: print("[b]_alpha =", v) print("[f(b)]_beta =", A*v) print("f(b) =", beta * A * v) print("[f]_alpha^beta =") show(A) print("[f] =") show(beta * A * alpha.inverse()) ``` 藉由```seed=0```,得到 $\alpha$ 含有三個向量: ${\bf v}_1 = (1, -3, 0)$、 ${\bf v}_2 = (3, -8, -1)$、 ${\bf v}_3 = (1, -1, -1)$。 $\beta$ 含有兩個向量: ${\bf u}_1 = (1, 2)$、 ${\bf u}_2 = (1, 3)$。 $f({\bf v}_1) = 4 {\bf u}_1 + 2 {\bf u}_2$、 $f({\bf v}_2) = -4 {\bf u}_1 + 4 {\bf u}_2$、 $f({\bf v}_3) = -3 {\bf u}_1 + -4 {\bf u}_2$、 ${\bf b} = (6, -19, -1)$。 ##### Exercise 1(a) 求 $[{\bf b}]_\alpha$、$[f({\bf b})]_\beta$ 、及 $f({\bf b})$。 :::warning - [x] 標點 - [x] 用 `\begin{aligned} ... \end{aligned}` 把一些等號對齊(參考 [風格指引](https://sagelabtw.github.io/LA-Tea/style.html)) ::: 答: 令 $U$ 和 $V$ 為兩向量空間, 對任意向量 ${\bf u}, {\bf u}_1, {\bf u}_2\in U$ 及純量 $k\in\mathbb{R}$. 如果 $$\begin{aligned} f({\bf u}_1 + {\bf u}_2) &= f({\bf u}_1) + f({\bf u}_2) \\ f(k{\bf u}) &= kf({\bf u}) \\ \end{aligned} $$ 函數 $f: U\rightarrow V$ 是線性。 設 ${\bf e}_1=(1,0,0)$、 ${\bf e}_2=(0,1,0)$、 ${\bf e}_3=(0,0,1)$。 令 $$\left[\begin{array}{ccc|cccc} {\bf v}_1& {\bf v}_2 & {\bf v}_3 & {\bf b} & {\bf e}_1 & {\bf e}_2 & {\bf e}_3 \end{array}\right]$$ 得 $$\left[\begin{array}{ccc|cccc} 1 & 3 & 1 & 6 & 1 & 0 & 0\\ -3 & -8 & -1 & -19 & 0 & 1 & 0\\ 0 & -1 & -1 & -1 & 0 & 0 & 1 \end{array}\right]$$ 化簡 $$\left[\begin{array}{ccc|cccc} 1 & 0 & 0 & -1 & 7 & 2 & 5\\ 0 & 1 & 0 & 3 & -3 & -1 & -2\\ 0 & 0 & 1 & -2 & 3 & 1 & 1 \end{array}\right] $$ 1. $[{\bf b}]_\alpha=\begin{bmatrix} -1 \\ 3 \\ -2 \end{bmatrix}.$ 2. $$\begin{aligned}[] [f({\bf b})]_\beta &=[f(-1{\bf v}_1+3{\bf v}_2-2{\bf v}_3)]_\beta \\ &=-[f({\bf v}_1)]_\beta+3[f({\bf v}_2)]_\beta-2[f({\bf v}_3)]_\beta \\ &=-\begin{bmatrix}4 \\2\end{bmatrix}+3\begin{bmatrix}-4 \\4\end{bmatrix}-2\begin{bmatrix}-3 \\-4\end{bmatrix}\\ &=\begin{bmatrix}-10 \\18\end{bmatrix}. \end{aligned} $$ 3. $$\begin{aligned}f({\bf b}) &=-10{\bf u}_1+18{\bf u}_2 \\ &=-10\begin{bmatrix}1 \\2\end{bmatrix} +18\begin{bmatrix}1 \\3\end{bmatrix} \\ &=\begin{bmatrix}8 \\34\end{bmatrix}. \end{aligned} $$ ##### Exercise 1(b) 求 $[f]_\alpha^\beta$ 及 $[f]$。 :::warning - [x] 在 $f(\be_1)$ 那行之前加:由前一題的最簡階梯形可以將 $\be_1,\be_2,\be_3$ 分別寫成 $\{\bv_1,\bv_2,\bv_3\}$ 的線性組合。 - [x] 標點 ::: 答: 1. 因為 $$\begin{aligned}[] [f({\bf v}_1)]_\beta &= [f]_\alpha^\beta \begin{bmatrix}1 \\ 0 \\ 0\end{bmatrix} =\begin{bmatrix}4 \\ 2\end{bmatrix}, \\ [f({\bf v}_2)]_\beta &= [f]_\alpha^\beta \begin{bmatrix}0 \\ 1 \\ 0\end{bmatrix} =\begin{bmatrix}-4 \\ 4\end{bmatrix}, \\ [f({\bf v}_3)]_\beta &= [f]_\alpha^\beta \begin{bmatrix}0 \\ 0 \\ 1\end{bmatrix} =\begin{bmatrix}-3 \\ -4\end{bmatrix}, \end{aligned} $$ 所以 $$[f]_\alpha^\beta =\begin{bmatrix} | & | & | \\ [f({\bf v}_1)]_\beta & [f({\bf v}_2)]_\beta & [f({\bf v}_3)]_\beta \\ | & | & | \\ \end{bmatrix} =\begin{bmatrix}4 & -4 & -3 \\ 2 & 4 & -4 \end{bmatrix}. $$ 2. 由前一題的最簡階梯形可以將 $\be_1,\be_2,\be_3$ 分別寫成 $\{\bv_1,\bv_2,\bv_3\}$ 的線性組合。 $f({\bf e}_1)=f(7{\bf v}_1-3{\bf v}_2+3{\bf v}_3) =7f({\bf v}_1)-3f({\bf v}_2)+3f({\bf v}_3) =\begin{bmatrix}21 \\ 32\end{bmatrix}$、 $f({\bf e}_2)=f(2{\bf v}_1-{\bf v}_2+{\bf v}_3) =2f({\bf v}_1)-f({\bf v}_2)+f({\bf v}_3) =\begin{bmatrix}5 \\ 6\end{bmatrix}$、 $f({\bf e}_3)=f(5{\bf v}_1-2{\bf v}_2+{\bf v}_3) =5f({\bf v}_1)-2f({\bf v}_2)+f({\bf v}_3) =\begin{bmatrix}23 \\ 44\end{bmatrix}$。 $[f]= \begin{bmatrix} | & | & | \\ f({\bf e}_1) & f({\bf e}_2) & f({\bf e}_3)\\ | & | & | \\ \end{bmatrix} =\begin{bmatrix}21 & 5 & 23 \\ 32 & 6 & 44\end{bmatrix}.$ ## Exercises ##### Exercise 2 令 $f : \mathbb{R}^n \rightarrow \mathbb{R}^m$ 為一線性函數、 $\alpha = \{{\bf v}_1, \ldots, {\bf v}_n\}$ 為 $\mathbb{R}^n$ 的一組基底、 $\beta = \{{\bf u}_1, \ldots, {\bf u}_m\}$ 為 $\mathbb{R}^m$ 的一組基底。 ##### Exercise 2(a) 令 $m = n = 3$ 且 $\alpha = \beta$ 為 $$A = \begin{bmatrix} \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{3}} & 0 & -\frac{2}{\sqrt{6}} \\ \end{bmatrix} $$ 的各行向量。 已知 $f({\bf v}_1) = {\bf u}_1$、 $f({\bf v}_2) = {\bf u}_2$、 $f({\bf v}_3) = {\bf 0}$。 求 $[f]_\alpha^\beta$ 及 $[f]$ 並說明 $f$ 的作用。 :::warning - [x] 有一個 $\be_3$ 打錯 - [x] 基底不會是矩陣,可以把那兩個單位矩陣刪掉;後面幾題一樣 - [x] 最後一式用 `aligned` 將等號對齊;後面幾題一樣 - [x] $f$ 作用為投影 --> $f$ 的作用為將向量投影到 $\vspan\{\bu_1,\bu_2\}$ 這個平面。 ::: 答: 因為 $[f({\bf v}_1)]_\beta$ 為 $\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$、 $[f({\bf v}_2)]_\beta$ 為 $\begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$、 $[f({\bf v}_3)]_\beta$ 為 $\begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$, 所以 $[f]_\alpha^\beta = \begin{bmatrix} | & | & | \\ [f({\bf v}_1)]_\beta & [f({\bf v}_2)]_\beta & [f({\bf v}_3)]_\beta \\ | & | & | \\ \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$。 令 ${\mathcal{E}_n} = \{{\bf e}_1, {\bf e}_2, {\bf e}_3\}$ 為 $\mathbb{R}^n$ 的標準基底, ${\mathcal{E}_m} = \{{\bf e}_1, {\bf e}_2, {\bf e}_3\}$ 為 $\mathbb{R}^m$ 的標準基底, $\begin{aligned} \\ [f] &= [\operatorname{id}]_\beta^{\mathcal{E}_m} [f]_\alpha^\beta ([\operatorname{id}]_\alpha^{\mathcal{E}_n})^{-1} \\ &= \begin{bmatrix} \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{3}} & 0 & -\frac{2}{\sqrt{6}} \\ \end{bmatrix}\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}\begin{bmatrix} \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{3}} & 0 & -\frac{2}{\sqrt{6}} \\ \end{bmatrix}^{-1} \\ &= \begin{bmatrix} \frac{5}{6} & -\frac{1}{6} & \frac{1}{3} \\ -\frac{1}{6} & \frac{5}{6} & \frac{1}{3} \\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \end{bmatrix} \end{aligned}$ 觀察 $f({\bf v}_1) = {\bf u}_1$、 $f({\bf v}_2) = {\bf u}_2$、 $f({\bf v}_3) = {\bf 0}$。 $f$ 的作用為將向量投影到 $\vspan\{\bu_1,\bu_2\}$ 這個平面。 ##### Exercise 2(b) 令 $m = n = 3$ 且 $\alpha = \beta$ 為 $$A = \begin{bmatrix} \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{3}} & 0 & -\frac{2}{\sqrt{6}} \\ \end{bmatrix} $$ 的各行向量。 已知 $f({\bf v}_1) = {\bf u}_1$、 $f({\bf v}_2) = {\bf u}_2$、 $f({\bf v}_3) = -{\bf u}_3$。 求 $[f]_\alpha^\beta$ 及 $[f]$ 並說明 $f$ 的作用。 :::warning - [x] 在這題中,f會使${\bf u}_3$變號但${\bf u}_1$,${\bf u}_2$不變,故為鏡射。--> 在這題中,$f$ 會使 ${\bf u}_3$ 變號但 ${\bf u}_1$, ${\bf u}_2$ 不變,故為 $f$ 的作用為對平面 $\vspan\{\bu_1,\bu_2\}$ 鏡射。 ::: 答: 從題目中可以知道 $[f({\bf v}_1)]_\beta$ 為 $\begin{bmatrix} 1 \\ 0 \\ 0\\ \end{bmatrix}$、 $[f({\bf v}_2)]_\beta$ 為 $\begin{bmatrix} 0 \\ 1 \\ 0\\ \end{bmatrix}$、 $[f({\bf v}_3)]_\beta$ 為 $\begin{bmatrix} 0 \\ 0 \\ -1\\ \end{bmatrix}$, 因此能得出 $[f]_\alpha^\beta = \begin{bmatrix} | & | & | \\ [f({\bf v}_1)]_\beta & [f({\bf v}_2)]_\beta & [f({\bf v}_3)]_\beta \\ | & | & | \\ \end{bmatrix}=\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix}$。 令 ${\mathcal{E}_n}=\{{\bf e}_1, {\bf e}_2, {\bf e}_3\}$ 的行向量為 $\mathbb{R}^n$ 的標準基底, 由此能計算出 $\begin{aligned} \\ [f] &= [\operatorname{id}]_\beta^{\mathcal{E}_m} [f]_\alpha^\beta([\operatorname{id}]_\alpha^{\mathcal{E}_n})^{-1} \\ &= \begin{bmatrix} \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{3}} & 0 & -\frac{2}{\sqrt{6}} \\ \end{bmatrix}\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix}\begin{bmatrix} \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{3}} & 0 & -\frac{2}{\sqrt{6}} \\ \end{bmatrix}^{-1} \\ &= \begin{bmatrix} \frac{2}{3} & -\frac{1}{3} & \frac{2}{3} \\ -\frac{1}{3} & \frac{2}{3} & \frac{2}{3} \\ \frac{2}{3} & \frac{2}{3} & -\frac{1}{3} \end{bmatrix} \end{aligned}$ 在這題中,$f$ 會使 ${\bf u}_3$ 變號但 ${\bf u}_1$, ${\bf u}_2$ 不變,故為 $f$ 的作用為對平面 $\vspan\{\bu_1,\bu_2\}$ 鏡射。 ##### Exercise 2(c) 令 $m = n = 3$ 且 $\alpha = \beta$ 為 $$A = \begin{bmatrix} \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{3}} & 0 & -\frac{2}{\sqrt{6}} \\ \end{bmatrix} $$ 的各行向量。 已知 $f({\bf v}_1) = {\bf u}_2$、 $f({\bf v}_2) = -{\bf u}_1$、 $f({\bf v}_3) = {\bf u}_3$。 求 $[f]_\alpha^\beta$ 及 $[f]$ 並說明 $f$ 的作用。 :::warning - [x] 在這題中,能從$[f]_\alpha^\beta$得知f為旋轉矩陣。 --> 在這題中,能從$[f]_\alpha^\beta$得知 $f$ 的作用為將向量以 $\bu_3$ 為軸,由 $\bu_1$ 方向往 $\bu_2$ 方向旋轉 $90$ 度。 ::: 答: 從題目中可以知道 $[f({\bf v}_1)]_\beta$ 為 $\begin{bmatrix} 0 \\ 1 \\ 0\\ \end{bmatrix}$、 $[f({\bf v}_2)]_\beta$ 為 $\begin{bmatrix} -1 \\ 0 \\ 0\\ \end{bmatrix}$、 $[f({\bf v}_3)]_\beta$ 為 $\begin{bmatrix} 0 \\ 0 \\ 1\\ \end{bmatrix}$, 因此能得出$[f]_\alpha^\beta = \begin{bmatrix} | & | & | \\ [f({\bf v}_1)]_\beta & [f({\bf v}_2)]_\beta & [f({\bf v}_3)]_\beta \\ | & | & | \\ \end{bmatrix}=\begin{bmatrix} 0 & -1 & 0\\ 1 & 0 & 0\\ 0 & 0 & 1 \end{bmatrix}$。 令 ${\mathcal{E}_n}=\{{\bf e}_1, {\bf e}_2, {\bf e}_3\}$ 的行向量為 $\mathbb{R}^n$ 的標準基底, 由此能計算出 $\begin{aligned} \\ [f] &= [\operatorname{id}]_\beta^{\mathcal{E}_m} [f]_\alpha^\beta ([\operatorname{id}]_\alpha^{\mathcal{E}_n})^{-1} \\ &= \begin{bmatrix} \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{3}} & 0 & -\frac{2}{\sqrt{6}} \\ \end{bmatrix}\begin{bmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}\begin{bmatrix} \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{3}} & 0 & -\frac{2}{\sqrt{6}} \\ \end{bmatrix}^{-1} \\ &= \begin{bmatrix} -\frac{1}{6} & -\frac{2}{\sqrt{6}}+\frac{1}{6} & -\frac{1}{\sqrt{6}}-\frac{1}{3} \\ \frac{2}{\sqrt{6}}+\frac{1}{6} & \frac{1}{6} & \frac{1}{\sqrt{6}}-\frac{1}{3} \\ \frac{1}{\sqrt{6}}-\frac{1}{3} & -\frac{1}{\sqrt{6}}-\frac{1}{3} & \frac{2}{3} \end{bmatrix} \end{aligned}$ 在這題中,能從$[f]_\alpha^\beta$得知 $f$ 的作用為將向量以 $\bu_3$ 為軸,由 $\bu_1$ 方向往 $\bu_2$ 方向旋轉 $90$ 度。 ##### Exercise 2(d) 令 $m = 2$、$n = 3$ 且 $\alpha$ 為 $$A = \begin{bmatrix} \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{3}} & 0 & -\frac{2}{\sqrt{6}} \\ \end{bmatrix} $$ 的各行向量、 $\beta$ 為 $$B = \begin{bmatrix} 1 & 1 \\ 0 & 1 \\ \end{bmatrix} $$ 的各行向量。 已知 $f({\bf v}_1) = 3{\bf u}_1$、 $f({\bf v}_2) = 4{\bf u}_2$、 $f({\bf v}_3) = {\bf 0}$。 求 $[f]_\alpha^\beta$ 及 $[f]$。 :::warning - [x] 不要中英雜夾 - [x] $[f]$ 的部份要用 $[f] = ([\operatorname{id}]_{\mathcal{E}_m}^\beta)^{-1} [f]_\alpha^\beta) [\operatorname{id}]_{\mathcal{E}_n}^\alpha = [\operatorname{id}]^{\mathcal{E}_m}_\beta[f]_\alpha^\beta ([\operatorname{id}]^{\mathcal{E}_n}_\alpha)^{-1}$ 計算 - [x] $\be^{'}$ --> $\be'$ ::: 答: $\alpha$ 含有三個向量: ${\bf v}_1 = (\frac{1}{\sqrt{3}},\frac{1}{\sqrt{3}},\frac{1}{\sqrt{3}})$、 ${\bf v}_2 = (\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}},0)$、 ${\bf v}_3 = (\frac{1}{\sqrt{6}},\frac{1}{\sqrt{6}},-\frac{2}{\sqrt{6}})$。 $\beta$ 含有兩個向量: ${\bf u}_1 = (1,0)$、 ${\bf u}_2 = (1,1)$。 經計算後得出 $f({\bf v}_1) = 3{\bf u}_1 = 3{\bf u}_1 + 0{\bf u}_2$、 $f({\bf v}_2) = 4{\bf u}_2 = 0{\bf u}_1 + 4{\bf u}_2$、 $f({\bf v}_3) = {\bf 0} = 0{\bf u}_1 + 0{\bf u}_2$。 由此可知 $[f({\bf v}_1)]_\beta$ 為 $\begin{bmatrix} 3 \\ 0 \\ \end{bmatrix}$、 $[f({\bf v}_2)]_\beta$ 為 $\begin{bmatrix} 0 \\ 4 \\ \end{bmatrix}$、 $[f({\bf v}_3)]_\beta$ 為 $\begin{bmatrix} 0 \\ 0 \\ \end{bmatrix}$,故得 $$[f]_\alpha^\beta = \begin{bmatrix} | & | & | \\ [f({\bf v}_1)]_\beta & [f({\bf v}_2)]_\beta & [f({\bf v}_3)]_\beta \\ | & | & | \\ \end{bmatrix} = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 4 & 0 \\ \end{bmatrix} $$。 令 ${\mathcal{E}_m}=\{{\bf e}_1, {\bf e}_2\}$ 為 $\mathbb{R}^m$ 的標準基底,${\mathcal{E}_n}=\{{\bf e}_1', {\bf e}_2', {\bf e}_3'\}$ 為 $\mathbb{R}^n$ 的標準基底,得 $\begin{aligned} \\ [f] &= [\operatorname{id}]^{\mathcal{E}_n}_\beta[f]_\alpha^\beta ([\operatorname{id}]^{\mathcal{E}_m}_\alpha)^{-1} \\ &= \begin{bmatrix} 1 & 1 \\ 0 & 1 \\ \end{bmatrix}\begin{bmatrix} 3 & 0 & 0 \\ 0 & 4 & 0 \\ \end{bmatrix}\begin{bmatrix} \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{3}} & 0 & -\frac{2}{\sqrt{6}} \\ \end{bmatrix}^{-1} \\ &= \begin{bmatrix} \sqrt{3}+2\sqrt{2} & \sqrt{3}-2\sqrt{2} & \sqrt{3} \\ 2\sqrt{2} & -2\sqrt{2} & 0 \\ \end{bmatrix}. \end{aligned}$ ##### Exercise 3 若 $f : \mathbb{R}^n \rightarrow \mathbb{R}^m$ 為一線性函數。 而 $\mathcal{E}_n$ 和 $\mathcal{E}_m$ 分別為 $\mathbb{R}^n$ 和 $\mathbb{R}^m$ 的一組基底。 說明 $[f]$ 就是 $[f]_{\mathcal{E}_n}^{\mathcal{E}_m}$。 :::warning 這題完全不知道你在寫什麼喔... - [x] 設 $\mathcal{E}_n$ 和 $\mathcal{E}_m$ 分別為 $\mathbb{R}^n$ 和 $\mathbb{R}^m$ 的一組基底, --> 設 $\mathcal{E}_n$ 和 $\mathcal{E}_m$ 分別為 $\mathbb{R}^n$ 和 $\mathbb{R}^m$ 的一組基底, 且令 $\mathcal{E}_n = \{\be_1,\ldots, \be_n\}$。 - [x] 設 $\alpha$ ... 那句拿掉 - [x] $\mathcal{E}_i$ --> $\be_i$ - [x] $[f]_{\mathcal{E}_n}^{\mathcal{E}^m}$ 的公式有錯,修正完應該答案就要差不多了;公式後面的東西我都不知道在幹麻 ::: 答: 設 $\mathcal{E}_n$ 和 $\mathcal{E}_m$ 分別為 $\mathbb{R}^n$ 和 $\mathbb{R}^m$ 的一組基底, 且令 $\mathcal{E}_n = \{\be_1,\ldots, \be_n\}$。 已知 $$[f] = \begin{bmatrix} | & ~ & | \\ f({\bf e}_1) & \cdots & f({\bf e}_n) \\ | & ~ & | \\ \end{bmatrix}, $$ 且 $$[f]_{\mathcal{E}_n}^{\mathcal{E}_m} = \begin{bmatrix} | & ~ & | \\ [f({\bf e}_1)]_{\mathcal{E}_m} & \cdots & [f({\bf e}_n)]_{\mathcal{E}_m} \\ | & ~ & | \\ \end{bmatrix}, $$ 因為 $\mathcal{E}_m$ 為標準基底,所以任何向量都有 $[\bv]_{\mathcal{E}_m} = \bv$。 由此可知,$[f]$ 就是 $[f]_{\mathcal{E}_n}^{\mathcal{E}_m}$。 :::success 目前分數 6.5 :::

    Import from clipboard

    Paste your markdown or webpage here...

    Advanced permission required

    Your current role can only read. Ask the system administrator to acquire write and comment permission.

    This team is disabled

    Sorry, this team is disabled. You can't edit this note.

    This note is locked

    Sorry, only owner can edit this note.

    Reach the limit

    Sorry, you've reached the max length this note can be.
    Please reduce the content or divide it to more notes, thank you!

    Import from Gist

    Import from Snippet

    or

    Export to Snippet

    Are you sure?

    Do you really want to delete this note?
    All users will lose their connection.

    Create a note from template

    Create a note from template

    Oops...
    This template has been removed or transferred.
    Upgrade
    All
    • All
    • Team
    No template.

    Create a template

    Upgrade

    Delete template

    Do you really want to delete this template?
    Turn this template into a regular note and keep its content, versions, and comments.

    This page need refresh

    You have an incompatible client version.
    Refresh to update.
    New version available!
    See releases notes here
    Refresh to enjoy new features.
    Your user state has changed.
    Refresh to load new user state.

    Sign in

    Forgot password

    or

    By clicking below, you agree to our terms of service.

    Sign in via Facebook Sign in via Twitter Sign in via GitHub Sign in via Dropbox Sign in with Wallet
    Wallet ( )
    Connect another wallet

    New to HackMD? Sign up

    Help

    • English
    • 中文
    • Français
    • Deutsch
    • 日本語
    • Español
    • Català
    • Ελληνικά
    • Português
    • italiano
    • Türkçe
    • Русский
    • Nederlands
    • hrvatski jezik
    • język polski
    • Українська
    • हिन्दी
    • svenska
    • Esperanto
    • dansk

    Documents

    Help & Tutorial

    How to use Book mode

    Slide Example

    API Docs

    Edit in VSCode

    Install browser extension

    Contacts

    Feedback

    Discord

    Send us email

    Resources

    Releases

    Pricing

    Blog

    Policy

    Terms

    Privacy

    Cheatsheet

    Syntax Example Reference
    # Header Header 基本排版
    - Unordered List
    • Unordered List
    1. Ordered List
    1. Ordered List
    - [ ] Todo List
    • Todo List
    > Blockquote
    Blockquote
    **Bold font** Bold font
    *Italics font* Italics font
    ~~Strikethrough~~ Strikethrough
    19^th^ 19th
    H~2~O H2O
    ++Inserted text++ Inserted text
    ==Marked text== Marked text
    [link text](https:// "title") Link
    ![image alt](https:// "title") Image
    `Code` Code 在筆記中貼入程式碼
    ```javascript
    var i = 0;
    ```
    var i = 0;
    :smile: :smile: Emoji list
    {%youtube youtube_id %} Externals
    $L^aT_eX$ LaTeX
    :::info
    This is a alert area.
    :::

    This is a alert area.

    Versions and GitHub Sync
    Get Full History Access

    • Edit version name
    • Delete

    revision author avatar     named on  

    More Less

    Note content is identical to the latest version.
    Compare
      Choose a version
      No search result
      Version not found
    Sign in to link this note to GitHub
    Learn more
    This note is not linked with GitHub
     

    Feedback

    Submission failed, please try again

    Thanks for your support.

    On a scale of 0-10, how likely is it that you would recommend HackMD to your friends, family or business associates?

    Please give us some advice and help us improve HackMD.

     

    Thanks for your feedback

    Remove version name

    Do you want to remove this version name and description?

    Transfer ownership

    Transfer to
      Warning: is a public team. If you transfer note to this team, everyone on the web can find and read this note.

        Link with GitHub

        Please authorize HackMD on GitHub
        • Please sign in to GitHub and install the HackMD app on your GitHub repo.
        • HackMD links with GitHub through a GitHub App. You can choose which repo to install our App.
        Learn more  Sign in to GitHub

        Push the note to GitHub Push to GitHub Pull a file from GitHub

          Authorize again
         

        Choose which file to push to

        Select repo
        Refresh Authorize more repos
        Select branch
        Select file
        Select branch
        Choose version(s) to push
        • Save a new version and push
        • Choose from existing versions
        Include title and tags
        Available push count

        Pull from GitHub

         
        File from GitHub
        File from HackMD

        GitHub Link Settings

        File linked

        Linked by
        File path
        Last synced branch
        Available push count

        Danger Zone

        Unlink
        You will no longer receive notification when GitHub file changes after unlink.

        Syncing

        Push failed

        Push successfully