Jephian Lin
    • Create new note
    • Create a note from template
      • Sharing URL Link copied
      • /edit
      • View mode
        • Edit mode
        • View mode
        • Book mode
        • Slide mode
        Edit mode View mode Book mode Slide mode
      • Customize slides
      • Note Permission
      • Read
        • Only me
        • Signed-in users
        • Everyone
        Only me Signed-in users Everyone
      • Write
        • Only me
        • Signed-in users
        • Everyone
        Only me Signed-in users Everyone
      • Engagement control Commenting, Suggest edit, Emoji Reply
    • Invite by email
      Invitee

      This note has no invitees

    • Publish Note

      Share your work with the world Congratulations! 🎉 Your note is out in the world Publish Note

      Your note will be visible on your profile and discoverable by anyone.
      Your note is now live.
      This note is visible on your profile and discoverable online.
      Everyone on the web can find and read all notes of this public team.
      See published notes
      Unpublish note
      Please check the box to agree to the Community Guidelines.
      View profile
    • Commenting
      Permission
      Disabled Forbidden Owners Signed-in users Everyone
    • Enable
    • Permission
      • Forbidden
      • Owners
      • Signed-in users
      • Everyone
    • Suggest edit
      Permission
      Disabled Forbidden Owners Signed-in users Everyone
    • Enable
    • Permission
      • Forbidden
      • Owners
      • Signed-in users
    • Emoji Reply
    • Enable
    • Versions and GitHub Sync
    • Note settings
    • Note Insights New
    • Engagement control
    • Transfer ownership
    • Delete this note
    • Save as template
    • Insert from template
    • Import from
      • Dropbox
      • Google Drive
      • Gist
      • Clipboard
    • Export to
      • Dropbox
      • Google Drive
      • Gist
    • Download
      • Markdown
      • HTML
      • Raw HTML
Menu Note settings Note Insights Versions and GitHub Sync Sharing URL Create Help
Create Create new note Create a note from template
Menu
Options
Engagement control Transfer ownership Delete this note
Import from
Dropbox Google Drive Gist Clipboard
Export to
Dropbox Google Drive Gist
Download
Markdown HTML Raw HTML
Back
Sharing URL Link copied
/edit
View mode
  • Edit mode
  • View mode
  • Book mode
  • Slide mode
Edit mode View mode Book mode Slide mode
Customize slides
Note Permission
Read
Only me
  • Only me
  • Signed-in users
  • Everyone
Only me Signed-in users Everyone
Write
Only me
  • Only me
  • Signed-in users
  • Everyone
Only me Signed-in users Everyone
Engagement control Commenting, Suggest edit, Emoji Reply
  • Invite by email
    Invitee

    This note has no invitees

  • Publish Note

    Share your work with the world Congratulations! 🎉 Your note is out in the world Publish Note

    Your note will be visible on your profile and discoverable by anyone.
    Your note is now live.
    This note is visible on your profile and discoverable online.
    Everyone on the web can find and read all notes of this public team.
    See published notes
    Unpublish note
    Please check the box to agree to the Community Guidelines.
    View profile
    Engagement control
    Commenting
    Permission
    Disabled Forbidden Owners Signed-in users Everyone
    Enable
    Permission
    • Forbidden
    • Owners
    • Signed-in users
    • Everyone
    Suggest edit
    Permission
    Disabled Forbidden Owners Signed-in users Everyone
    Enable
    Permission
    • Forbidden
    • Owners
    • Signed-in users
    Emoji Reply
    Enable
    Import from Dropbox Google Drive Gist Clipboard
       Owned this note    Owned this note      
    Published Linked with GitHub
    1
    • Any changes
      Be notified of any changes
    • Mention me
      Be notified of mention me
    • Unsubscribe
    # $\mathbb{R}^n$ 中的子空間 Subspaces in $\mathbb{R}^n$ ![Creative Commons License](https://i.creativecommons.org/l/by/4.0/88x31.png) This work by Jephian Lin is licensed under a [Creative Commons Attribution 4.0 International License](http://creativecommons.org/licenses/by/4.0/). $\newcommand{\trans}{^\top} \newcommand{\adj}{^{\rm adj}} \newcommand{\cof}{^{\rm cof}} \newcommand{\inp}[2]{\left\langle#1,#2\right\rangle} \newcommand{\dunion}{\mathbin{\dot\cup}} \newcommand{\bzero}{\mathbf{0}} \newcommand{\bone}{\mathbf{1}} \newcommand{\ba}{\mathbf{a}} \newcommand{\bb}{\mathbf{b}} \newcommand{\bc}{\mathbf{c}} \newcommand{\bd}{\mathbf{d}} \newcommand{\be}{\mathbf{e}} \newcommand{\bh}{\mathbf{h}} \newcommand{\bp}{\mathbf{p}} \newcommand{\bq}{\mathbf{q}} \newcommand{\br}{\mathbf{r}} \newcommand{\bx}{\mathbf{x}} \newcommand{\by}{\mathbf{y}} \newcommand{\bz}{\mathbf{z}} \newcommand{\bu}{\mathbf{u}} \newcommand{\bv}{\mathbf{v}} \newcommand{\bw}{\mathbf{w}} \newcommand{\tr}{\operatorname{tr}} \newcommand{\nul}{\operatorname{null}} \newcommand{\rank}{\operatorname{rank}} %\newcommand{\ker}{\operatorname{ker}} \newcommand{\range}{\operatorname{range}} \newcommand{\Col}{\operatorname{Col}} \newcommand{\Row}{\operatorname{Row}} \newcommand{\spec}{\operatorname{spec}} \newcommand{\vspan}{\operatorname{span}} \newcommand{\Vol}{\operatorname{Vol}} \newcommand{\sgn}{\operatorname{sgn}} \newcommand{\idmap}{\operatorname{id}} \newcommand{\am}{\operatorname{am}} \newcommand{\gm}{\operatorname{gm}} \newcommand{\mult}{\operatorname{mult}} \newcommand{\iner}{\operatorname{iner}}$ ```python from lingeo import random_int_list, draw_span ``` ## Main idea Let $S$ be a set of (possibily infinitely many) vectors in $\mathbb{R}^n$. A **linear combination** of $S$ is a vector of the form $$ c_1\bu_1 + \cdots + c_k\bu_k, $$ for some vectors $\bu_1,\ldots, \bu_k\in S$ and some scalars $c_1,\ldots,c_k\in\mathbb{R}$. _Although $S$ can have infinitely many vectors, a linear combination only uses finitely many vectors in $S$._ The **span** of $S$ is the set of all linear combination of $S$, denoted by $\vspan(S)$. (We vacuously define $\vspan(\emptyset) = \{\bzero\}$.) Let $V$ be a subset of $\mathbb{R}^n$. Then the following two conditions are equivalent. 1. $V = \vspan(S)$ for some vectors $S$. 2. $V$ is a nonempty subset that is closed under scalar multiplication and vector addition. That is, 1. $V \neq \emptyset$. 2. For any scalar $k$ and vector $\bv\in V$, $k\bv\in V$. (closed under scalr multiplication) 3. For any two vectors $\bu,\bv\in V$, $\bu + \bv\in V$. (closed under vector addition) If either one of the two conditions holds, then $V$ is called a **subspace** of $\mathbb{R}^n$. A **system of linear equations** has the form $$ \left\{\begin{array}{ccccccc} a_{11}x_1 & + & \cdots & + & a_{1n}x_n & = & b_1 \\ \vdots & ~ & ~ & ~ & \vdots & = & \vdots \\ a_{m1}x_1 & + & \cdots & + & a_{mn}x_n & = & b_m \\ \end{array}\right. $$ for some variables $x_1,\ldots,x_n$, and some numbers $a_{ij}$'s and $b_1,\ldots,b_m$. When $b_1 = \cdots = b_m = 0$, it is a **homogeneous** system of linear equations. An $m\times n$ **matrix** $A$ over $\mathbb{R}$ is array $$ \begin{bmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & ~ & \vdots \\ a_{m1} & \cdots & a_{mn} \\ \end{bmatrix} $$ for some numbers $a_{ij}$'s. ##### Matrix-vector multiplication (by entry) Let $A = \begin{bmatrix} a_{ij}\end{bmatrix}$ be an $m\times n$ matrix and $\bv = (v_1,\ldots,v_n)$ a vector in $\mathbb{R}^n$. Then $A\bv$ is a vector in $\mathbb{R}^m$ whose $i$-th entry is $$ \sum_{k=1}^n a_{ik}v_k. $$ Thus, every system of linear equation can be written as $A\bx = \bb$, while it is homogeneous when $\bb = \bzero$. The solution set of $A\bv = \bzero$ is called the **kernel** of $A$, denoted as $\ker(A)$. That is, $\ker(A) = \{\bv\in\mathbb{R}^n : A\bv = \bzero\}$. The kernel of an $m\times n$ matrix is a subspace in $\mathbb{R}^n$. ## Side stories - set equal ## Experiments ##### Exercise 1 執行下方程式碼。 原點為橘色點、 從原點延伸出去的紅色向量和淡藍色向量分別為 $\bu_1$ 和 $\bu_2$。 黑色向量為 $\bb$。 問 $\bb$ 是否是 $\{\bu_1, \bu_2\}$ 的線性組合? 若是,求 $c_1,c_2$ 使得 $\bb = c_1\bu_1 + c_2\bu_2$。 <!-- eng start --> Run the code below. Let the origin be the orange point. Let $\bu_1$ and $\bu_2$ be the red and blue vectors with its tails at the origin. Let $\bb$ be the black vector. Is $\bb$ a linear combination of $\{\bu_1, \bu_2\}$? If yes, find $c_1$ and $c_2$ so that $\bb = c_1\bu_1 + c_2\bu_2$. <!-- eng end --> <!-- --- ##### **Exercise 1 - answer here** :::info 我會這樣寫 :warning: 前面可以把程式產出來的圖和數字貼過來 令 $\bb, \bu_1, \bu_2\in \mathbb{R^3}$。 $\rightarrow$ 唸起來是 令 $\bb, \bu_1, \bu_2$ 在 $\mathbb{R}^3$ 中。 由圖可以看出 $\bb$ 在 $\bu_1, \bu_2$ 所張的平面中 $\bb \in \vspan\{\bu_1, \bu_2\}$,所以 $\bb$ 是 ${\bu_1, \bu_2}$ 的線性組合。 也就是說 $\bb$ 可以被分解成一些純量 $c_1, c_2$ 和 $\bu_1, \bu_2$ 構造出的線性組合 $\bb=c_1\bu_1+c_2\bu_2$。 已知 $\bb=(2, 16, 10)$, $\bu_1=(-4, 3, 5)$, $\bu_2=(-5, -5, 0)$ ,代入 $b=c_1\bu_1 + c_2\bu_2$ 可得 $(2, 16, 10)=c_1(-4, 3, 5)+c_2(-5, -5, 0)$。 $\rightarrow$ 唸起來是 已知 $\bb$ 是 ..., $\bu_1$ 是 ..., $\bu_2$ 是 ...。代入 ???公式 可得 ???向量。 ::: $\bb, \bu_1, \bu_2\in \mathbb{R^3}$ $\bb$ 可以被分解成純量 $c$ 和 $\bu_1, \bu_2$ 的線性組合 $\bb=c_1\bu_1+c_2\bu_2, \forall c\in \mathbb{R}$ $\bb$ 在 $\bu_1, \bu_2$ 所張的平面中 $\bb \in \vspan\{\bu_1, \bu_2\}$ 所以 $\bb$ 是 ${\bu_1, \bu_2}$ 的線性組合。 已知 $\bb=(2, 16, 10)$, $\bu_1=(-4, 3, 5)$, $\bu_2=(-5, -5, 0)$ , 代入 $\bb=c_1\bu_1 + c_2\bu_2$, 可得 $(2, 16, 10)=c_1(-4, 3, 5)+c_2(-5, -5, 0).$ 寫成矩陣為 $\begin{bmatrix} -4 & -5\\ 3 & 5\\ 5 & 0\\ \end{bmatrix}$ $\begin{bmatrix} c_1\\ c_2\\ \end{bmatrix}$= $\begin{bmatrix} 2\\ 16\\ 10\\ \end{bmatrix}$ 可拆解為 $\begin{cases} -4c_1-5c_2=2\\ 3c_1-5c_2=16\\ 5c_1+0c_2=10 \end{cases}$ 故解 $(c_1,c_2)=(2,-2).$ --> --- ##### **Exercise 1 - updated answer here !!! (Eng ver.)** ![](https://i.imgur.com/ssXvmOo.png) :::warning - [x] Let ... ~~to~~ be ... . - [x] can be a linear combination of scalar $\bu_1$ and $\bu_2$. --> **is** a linear combination of ~~scalar~~ $\bu_1$ and $\bu_2$. - [x] We already know that $\bb$ is $(2, 16, 10)$, $\bu_1$ is $(-4, 3, 5)$ and $\bu_2$ is $(-5, -5, 0)$. Suppose there are $c_1$ and $c_2$ such that $$ \bb=c_1\bu_1 + c_2\bu_2. $$ - [x] . By solving ... ::: Let $\bb, \bu_1, \bu_2$ be vectors in $\mathbb{R}^3$. As the picture shows, $\bb$ is in the plane of $\vspan\{\bu_1, \bu_2\}$, so $\bb$ is a linear combination of $\bu_1$ and $\bu_2$. We already know that $\bb$ is $(2, 16, 10)$, $\bu_1$ is $(-4, 3, 5)$ and $\bu_2$ is $(-5, -5, 0)$. Suppose there are scalars $c_1$ and $c_2$ such that $$\bb=c_1\bu_1 + c_2\bu_2. $$ Then, we can get the equation: $(2, 16, 10)=c_1(-4, 3, 5)+c_2(-5, -5, 0)$. By solving the equation, we found that the scalar $(c_1, c_2)=(2, -2)$. --- ```python ### code set_random_seed(0) print_ans = False while True: l = random_int_list(9) A = matrix(3, l) if A.det() != 0: break u1 = vector(A[0]) u2 = vector(A[1]) u3 = vector(A[2]) inside = choice([0,1,1]) coefs = random_int_list(2, 2) if inside: b = coefs[0]*u1 + coefs[1]*u2 else: b = coefs[0]*u1 + coefs[1]*u2 + 3*u3 print("u1 =", u1) print("u2 =", u2) print("b =", b) pic = draw_span([u1,u2]) pic += arrow((0,0,0), b, width=5, color="black") show(pic) if print_ans: if inside: print("b is a linear combination of { u1, u2 } since b = %s u1 + %s u2."%(coefs[0], coefs[1])) else: print("b is not a linear combination of { u1, u2 }.") ``` ## Exercises ##### Exercise 2(a) 令 $$ \be_1 = \begin{bmatrix}1\\0\\0\end{bmatrix}, \be_2 = \begin{bmatrix}0\\1\\0\end{bmatrix}, \be_3 = \begin{bmatrix}0\\0\\1\end{bmatrix}. $$ 說明 $\mathbb{R}^3 = \vspan(\{\be_1, \be_2, \be_3\})$, 因此它是一個子空間。 (要說明每一個 $\mathbb{R}^3$ 中的向量都可以寫成 $c_1\be_1 + c_2\be_2 + c_3\be_3$ 的形式。) <!-- eng start --> Let $$ \be_1 = \begin{bmatrix}1\\0\\0\end{bmatrix}, \be_2 = \begin{bmatrix}0\\1\\0\end{bmatrix}, \be_3 = \begin{bmatrix}0\\0\\1\end{bmatrix}. $$ Explain why $\mathbb{R}^3 = \vspan(\{\be_1, \be_2, \be_3\})$. As a consequence, it is a subspace. (You have to show that every vector in $\mathbb{R}^3$ can be written as $c_1\be_1 + c_2\be_2 + c_3\be_3$.) <!-- eng end --> --- ##### Exercise 2(a) - Answer (Written by @Ken) :::warning :+1: Mathematically correct :+1: Writing is okay, but can be more consise. :warning: We usually use a bold lower-case letter for a vector. :warning: Do homework earlier next time :slightly_frowning_face: See this example as below: Let $\bv = (c_1,c_2,c_3)$ be a vector in $\mathbb{R}^3$. Then it can be written as $$ \begin{aligned} \bv = \begin{bmatrix}c_1\\c_2\\c_3\end{bmatrix} &= \begin{bmatrix}c_1\\0\\0\end{bmatrix} +\begin{bmatrix}0\\c_2\\0\end{bmatrix} +\begin{bmatrix}0\\0\\c_3\end{bmatrix} \\ &= c_1\begin{bmatrix}1\\0\\0\end{bmatrix} +c_2\begin{bmatrix}0\\1\\0\end{bmatrix} +c_3\begin{bmatrix}0\\0\\1\end{bmatrix} \\ &= c_1\be_1+c_2\be_2+c_3\be_3, \end{aligned} $$ so it is in $\vspan(\{\be_1,\be_2,\be_3\})$. Since this argument works for any vector in $\mathbb{R}^3$, we have $\mathbb{R}^3 = \vspan(\{\be_1, \be_2, \be_3\})$ and know $\mathbb{R}^3$ is a subspace. - [x] Suppose a vector $s=(c_1,c_2,c_3)$, $c_1, c_2,c_3$ are real numbers. --> Suppose $\bv = (c_1,c_2, c_3)$ is a vector, where $c_1,c_2,c_3$ are real numbers. - [x] Then, conver ... <-- This paragraph is not necessary. - [x] And we know ... <-- Not necessary, either. :warning: Please remove the second line $\bv = ...$ and the third line $\be_1 = ...$ - [x] Therefore, it can be written ... --> Then, it can be written ... - [x] and know $\mathbb{R}$ ... --> and we know $\mathbb{R}^3$ ... :warning: $\mathbb{R}$ should be $\mathbb{R}^3$ ::: <!-- eng start --> Suppose $\bv=(c_1,c_2,c_3)$ is a vector, where $c_1, c_2,c_3$ are real numbers. Then, it can be written in the form of linear combination as below : $$ \begin{aligned} \bv&=c_1\begin{bmatrix}1\\0\\0\end{bmatrix} +c_2\begin{bmatrix}0\\1\\0\end{bmatrix} +c_3\begin{bmatrix}0\\0\\1\end{bmatrix} \\ &= c_1\be_1+c_2\be_2+c_3\be_3, \end{aligned} $$ so it is in $\vspan(\{\be_1, \be_2, \be_3\}).$ Since this argument works for any vector in $\mathbb{R}^3$, we have $\vspan(\{\be_1, \be_2, \be_3\})=\vspan(\bv)=\mathbb{R}^3$, and we know $\mathbb{R}^3$ is a subspace. <!-- eng end --> --- ##### Exercise 2(b) 令 $$ \bb = \begin{bmatrix}1\\2\\-3\end{bmatrix}, \bu_1 = \begin{bmatrix}-1\\1\\0\end{bmatrix}, \bu_2 = \begin{bmatrix}0\\-1\\1\end{bmatrix}. $$ 說明 $\bb\in\vspan(\{\bu_1, \bu_2\})$。 <!-- eng start --> Let $$ \bb = \begin{bmatrix}1\\2\\-3\end{bmatrix}, \bu_1 = \begin{bmatrix}-1\\1\\0\end{bmatrix}, \bu_2 = \begin{bmatrix}0\\-1\\1\end{bmatrix}. $$ Explain why $\bb\in\vspan(\{\bu_1, \bu_2\})$. <!-- eng end --> --- ##### **Exercise 2(b) - answer here (written by @吳明樺)** :::warning :+1: Mathematically correct. :warning: Writting issue. Let $S = \{\bu_1, \bu_2\}$. **Recall that** a linear combination of $S$ is a vector of the form $c_1\bu_1 + c_2\bu_2$ with $c_1,c_2\in\mathbb{R}$. ~~Let~~ **Suppose** $\bb = ...$. **By** direct computation, it is equivalent to ??? and has the solution $(c_1,c_2) = (-1,-3)$. Therefore, we can ... and $\be\in\vspan(...)$. - [x] Remove the part $\bb = ...$, $\bu_1 = ...$ since they are just part of the problem. :warning: I meaning the beginning part. - [x] By direct computation, $\bb\in\vspan(S)$ is equivalent to $$ \begin{bmatrix}1\\2\\-3\end{bmatrix}= c_1\begin{bmatrix}-1\\1\\0\end{bmatrix}+ c_2\begin{bmatrix}0\\-1\\1\end{bmatrix}, $$ for some $c_1,c_2\in\mathbb{R}$, which has the solution $(c_1,c_2)=(-1,-3)$. ::: Let $S = \{\bu_1, \bu_2\}$. Recall that a linear combination of $S$ is a vector of the form $c_1\bu_1+c_2\bu_2$, with $c_1, c_2$ in $\mathbb{R}$. By direct computation, $\bb\in\vspan(S)$ is equivalent to $$ \begin{bmatrix}1\\2\\-3\end{bmatrix}= c_1\begin{bmatrix}-1\\1\\0\end{bmatrix}+ c_2\begin{bmatrix}0\\-1\\1\end{bmatrix}, $$ for some $c_1,c_2\in\mathbb{R}$, which has the solution $(c_1,c_2)=(-1,-3)$. Therefore, we can conclude that $\bb$ is a linear combination of $\bu_1, \bu_2$, so $\bb$ is in $\vspan(\{\bu_1,\bu_2\})$. --- ##### Exercise 2(c) 令 $$ \bb = \begin{bmatrix}1\\1\\1\end{bmatrix}, \bu_1 = \begin{bmatrix}-1\\1\\0\end{bmatrix}, \bu_2 = \begin{bmatrix}0\\-1\\1\end{bmatrix}. $$ 說明 $\bb\notin\vspan(\{\bu_1, \bu_2\})$。 <!-- eng start --> Let $$ \bb = \begin{bmatrix}1\\1\\1\end{bmatrix}, \bu_1 = \begin{bmatrix}-1\\1\\0\end{bmatrix}, \bu_2 = \begin{bmatrix}0\\-1\\1\end{bmatrix}. $$ Explain why $\bb\notin\vspan(\{\bu_1, \bu_2\})$. <!-- eng end --> --- ##### **Exercise 2(c) - answer here (written by @lozie)** :::warning :warning: More details are needed. - [x] Use equality when the both sides are **the same** . For example, a vector $\bb$ cannot be the same as a matrix, and the three matrices are also not equal. - [x] There are no explanations about what you are doing: elimination? solving equations? how do you magically come up with the matrices and get the conclusion that there is no solution? Examples: This leads to the equation ... which is equivalent to ... Since this system of equations have no solution, we know ... not in the span. - [x] Suppoose $\bb = c_1\bu_1+c_2\bu_2$. By plugging in the values, we have the following equation: ::: Let $S = \{\bu_1, \bu_2\}.$ Recall that a linear combination of $S$ is a vector of the form $c_1\bu_1+c_2\bu_2$, and $\bu_1 ,\bu_2$ in $S$, $c_1, c_2$ in $\mathbb{R}$. Suppoose $\bb = c_1\bu_1+c_2\bu_2$. By plugging in the values, we have following equation : $$ \begin{bmatrix}1\\1\\1\end{bmatrix} =c_1\begin{bmatrix}-1\\1\\0\end{bmatrix} +c_2\begin{bmatrix}0\\-1\\1\end{bmatrix}, $$ which is equivalent to : $$ \begin{alignat*}{3} -1c_1&{ }+{ }&0c_2&{ }={ }& 1 \\ c_1&{ }-{ }&c_2 &{ }={ }& 1 \\ 0c_1&{ }+{ }&c_2 & { }={ } & 1 \end{alignat*} $$ By solving the equation, we found that $c_1=-1$ and $c_2=1$, $c_1-c_2 \neq 1$. Since this system of equations have no solution, we know that $\bb$ is not in the span. --- ##### Exercise 2(d) 令 $$ \bb = \begin{bmatrix}1\\2\\-3\end{bmatrix}, \bu_1 = \begin{bmatrix}-1\\1\\0\end{bmatrix}, \bu_2 = \begin{bmatrix}0\\-1\\1\end{bmatrix}, \bu_3 = \begin{bmatrix}-1\\0\\1\end{bmatrix}. $$ 找出至少兩組 $c_1, c_2, c_3$ 使得 $\bb = c_1\bu_1 + c_2\bu_2 + c_3\bu_3$。 這說明了線性組合的表示法不見得唯一。 <!-- eng start --> Let $$ \bb = \begin{bmatrix}1\\2\\-3\end{bmatrix}, \bu_1 = \begin{bmatrix}-1\\1\\0\end{bmatrix}, \bu_2 = \begin{bmatrix}0\\-1\\1\end{bmatrix}, \bu_3 = \begin{bmatrix}-1\\0\\1\end{bmatrix}. $$ Find at least two combinations of $c_1, c_2, c_3$ such that $\bb = c_1\bu_1 + c_2\bu_2 + c_3\bu_3$. This shows that the forms of linear combinations might not be unique. <!-- eng end --> --- ##### **Exercise 2(d) - answer here (written by @棉花糖)** :::warning :+1: Mathematically correct. :construction: Minor writting issues. :warning: Be aware of the use of $=$. - [x] **Suppsoe** $\bb$ ... . **Then** ... - [x] This is equivalent to the equation $$ \begin{bmatrix} 1\\ 2\\ 3\\ \end{bmatrix} = \begin{bmatrix} -1&0&-1 \\ 1&-1&0 \\ 0&1&1 \\ \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \\ c_3 \end{bmatrix}, $$ and we let $A$ be the $3\times 3$ matrix in the equation. - [x] For row operations, replace $=$ with $\rightsquigarrow$ since the matrices are just not equal. - [x] Written as augemented matrix : --> Consider the augmented matrix $\left[\begin{array}{c|c} A & \bb \end{array}\right]$ and apply the row operations: - [x] Written as simultaneous equations : --> This is equivalent to the **system** of equations - [x] Let $c_3 = t$. Then we may parametrize the system and get $$ \begin{bmatrix} c_1 \\ c_2 \\ c_3 \end{bmatrix} = \begin{bmatrix} -1-t\\-3-t\\t \end{bmatrix} = \begin{bmatrix}-1\\-3\\0\end{bmatrix} + \begin{bmatrix}-t\\-t\\t\end{bmatrix} = \begin{bmatrix}-1\\-3\\0\end{bmatrix} + t\begin{bmatrix}-1\\-1\\1\end{bmatrix} $$ for all $t \in \mathbb{R}.$ Thus, we may plug in arbitrary $t$'s to get different solutions. For example, $(-4, -6, 3)$ is a solution by plugging in $t = 3$, while ... when t = 6$. - [x] Remove $\bb = ...$, $\bu = ...$ since they are given in the problem. - [x] Suppose $\bb$ is a linear combination of $\bu_1, \bu_2, \bu_3$ and scalars $c_1, c_2, c_3$ in $\mathbb{R}$, then we apply the formula of linear combination $\bb=c_1\bu_1+c_2\bu_2+c_3\bu_3$. --> Suppose $\bb$ is a linear combination of $\bu_1, \bu_2, \bu_3$. Then we may assume $\bb=c_1\bu_1+c_2\bu_2+c_3\bu_3$ for some scalars $c_1, c_2, c_3$ in $\mathbb{R}$, which is equivalent to - [x] Let $A$ ... . Consider ... - [x] to get different solution**s**. - [x] For example, $\bv = (-4, -6, 3)$ is a solution by plugging in $t=3$. We may verify it is a solution by checking $A\bv = \bb$: - [x] **Similarly**, when $t=6$, we have a solution $(c_1, c_2, c_3)=(-7, -9, 6)$. Again, we may check ... and verify that ... is also a solution ... . :warning: The "Again" part is not done. ::: Suppose $\bb$ is a linear combination of $\bu_1, \bu_2, \bu_3$. Then we may assume $\bb=c_1\bu_1+c_2\bu_2+c_3\bu_3$ for some scalars $c_1, c_2, c_3$ in $\mathbb{R}$, which is equivalent to $$ \begin{bmatrix} 1\\ 2\\ 3\\ \end{bmatrix} = \begin{bmatrix} -1&0&-1 \\ 1&-1&0 \\ 0&1&1 \\ \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \\ c_3 \end{bmatrix}. $$ Let $A$ be the $3\times 3$ matrix in the equation. Consider the argmented matrix $\left[\begin{array}{c|c}A&\bb\end{array}\right]$ and apply the row operations : $$ \begin{aligned} \left[\begin{array}{ccc|c} -1&0&-1&1 \\ 1&-1&0&2 \\ 0&1&1&-3 \end{array}\right] &\rightsquigarrow \left[\begin{array}{ccc|c} -1&0&-1&1 \\ 0&-1&-1&3 \\ 0&1&1&-3 \end{array}\right] \\ &\rightsquigarrow \left[\begin{array}{ccc|c} -1&0&-1&1 \\ 0&-1&-1&3 \\ 0&0&0&0 \end{array}\right]. \end{aligned} $$ This is equivalent to the system of equations $\begin{cases} c_1+c_3=-1 \\ c_2+c_3=-3 \end{cases}.$ Let $c_3=t$. Then we may parametrize the system and get : $$ \begin{bmatrix} -1-t\\-3-t\\t\end{bmatrix}= \begin{bmatrix}-1\\-3\\0\end{bmatrix}+ \begin{bmatrix}-t\\t\\t\end{bmatrix}= \begin{bmatrix}-1\\-3\\0\end{bmatrix}+ t\begin{bmatrix}-1\\-1\\1\end{bmatrix}, $$ for all $t$ in $\mathbb{R}.$ Thus, we may plug in arbitrary $t$'s to get different solutions. For example, $\bv = (-4, -6, 3)$ is a solution by plugging in $t=3$. We may verify it is a solution by checking $A\bv = \bb$ : $$ \begin{bmatrix}-1&0&-1 \\1&-1&0 \\0&1&1\end{bmatrix} \begin{bmatrix}c_1\\c_2\\c_3\end{bmatrix}= \begin{bmatrix}1\\2\\3\end{bmatrix} $$ $$ \begin{bmatrix}-1&0&-1 \\1&-1&0 \\0&1&1\end{bmatrix} \begin{bmatrix}-4\\-6\\3\end{bmatrix}= \begin{bmatrix}4-3\\-4+6\\-6+3\end{bmatrix}= \begin{bmatrix}1\\2\\3\end{bmatrix}, $$ so $(-4, -6, 3)$ is one of the solutions of $(c_1, c_2, c_3).$ Similarly, when $t=6$, we have a solution $(c_1, c_2, c_3)=(-7, -9, 6)$. Again we may check $A\bv = \bb$, and verify that $(-7, -9, 6)$ is also a solution of $(c_1, c_2, c_3)$. $$ \begin{bmatrix}-1&0&-1 \\1&-1&0 \\0&1&1\end{bmatrix} \begin{bmatrix}-7\\-9\\6\end{bmatrix}= \begin{bmatrix}1\\2\\3\end{bmatrix}, $$ In conclusion, there exist at least two combinations of $c_1, c_2, c_3$ such that $\bb = c_1\bu_1 + c_2\bu_2 + c_3\bu_3$. This shows that the forms of linear combinations might not be unique. --- ##### Exercise 3 依照各小題的步驟來證明子空間的兩個條件等價。 1. $V = \vspan(S)$ for some vectors $S$. 2. $V$ is a nonempty subset that is closed under scalar multiplication and vector addition. 並用這些條件來判斷一個集合是否為子空間。 <!-- eng start --> Use the given instructions to show the following statements are equivalent. 1. $V = \vspan(S)$ for some vectors $S$. 2. $V$ is a nonempty subset that is closed under scalar multiplication and vector addition. Then you may use the equivalent conditions to check if a set is a subspace. <!-- eng end --> ##### Exercise 3(a) 證明若條件 1 成立則條件 2 成立。 <!-- eng start --> Show that Condition 1 implies Condition 2. <!-- eng end --> **[Provided by 許豐有]** Suppose $V = \vspan(S)$ for some $S\subseteq\mathbb{R}^n$. We verify each of the requirements in condition 2. **nonempty** Since $\vspan(S)$ always contains zero vector, $V$ is nonempty. **closed under scalar multiplication** Suppose $\bv\in V$ and $k$ a scalar. Then $\bv$ can be written as $c_1\bu_1 + \cdots + c_k\bu_k$ for some vectors $\bu_i\in S$ and scalars $c_i$. Then $k\bv = kc_1\bu_1 + \cdots + kc_k\bu_k$. Since $k$ and $c_i$ are both scalars. So $k\bv\in\vspan(S) = V$. **closed under vector addition** Suppose $\bv_1,\bv_2\in V$. Then $\bv_1$ can be written as $a_1\bu_1 + \cdots + a_k\bu_k$, for some vectors $\bu_i\in S$ and scalars $a_i$, and $\bv_2$ can be written as $b_1\bu_1 + \cdots + b_k\bu_k$, for some vectors $\bu_i\in S$ and scalars $b_i$. Then $\bv_1 + \bv_2 = (a_1 + b_1)\bu_1 + \cdots + (a_k + b_k)\bu_k = c_1\bu_1 + \cdots + c_k\bu_k$ for scalars $a_i+b_i=c_i$. So $\bv_1 + \bv_2 \in\vspan(S) = V$. ##### Exercise 3(b) 證明若條件 2 成立則條件 1 成立。 <!-- eng start --> Show that Condition 2 implies Condition 1. <!-- eng end --> **[Provided by 許豐有]** Suppose $V$ is a nonempty subset of $\mathbb{R}^n$ and is closed under scalar multiplication and vector addition. It is enough to show that $V = \vspan(V)$. **$V\subseteq\vspan(V)$** Each element in $V$ is linear combination of $V$ and is in $\vspan(V)$, so $V\subseteq\vspan(V)$. **$\vspan(V)\subseteq V$** Let $\bu$ be an element of $\vspan(V)$. Then $\bu$ can be written as $c_1\bu_1 + \cdots + c_k\bu_k$ for some vectors $\bu_i\in V$ and scalars $c_i$. Since $V$ is closed under scalar multiplication and vector addition, we know $\bu\in V$. ##### Exercise 3(c) 判斷 $\emptyset$ 是否為一子空間。 <!-- eng start --> Check if $\emptyset$ is a subspace. <!-- eng end --> **[Provided by 許豐有]** Since $\emptyset$ does not match "$V$ is a nonempty subset" in Condition 2, $\emptyset$ is not a subspace. ##### Exercise 3(d) 判斷 $\{\bzero\}$ 是否為一子空間。 <!-- eng start --> Check if $\{\bzero\}$ is a subspace. <!-- eng end --> **[Provided by 許豐有]** Because we vacuously define $\vspan(\emptyset) = \{\bzero\}$, $\{\bzero\}$ is a subspace. ##### Exercise 3(e) 判斷 $\left\{\begin{bmatrix}1\\1\\1\end{bmatrix}\right\}$ 是否為一子空間。 <!-- eng start --> Check if $\left\{\begin{bmatrix}1\\1\\1\end{bmatrix}\right\}$ is a subspace. <!-- eng end --> **[由鄭宗祐提供]** **Answer** When we apply the vector addition, we can get $\begin{bmatrix}1\\1\\1\end{bmatrix} +\begin{bmatrix}1\\1\\1\end{bmatrix} =\begin{bmatrix}2\\2\\2\end{bmatrix}.$ However, $\begin{bmatrix}2\\2\\2\end{bmatrix}$ is not in the set, so it is not a subspace. ##### Exercise 3(f) 判斷 $\left\{t\begin{bmatrix}1\\1\\1\end{bmatrix} : t\in\mathbb{R}\right\}$ 是否為一子空間。 <!-- eng start --> Check if $\left\{t\begin{bmatrix}1\\1\\1\end{bmatrix} : t\in\mathbb{R}\right\}$ is a subspace. <!-- eng end --> **[由鄭宗祐提供]** **Answer** We can see that the set contains the origin by choosing $t = 0$. Let $\bv_1,\bv_2\in \left\{t\begin{bmatrix}1\\1\\1\end{bmatrix} :t\in\mathbb{R}\right\}.$ We may assume $$ \bv_1 = t_1\begin{bmatrix}1\\1\\1\end{bmatrix}, \bv_2 = t_2\begin{bmatrix}1\\1\\1\end{bmatrix} $$ for some $t_1,t_2\in\mathbb{R}$. Then $$ \bv_1 + \bv_2 = \begin{bmatrix}t_1\\t_1\\t_1\end{bmatrix} +\begin{bmatrix}t_2\\t_2\\t_2\end{bmatrix} = \begin{bmatrix}t_1 + t_2\\t_1 + t_2\\t_1 + t_2\end{bmatrix} = t_1 + t_2\begin{bmatrix}1\\1\\1\end{bmatrix}\in\left\{t\begin{bmatrix}1\\1\\1\end{bmatrix} :t\in\mathbb{R}\right\} $$ On the other hand, suppose $$ \bv_3=t_3\begin{bmatrix}1\\1\\1\end{bmatrix} \in \left\{t\begin{bmatrix}1\\1\\1\end{bmatrix} :t\in\mathbb{R}\right\} $$ for some $t_3\in\mathbb{R}$ and $k$ is a real number. Then $$ k\bv_3= kt_3 \begin{bmatrix}1\\1\\1\end{bmatrix} $$ is again a vector in $\left\{t\begin{bmatrix}1\\1\\1\end{bmatrix} :t\in\mathbb{R}\right\}$. Therefore, $\left\{t\begin{bmatrix}1\\1\\1\end{bmatrix} : t\in\mathbb{R}\right\}$ is a subspace. ##### Exercise 3(g) 判斷 $\left\{\begin{bmatrix}x\\y\\z\end{bmatrix} : x^2 + y^2 + z^2 = 1\right\}$ 是否為一子空間。 <!-- eng start --> Check if $\left\{\begin{bmatrix}x\\y\\z\end{bmatrix} : x^2 + y^2 + z^2 = 1\right\}$ is a subspace. <!-- eng end --> **[由鄭宗祐提供]** **Answer** Let $\bv_1=\begin{bmatrix}1\\0\\0\end{bmatrix}.$ Then $2\bv_1=\begin{bmatrix}2\\0\\0\end{bmatrix}.$ But $\begin{bmatrix}2\\0\\0\end{bmatrix}$ is not in the $x^2 + y^2 + z^2 =1.$ It does not close under scalar multiplication, so it is not a subspace. ##### Exercise 3(h) 判斷 $\left\{\begin{bmatrix}x\\y\\z\end{bmatrix} : x^2 + y^2 + z^2 \geq 1\right\}$ 是否為一子空間。 <!-- eng start --> Check if $\left\{\begin{bmatrix}x\\y\\z\end{bmatrix} : x^2 + y^2 + z^2 \geq 1\right\}$ is a subspace. <!-- eng end --> **[由鄭宗祐提供]** **Answer** By the definition of subspace, it should contain the orgin. But $\begin{bmatrix}0\\0\\0\end{bmatrix}$ is not the solution of $x^2 + y^2 + z^2 \geq 1.$ We can know $\left\{\begin{bmatrix}x\\y\\z\end{bmatrix} : x^2 + y^2 + z^2 \geq 1\right\}$ is not a subspace. ##### Exercise 3(i) 判斷 $\left\{\begin{bmatrix}x\\y\\z\end{bmatrix} : x \geq 0\right\}$ 是否為一子空間。 <!-- eng start --> Check if $\left\{\begin{bmatrix}x\\y\\z\end{bmatrix} : x \geq 0\right\}$ is a subspace. <!-- eng end --> **[由鄭宗祐提供]** **Answer** Let $\bv_1=\begin{bmatrix}1\\0\\0\end{bmatrix}$ such that $\bv_1$ is in the $x\geq 0.$ Let $k=-1.$ Then $-1\bv_1=\begin{bmatrix}-1\\0\\0\end{bmatrix}.$ We can know $\begin{bmatrix}-1\\0\\0\end{bmatrix}$ is not in $\left\{\begin{bmatrix}x\\y\\z\end{bmatrix} : x \geq 0\right\}$ and the set is not closed under scalar multiplication, so it is not a subspace. ##### Exercise 3(j) 判斷 $\left\{\begin{bmatrix}x\\y\\z\end{bmatrix} : x + y + z = 0\right\}$ 是否為一子空間。 <!-- eng start --> Check if $\left\{\begin{bmatrix}x\\y\\z\end{bmatrix} : x + y + z = 0\right\}$ is a subspace. <!-- eng end --> **[由鄭宗祐提供]** **Answer** 1. We can know the equation contains the orgin. 2. Let $\bv_1=\begin{bmatrix}x_1\\y_1\\z_1\end{bmatrix},$ $\bv_2=\begin{bmatrix}x_2\\y_2\\z_2\end{bmatrix},$ such that $\bv_1$ and $\bv_2$ is in $\left\{\begin{bmatrix}x\\y\\z\end{bmatrix} : x + y + z = 0\right\}.$ Then for any $c_1,c_2\in\mathbb{R}$ we know $c_1\bv_1=c_1\begin{bmatrix}x_1\\y_1\\z_1\end{bmatrix}$, $c_2\bv_2=c_2\begin{bmatrix}x_2\\y_2\\z_2\end{bmatrix}$, and $c_1\bv_1+c_2\bv_2=\begin{bmatrix}c_1x_1+ c_2x_2\\c_1y_1+c_2y_2\\c_1z_1+c_2z_2\end{bmatrix}$. Thus, we have $$ \begin{aligned} &\mathrel{\phantom{=}} (c_1x_1+c_2x_2)+(c_1y_1+c_2y_2)+(c_1z_1+c_2z_2) \\ &= c_1(x_1+y_1+z_1)+c_2(x_2+y_2+z_2) \\ &= 0 \end{aligned} $$ since $x_1+y_1+z_1=0,$ and $x_2+y_2+z_2=0.$ Therefore, we know that $c_1\bv_1+c_2\bv_2$ is in the $\left\{\begin{bmatrix}x\\y\\z\end{bmatrix} : x + y + z = 0\right\}$, and it is closed under vector addition and scalar multiplication, so it is a subspace. ##### Exercise 3(k) 判斷 $\left\{\begin{bmatrix}x\\y\\z\end{bmatrix} : x + y + z = 1\right\}$ 是否為一子空間。 <!-- eng start --> Check if $\left\{\begin{bmatrix}x\\y\\z\end{bmatrix} : x + y + z = 1\right\}$ is a subspace. <!-- eng end --> **[由鄭宗祐提供]** **Answer** By the definition of subspace, it should contain the orgin. But $\begin{bmatrix}0\\0\\0\end{bmatrix}$ is not a solution of $x + y + z = 1.$ We can know $\left\{\begin{bmatrix}x\\y\\z\end{bmatrix} : x + y + z = 1\right\}$ is not a subspace. ##### Exercise 3(l) 判斷 $\left\{\begin{bmatrix}x\\y\\z\end{bmatrix} : \begin{aligned} x + y + z &= 0 \\ x + 2y + 3z &= 0 \end{aligned} \right\}$ 是否為一子空間。 <!-- eng start --> Check if $\left\{\begin{bmatrix}x\\y\\z\end{bmatrix} : \begin{aligned} x + y + z &= 0 \\ x + 2y + 3z &= 0 \end{aligned} \right\}$ is a subspace. <!-- eng end --> **[由鄭宗祐提供]** **Answer** 1. We can know the equation contains the orgin. 2. Let $\bv_1=\begin{bmatrix}x_1\\y_1\\z_1\end{bmatrix},$ $\bv_2=\begin{bmatrix}x_2\\y_2\\z_2\end{bmatrix},$ such that $\bv_1$ and $\bv_2$ is in $\left\{\begin{bmatrix}x\\y\\z\end{bmatrix} : \begin{aligned} x + y + z &= 0 \\ x + 2y + 3z &= 0 \end{aligned} \right\}.$ Then for any $c_1,c_2\in\mathbb{R},$ we know $c_1\bv_1=c_1\begin{bmatrix}x_1\\y_1\\z_1\end{bmatrix}$, $c_2\bv_2=c_2\begin{bmatrix}x_2\\y_2\\z_2\end{bmatrix}$, and $c_1\bv_1+c_2\bv_2=\begin{bmatrix}c_1x_1+ c_2x_2\\c_1y_1+c_2y_2\\c_1z_1+c_2z_2\end{bmatrix}$. Thus, we have $$ \begin{aligned} &\mathrel{\phantom{=}} (c_1x_1+c_2x_2)+(c_1y_1+c_2y_2)+(c_1z_1+c_2z_2) \\ &= c_1(x_1+y_1+z_1)+c_2(x_2+y_2+z_2) \\ &= 0 \end{aligned} $$ since $x_1+y_1+z_1=0,$ and $x_2+y_2+z_2=0,$ and $$ \begin{aligned} &\mathrel{\phantom{=}} (c_1x_1+c_2x_2)+2(c_1y_1+c_2y_2)+3(c_1z_1+c_2z_2) \\ &=c_1(x_1+2y_1+3z_1)+ c_2(x_2+2y_2+3z_2)\\ &=0 \end{aligned} $$ since $x_1+2y_1+3z_1=0,$ and $x_2+2y_2+3z_2=0.$ Therefore, we know that $c_1\bv_1+c_2\bv_2$ is in the $\left\{\begin{bmatrix}x\\y\\z\end{bmatrix} : \begin{aligned} x + y + z &= 0 \\ x + 2y + 3z &= 0 \end{aligned} \right\}$, and it is closed under vector addition and scalar multiplication, so it is a subspace. ##### Exercise 4(a) 證明對任何 $S\subseteq\mathbb{R}^n$ 都有 $\vspan(\vspan(S)) = \vspan(S)$。 <!-- eng start --> Show that $\vspan(\vspan(S)) = \vspan(S)$ for any subset $S\subseteq\mathbb{R}^n$. <!-- eng end --> ##### Exercise 4(b) 令 $S\subseteq\mathbb{R}^n$。 證明以下敘述等價: 1. $\bw\in\vspan(S)$. 2. $\vspan(S\cup\{\bw\}) = \vspan(S)$. <!-- eng start --> Let $S\subseteq\mathbb{R}^n$. Show the following statements are equivalent. 1. $\bw\in\vspan(S)$. 2. $\vspan(S\cup\{\bw\}) = \vspan(S)$. <!-- eng end --> :::info Group: - cooperation: 1 - 4 problems: - 4 after revision - ~~1 (revise to get better scores).~~ Moderator: 0.5 Quality control: 1 :::

    Import from clipboard

    Paste your markdown or webpage here...

    Advanced permission required

    Your current role can only read. Ask the system administrator to acquire write and comment permission.

    This team is disabled

    Sorry, this team is disabled. You can't edit this note.

    This note is locked

    Sorry, only owner can edit this note.

    Reach the limit

    Sorry, you've reached the max length this note can be.
    Please reduce the content or divide it to more notes, thank you!

    Import from Gist

    Import from Snippet

    or

    Export to Snippet

    Are you sure?

    Do you really want to delete this note?
    All users will lose their connection.

    Create a note from template

    Create a note from template

    Oops...
    This template has been removed or transferred.
    Upgrade
    All
    • All
    • Team
    No template.

    Create a template

    Upgrade

    Delete template

    Do you really want to delete this template?
    Turn this template into a regular note and keep its content, versions, and comments.

    This page need refresh

    You have an incompatible client version.
    Refresh to update.
    New version available!
    See releases notes here
    Refresh to enjoy new features.
    Your user state has changed.
    Refresh to load new user state.

    Sign in

    Forgot password

    or

    By clicking below, you agree to our terms of service.

    Sign in via Facebook Sign in via Twitter Sign in via GitHub Sign in via Dropbox Sign in with Wallet
    Wallet ( )
    Connect another wallet

    New to HackMD? Sign up

    Help

    • English
    • 中文
    • Français
    • Deutsch
    • 日本語
    • Español
    • Català
    • Ελληνικά
    • Português
    • italiano
    • Türkçe
    • Русский
    • Nederlands
    • hrvatski jezik
    • język polski
    • Українська
    • हिन्दी
    • svenska
    • Esperanto
    • dansk

    Documents

    Help & Tutorial

    How to use Book mode

    Slide Example

    API Docs

    Edit in VSCode

    Install browser extension

    Contacts

    Feedback

    Discord

    Send us email

    Resources

    Releases

    Pricing

    Blog

    Policy

    Terms

    Privacy

    Cheatsheet

    Syntax Example Reference
    # Header Header 基本排版
    - Unordered List
    • Unordered List
    1. Ordered List
    1. Ordered List
    - [ ] Todo List
    • Todo List
    > Blockquote
    Blockquote
    **Bold font** Bold font
    *Italics font* Italics font
    ~~Strikethrough~~ Strikethrough
    19^th^ 19th
    H~2~O H2O
    ++Inserted text++ Inserted text
    ==Marked text== Marked text
    [link text](https:// "title") Link
    ![image alt](https:// "title") Image
    `Code` Code 在筆記中貼入程式碼
    ```javascript
    var i = 0;
    ```
    var i = 0;
    :smile: :smile: Emoji list
    {%youtube youtube_id %} Externals
    $L^aT_eX$ LaTeX
    :::info
    This is a alert area.
    :::

    This is a alert area.

    Versions and GitHub Sync
    Get Full History Access

    • Edit version name
    • Delete

    revision author avatar     named on  

    More Less

    Note content is identical to the latest version.
    Compare
      Choose a version
      No search result
      Version not found
    Sign in to link this note to GitHub
    Learn more
    This note is not linked with GitHub
     

    Feedback

    Submission failed, please try again

    Thanks for your support.

    On a scale of 0-10, how likely is it that you would recommend HackMD to your friends, family or business associates?

    Please give us some advice and help us improve HackMD.

     

    Thanks for your feedback

    Remove version name

    Do you want to remove this version name and description?

    Transfer ownership

    Transfer to
      Warning: is a public team. If you transfer note to this team, everyone on the web can find and read this note.

        Link with GitHub

        Please authorize HackMD on GitHub
        • Please sign in to GitHub and install the HackMD app on your GitHub repo.
        • HackMD links with GitHub through a GitHub App. You can choose which repo to install our App.
        Learn more  Sign in to GitHub

        Push the note to GitHub Push to GitHub Pull a file from GitHub

          Authorize again
         

        Choose which file to push to

        Select repo
        Refresh Authorize more repos
        Select branch
        Select file
        Select branch
        Choose version(s) to push
        • Save a new version and push
        • Choose from existing versions
        Include title and tags
        Available push count

        Pull from GitHub

         
        File from GitHub
        File from HackMD

        GitHub Link Settings

        File linked

        Linked by
        File path
        Last synced branch
        Available push count

        Danger Zone

        Unlink
        You will no longer receive notification when GitHub file changes after unlink.

        Syncing

        Push failed

        Push successfully