owned this note
owned this note
Published
Linked with GitHub
# 伴隨矩陣
Adjugate

This work by Jephian Lin is licensed under a [Creative Commons Attribution 4.0 International License](http://creativecommons.org/licenses/by/4.0/).
$\newcommand{\trans}{^\top}
\newcommand{\adj}{^{\rm adj}}
\newcommand{\cof}{^{\rm cof}}
\newcommand{\inp}[2]{\left\langle#1,#2\right\rangle}
\newcommand{\dunion}{\mathbin{\dot\cup}}
\newcommand{\bzero}{\mathbf{0}}
\newcommand{\bone}{\mathbf{1}}
\newcommand{\ba}{\mathbf{a}}
\newcommand{\bb}{\mathbf{b}}
\newcommand{\bc}{\mathbf{c}}
\newcommand{\bd}{\mathbf{d}}
\newcommand{\be}{\mathbf{e}}
\newcommand{\bh}{\mathbf{h}}
\newcommand{\bp}{\mathbf{p}}
\newcommand{\bq}{\mathbf{q}}
\newcommand{\br}{\mathbf{r}}
\newcommand{\bx}{\mathbf{x}}
\newcommand{\by}{\mathbf{y}}
\newcommand{\bz}{\mathbf{z}}
\newcommand{\bu}{\mathbf{u}}
\newcommand{\bv}{\mathbf{v}}
\newcommand{\bw}{\mathbf{w}}
\newcommand{\tr}{\operatorname{tr}}
\newcommand{\nul}{\operatorname{null}}
\newcommand{\rank}{\operatorname{rank}}
%\newcommand{\ker}{\operatorname{ker}}
\newcommand{\range}{\operatorname{range}}
\newcommand{\Col}{\operatorname{Col}}
\newcommand{\Row}{\operatorname{Row}}
\newcommand{\spec}{\operatorname{spec}}
\newcommand{\vspan}{\operatorname{span}}
\newcommand{\Vol}{\operatorname{Vol}}
\newcommand{\sgn}{\operatorname{sgn}}
\newcommand{\idmap}{\operatorname{id}}
\newcommand{\am}{\operatorname{am}}
\newcommand{\gm}{\operatorname{gm}}
\newcommand{\mult}{\operatorname{mult}}
\newcommand{\iner}{\operatorname{iner}}$
```python
from lingeo import random_int_list
```
## Main idea
Let $A$ be an $n\times n$ matrix.
The **$ij$-minor** of $A$ is $\det A(i,j)$, while
the **$ij$-cofactor** of $A$ is $(-1)^{i + j} \det A(i,j)$.
The **cofactor matrix** of $A$ is an $n\times n$ matrix $A\cof$ whose $ij$-entry is the $ij$-cofactor of $A$.
Let $\br_1,\ldots,\br_n$ be the rows of $A$.
Let $\bc_1,\ldots,\bc_n$ be the rows of $A\cof$.
Thus, the Laplace expansion can be written as
$$
\inp{\br_i}{\bc_i} = \det(A)
$$
for any $i = 1,\ldots, n$.
Suppose $i$ and $j$ are two different indices in $\{1,\ldots,n\}$.
Consider the matrix $B$ obtained from $A$ by replacing its $j$-th row with $\br_i$.
Since $B$ has repeated rows, $\det(B) = 0$.
Meanwhile, the $jk$-cofactor of $B$ is the same as the $jk$-cofactor of $A$ for any $k = 1,\ldots, n$.
This means
$$
\inp{\br_i}{\bc_j} = \det(B) = 0.
$$
In summary,
$$
\inp{\br_i}{\bc_j} =
\begin{cases}
\det(A) & \text{if }i = j, \\
0 & \text{if }i \neq j.
\end{cases}
$$
Define the **adjugate** of $A$ as $A\adj = (A\cof)\trans$.
Thus, the above summary leads to the identity
$$
AA\adj = \det(A)I = A\adj A.
$$
Therefore, when $\det(A) \neq 0$,
$$
A^{-1} = \frac{1}{\det(A)}A\adj.
$$
## Side stories
- unimodular
- outer product
- adjugate when $\rank(A) = n-1$ or $\rank(A) = n-2$
- Stirling numbers
## Experiments
##### Exercise 1
執行以下程式碼。
<!-- eng start -->
Run the code below.
<!-- eng end -->
```python
### code
set_random_seed(0)
print_ans = False
n = 3
A = matrix(n, random_int_list(n^2,3))
pretty_print(LatexExpr("A ="), A)
if print_ans:
for i in range(n):
for j in range(n):
alpha = list(range(n))
alpha.remove(i)
beta = list(range(n))
beta.remove(j)
print("det A(%s,%s) ="%(i,j), A[alpha,beta].det())
print("cofactor matrix:")
pretty_print(A.adjugate().transpose())
print("adjugate:")
pretty_print(A.adjugate())
```
##### Exercise 1(a)
對所有 $i,j$,求出 $\det A(i,j)$。
<!-- eng start -->
For each $i,j$, find $\det A(i,j)$.
<!-- eng end -->
##### Exercise 1(b)
求 $A$ 的餘因子矩陣 $A\cof$。
<!-- eng start -->
Find the cofactor matrix $A\cof$ of $A$.
<!-- eng end -->
##### Exercise 1(c)
求 $A$ 的伴隨矩陣 $A\adj$。
<!-- eng start -->
Find the adjugate $A\adj$ of $A$.
<!-- eng end -->
:::info
What do the experiments try to tell you? (open answer)
...
:::
## Exercises
##### Exercise 2
根據拉普拉斯展開,計算行列式值時只會用到加法和乘法。
所以一個整數矩陣的行列式值也會是整數、
而一個有理數矩陣的行列式值也會是有理數。
利用這個性質回答以下問題。
<!-- eng start -->
According to the Laplace expansion, the computation of a determinant only uses the addition and the multiplication. Therefore, the determinant of an integer matrix is also an integer, and the determinant of a rational matrix is also a rational number. Use these facts to answer the following problems.
<!-- eng end -->
##### Exercise 2(a)
說明一個有理數矩陣(若可逆)的反矩陣也會是有理數矩陣。
<!-- eng start -->
Explain why the inverse of an invertible rational matrix is also a rational matrix.
<!-- eng end -->
##### Exercise 2(b)
找一個可逆的整數矩陣,其反矩陣不是整數矩陣。
<!-- eng start -->
Find an invertible integer matrix such that its inverse it not an integer matrix.
<!-- eng end -->
##### Exercise 2(c)
一個整數方陣如果行列式值為 $\pm 1$,
則被稱為**么模矩陣(unimodular matrix)** 。
說明么模矩陣的反矩陣一定是整數矩陣。
<!-- eng start -->
An integer matrix with determinant $\pm 1$ is called a **unimodular matrix** . Explain why the inverse of a unimodular matrix is also an integer matrix.
<!-- eng end -->
##### Exercise 3
令 $\br_1,\br_2,\br_3$ 為 $\mathbb{R}^3$ 中的向量、
且
$$
A = \begin{bmatrix}
- & \br_1 & - \\
~ & \vdots & ~ \\
- & \br_3 & -
\end{bmatrix}.
$$
說明 $A\cof$ 的第一列即為 $\br_2$ 和 $\br_3$ 的外積。
(根據定義,$A\cof$ 的第一列和 $\br_1$ 無關。)
<!-- eng start -->
Let $\br_1,\br_2,\br_3$ be vectors in $\mathbb{R}^3$ and
$$
A = \begin{bmatrix}
- & \br_1 & - \\
~ & \vdots & ~ \\
- & \br_3 & -
\end{bmatrix}.
$$
Explain why the first row of $A\cof$ is exactly the cross product of $\br_2$ and $\br_3$. (By definition, the first row of $A\cof$ is independent of $\br_1$.)
<!-- eng end -->
##### Exercise 4
給定 $\beta = \{\br_2,\ldots,\br_n\}$ 為 $\mathbb{R}^n$ 中的一群線性獨立的向量。
說明如何利用 $A\cof$ 找到一根向量 $\bv$ 使得 $\bv$ 跟 $\beta$ 中的所有向量都垂直。
(這個動作可以看成是 $\beta$ 中向量的外積。)
<!-- eng start -->
Let $\beta = \{\br_2,\ldots,\br_n\}$ be a linearly independent set in $\mathbb{R}^n$. Explain how to use $A\cof$ to find a vector $\bv$ such that $\bv$ is orthogonal to each vector in $\beta$. (You may also view this operation as the cross product of $\beta$.)
<!-- eng end -->
##### Exercise 5
令 $A$ 為一 $n\times n$ 矩陣。
當 $\rank(A) = n$ 時,我們知道 $A\adj = \det(A)A^{-1}$。
<!-- eng start -->
Let $A$ be an $n\times n$ matrix. When $\rank(A) = n$, we know $A\adj = \det(A)A^{-1}$.
<!-- eng end -->
##### Exercise 5(a)
當 $\rank(A) = n - 1$ 時,
可以假設 $A$ 的左右核分別為 $\ker(A) = \vspan\{\bu\}$ 及 $\ker(A\trans) = \vspan\{\bv\}$。
說明存在某個係數 $c$ 使得 $A\adj = c\bu\bv\trans$。
<!-- eng start -->
Suppose $\rank(A) = n - 1$. We may assume the left kernel and the right kernel of $A$ are $\ker(A) = \vspan\{\bu\}$ 及 $\ker(A\trans) = \vspan\{\bv\}$, respectively. Show that there is a constanct $c$ such that $A\adj = c\bu\bv\trans$.
<!-- eng end -->
##### Exercise 5(b)
當 $\rank(A) \leq n - 2$ 時,
說明 $A\adj = O$。
(提示:子矩陣的秩一定要比原矩陣的秩來得小。)
<!-- eng start -->
Suppose $\rank(A) = n - 2$. Show that $A\adj = O$. (Hint: The rank of a submatrix is smaller than the rank of the matrix itself.)
<!-- eng end -->
##### Exercise 6
定義 $(x)_k = x(x-1)\cdots(x-k+1)$ 且 $(x)_0 = 1$。
已知
$\alpha = \{1,x,\ldots, x_d\}$ 及
$\beta = \{(x)_0, (x)_1, \ldots, (x)_d\}$
皆是 $\mathcal{P}_d$ 的基底。
<!-- eng start -->
Define $(x)_k = x(x-1)\cdots(x-k+1)$ and $(x)_0 = 1$. Suppose we know $\alpha = \{1,x,\ldots, x_d\}$ and $\beta = \{(x)_0, (x)_1, \ldots, (x)_d\}$ are both bases of $\mathcal{P}_d$.
<!-- eng end -->
##### Exercise 6(a)
當 $d = 3$ 時,求出基底轉換矩陣 $[\operatorname{id}]_\beta^\alpha$。
並說明對任意的 $d$ 來說,$[\operatorname{id}]_\beta^\alpha$ 都會是整數矩陣
且行列式值為 $1$。
<!-- eng start -->
When $d = 3$, find the change-of-bases matrix $[\operatorname{id}]_\beta^\alpha$. Explain why $[\operatorname{id}]_\beta^\alpha$ is always an integer matrix with determinant $1$ for any $d$.
<!-- eng end -->
##### Exercise 6(b)
當 $d = 3$ 時,求出基底轉換矩陣 $[\operatorname{id}]_\alpha^\beta$。
利用上一題的結果,說明對任意的 $d$ 來說,$[\operatorname{id}]_\alpha^\beta$ 都會是整數矩陣。
<!-- eng start -->
When $d = 3$, find the change-of-bases matrix $[\operatorname{id}]_\alpha^\beta$. Explain why $[\operatorname{id}]_\beta^\alpha$ is always an integer matrix for any $d$.
<!-- eng end -->