Jephian Lin
    • Create new note
    • Create a note from template
      • Sharing URL Link copied
      • /edit
      • View mode
        • Edit mode
        • View mode
        • Book mode
        • Slide mode
        Edit mode View mode Book mode Slide mode
      • Customize slides
      • Note Permission
      • Read
        • Only me
        • Signed-in users
        • Everyone
        Only me Signed-in users Everyone
      • Write
        • Only me
        • Signed-in users
        • Everyone
        Only me Signed-in users Everyone
      • Engagement control Commenting, Suggest edit, Emoji Reply
    • Invite by email
      Invitee

      This note has no invitees

    • Publish Note

      Share your work with the world Congratulations! 🎉 Your note is out in the world Publish Note

      Your note will be visible on your profile and discoverable by anyone.
      Your note is now live.
      This note is visible on your profile and discoverable online.
      Everyone on the web can find and read all notes of this public team.
      See published notes
      Unpublish note
      Please check the box to agree to the Community Guidelines.
      View profile
    • Commenting
      Permission
      Disabled Forbidden Owners Signed-in users Everyone
    • Enable
    • Permission
      • Forbidden
      • Owners
      • Signed-in users
      • Everyone
    • Suggest edit
      Permission
      Disabled Forbidden Owners Signed-in users Everyone
    • Enable
    • Permission
      • Forbidden
      • Owners
      • Signed-in users
    • Emoji Reply
    • Enable
    • Versions and GitHub Sync
    • Note settings
    • Note Insights
    • Engagement control
    • Transfer ownership
    • Delete this note
    • Save as template
    • Insert from template
    • Import from
      • Dropbox
      • Google Drive
      • Gist
      • Clipboard
    • Export to
      • Dropbox
      • Google Drive
      • Gist
    • Download
      • Markdown
      • HTML
      • Raw HTML
Menu Note settings Versions and GitHub Sync Note Insights Sharing URL Create Help
Create Create new note Create a note from template
Menu
Options
Engagement control Transfer ownership Delete this note
Import from
Dropbox Google Drive Gist Clipboard
Export to
Dropbox Google Drive Gist
Download
Markdown HTML Raw HTML
Back
Sharing URL Link copied
/edit
View mode
  • Edit mode
  • View mode
  • Book mode
  • Slide mode
Edit mode View mode Book mode Slide mode
Customize slides
Note Permission
Read
Only me
  • Only me
  • Signed-in users
  • Everyone
Only me Signed-in users Everyone
Write
Only me
  • Only me
  • Signed-in users
  • Everyone
Only me Signed-in users Everyone
Engagement control Commenting, Suggest edit, Emoji Reply
  • Invite by email
    Invitee

    This note has no invitees

  • Publish Note

    Share your work with the world Congratulations! 🎉 Your note is out in the world Publish Note

    Your note will be visible on your profile and discoverable by anyone.
    Your note is now live.
    This note is visible on your profile and discoverable online.
    Everyone on the web can find and read all notes of this public team.
    See published notes
    Unpublish note
    Please check the box to agree to the Community Guidelines.
    View profile
    Engagement control
    Commenting
    Permission
    Disabled Forbidden Owners Signed-in users Everyone
    Enable
    Permission
    • Forbidden
    • Owners
    • Signed-in users
    • Everyone
    Suggest edit
    Permission
    Disabled Forbidden Owners Signed-in users Everyone
    Enable
    Permission
    • Forbidden
    • Owners
    • Signed-in users
    Emoji Reply
    Enable
    Import from Dropbox Google Drive Gist Clipboard
       owned this note    owned this note      
    Published Linked with GitHub
    Subscribed
    • Any changes
      Be notified of any changes
    • Mention me
      Be notified of mention me
    • Unsubscribe
    Subscribe
    # 特徵多項式係數 ![Creative Commons License](https://i.creativecommons.org/l/by/4.0/88x31.png) This work by Jephian Lin is licensed under a [Creative Commons Attribution 4.0 International License](http://creativecommons.org/licenses/by/4.0/). $\newcommand{\trans}{^\top} \newcommand{\adj}{^{\rm adj}} \newcommand{\cof}{^{\rm cof}} \newcommand{\inp}[2]{\left\langle#1,#2\right\rangle} \newcommand{\dunion}{\mathbin{\dot\cup}} \newcommand{\bzero}{\mathbf{0}} \newcommand{\bone}{\mathbf{1}} \newcommand{\ba}{\mathbf{a}} \newcommand{\bb}{\mathbf{b}} \newcommand{\bc}{\mathbf{c}} \newcommand{\bd}{\mathbf{d}} \newcommand{\be}{\mathbf{e}} \newcommand{\bh}{\mathbf{h}} \newcommand{\bp}{\mathbf{p}} \newcommand{\bq}{\mathbf{q}} \newcommand{\br}{\mathbf{r}} \newcommand{\bx}{\mathbf{x}} \newcommand{\by}{\mathbf{y}} \newcommand{\bz}{\mathbf{z}} \newcommand{\bu}{\mathbf{u}} \newcommand{\bv}{\mathbf{v}} \newcommand{\bw}{\mathbf{w}} \newcommand{\tr}{\operatorname{tr}} \newcommand{\nul}{\operatorname{null}} \newcommand{\rank}{\operatorname{rank}} %\newcommand{\ker}{\operatorname{ker}} \newcommand{\range}{\operatorname{range}} \newcommand{\Col}{\operatorname{Col}} \newcommand{\Row}{\operatorname{Row}} \newcommand{\spec}{\operatorname{spec}} \newcommand{\vspan}{\operatorname{span}} \newcommand{\Vol}{\operatorname{Vol}} \newcommand{\sgn}{\operatorname{sgn}} \newcommand{\idmap}{\operatorname{id}}$ ```python from lingeo import random_int_list, random_good_matrix ``` ## Main idea Let $A$ be an $n\times n$ matrix. Let $\alpha \subseteq [n]$ be a subset of indices. We let $A[\alpha]$ be the submatrix of $A$ induced on rows and columns in $\alpha$. Such a matrix is called a **principal submatrix** of $A$, and its determinant is called a **principal minor**. Let $s_k = s_k(A)$ be the sum of all $k\times k$ principal minorts. Vacuously, we define $s_0 = 1$. Then $$ \det(A - xI) = s_0(-x)^n + s_1(-x)^{n-1} + \cdots + s_n. $$ In particular, $s_1 = \tr(A)$ is the sum of all diagonal entries of $A$, and $s_n = \det(A)$. This identity follows from the expansion of the characteristic polynomial by the distributive law on each column. Here is an example. $$ \begin{aligned} \det\begin{bmatrix} 1 - x & 2 & 3 \\ 4 & 5 - x & 6 \\ 7 & 8 & 9 - x \end{bmatrix} &= \det\begin{bmatrix} -x & 0 & 0 \\ 0 & -x & 0 \\ 0 & 0 & -x \end{bmatrix} + \det\begin{bmatrix} -x & 0 & 3 \\ 0 & -x & 6 \\ 0 & 0 & 9 \end{bmatrix} + \det\begin{bmatrix} -x & 2 & 0 \\ 0 & 5 & 0 \\ 0 & 8 & -x \end{bmatrix} + \det\begin{bmatrix} 1 & 0 & 0 \\ 4 & -x & 0 \\ 7 & 0 & -x \end{bmatrix} + \\ &\mathrel{\phantom{=}} \det\begin{bmatrix} -x & 2 & 3 \\ 0 & 5 & 6 \\ 0 & 8 & 9 \end{bmatrix} + \det\begin{bmatrix} 1 & 0 & 3 \\ 4 & -x & 6 \\ 7 & 0 & 9 \end{bmatrix} + \det\begin{bmatrix} 1 & 2 & 0 \\ 4 & 5 & 0 \\ 7 & 8 & -x \end{bmatrix} + \det\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}. \end{aligned} $$ ## Side stories - Vieta's formulas - Cauchy–Binet formula ## Experiments ##### Exercise 1 執行以下程式碼。 ```python ### code set_random_seed(0) print_ans = False n = 3 spec = random_int_list(n, 3) D = diagonal_matrix(spec) Q = random_good_matrix(n,n,n,2) A = Q * D * Q.inverse() pretty_print(LatexExpr("A ="), A) if print_ans: for k in [3,2,1]: print("k =", k) kmtx = [] kmnr = [] for alpha in Combinations(list(range(3)), k): kmtx.append(A[alpha, alpha]) kmnr.append(A[alpha, alpha].det()) print("all k x k principal submatricies:") pretty_print(*kmtx) print("all k x k principal minors:") print(kmnr) print("sk =", sum(kmnr)) print("---") pA = (-1)^n * A.charpoly() print("characteristic polyomial =", pA) print("spectrum is the set { " + ", ".join("%s"%val for val in spec) + " }") ``` 當 `seed = 0` 時,得矩陣$$ A = \begin{bmatrix} -63 & -60 & 24\\ 74 & 71 & -28\\ 20 & 20 & -7\\ \end{bmatrix}. $$ ##### Exercise 1(a) 列出所有的 $3\times 3$ 主子矩陣,並計算 $s_3$。 :::warning - [x] 當 $\alpha$ = 3 時, --> 當 $|\alpha| = 3$ 時,$\alpha = \{1,2,3\}$,所以 - [x] 等號和 $\det$ 要進數學模式 ::: $Ans:$ 當 $|\alpha| = 3$ 時,$\alpha = \{1,2,3\}$,所以 $s_3 = \det (A[\alpha]) = -9$。 ##### Exercise 1(b) 列出所有的 $2\times 2$ 主子矩陣,並計算 $s_2$。 :::warning - [x] 當 $\alpha$ = 2 時, --> 當 $|\alpha| = 2$ 時,$\alpha$ 可能為 ...,所以 - [x] 等號要進數學模式 - [x] $s_2$ = det $(A[\alpha])$ = $(-33)+(-39)+63 = -9$。 --> $s_2 = (-33)+(-39)+63 = -9$。 ::: $Ans:$ 當 $|\alpha| = 2$ 時,$\alpha$ 可能為 $\{{1,2}\},\{{1,3}\},\{{2,3}\}$,所以 $$A[\alpha] = \begin{bmatrix} -63 & -60 \\ 74 & 71 \end{bmatrix}、 \begin{bmatrix} -63 & 24 \\ 20 & -7 \end{bmatrix}、 \begin{bmatrix} 71 & -28 \\ 20 & -7 \end{bmatrix}. $$ 得 $s_2$ = $(-33)+(-39)+63 = -9$。 ##### Exercise 1(c) 列出所有的 $1\times 1$ 主子矩陣,並計算 $s_1$。 :::warning - [x] 仿照上一題修改 ::: $Ans:$ 當 $|\alpha| = 1$ 時,$\alpha$ 可能為 $\{{1}\},\{{2}\},\{{3}\}$,所以 $$A[\alpha] = \begin{bmatrix} -63 \end{bmatrix}、\ \begin{bmatrix} 71 \end{bmatrix}、\ \begin{bmatrix} -7 \end{bmatrix}. $$ 得 $s_1$ = $(-63)+71+(-7) = 1$。 ##### Exercise 1(d) 計算 $A$ 的特徵多項式及 $\spec(A)$。 :::warning - [x] 綜合前面幾題,我們知道 $$ \begin{aligned} p_A(x) &= s_0(-x)^3 + ... \\ &= (-1)x^3 + 1x^2 + 9x - 9 \\ &=(x + 3)(x - 3)(x - 1) \end{aligned} $$ - [x] 用文字敘述取代 $\implies$ - [x] $x = -4,-6$ 時 $p_A(x)\neq 0$ ::: $Ans:$ $$ \begin{aligned} p_A(x) &= s_0(-x)^3 + s_1(-x)^2 + s_2(-x) + s_3\\ &= (-1)x^3 + 1x^2 + 9x - 9 \\ &=(x + 3)(x - 3)(x - 1) \end{aligned} $$ 當 $x=-3,3,1$ 時,$p_A(x) = 0$。 因此 $\spec(A)=\{-3,3,1\}$。 ## Exercises ##### Exercise 2 利用 $s_k$ 計算以下矩陣 $A$ 的特徵多項式以及 $\spec(A)$。 ##### Exercise 2(a) $$ A = \begin{bmatrix} 5 & -1 \\ -1 & 5 \end{bmatrix}. $$ :::warning - [x] 所以 $$ p_A(x) = x^2+10x+24 = (x+4)(x+6), $$ 因此 $\spec(A)=\{-4,-6\}$。 ::: $Ans:$ 因為 $s_0=1,$ $s_1=\det(\begin{bmatrix} 5 \end{bmatrix})+\det(\begin{bmatrix} 5 \end{bmatrix})=10,$ $s_2=\det(A)=\det(\begin{bmatrix} 5 & -1 \\ -1 & 5 \end{bmatrix})=24,$ 所以 $$ p_A(x) = x^2-10x+24 = (x-4)(x-6), $$ 因此 $\spec(A)=\{4,6\}$。 ##### Exercise 2(b) $$ A = \begin{bmatrix} 0 & 1 \\ -6 & 5 \end{bmatrix}. $$ :::warning - [x] 同上題 ::: $Ans:$ 因為 $s_0=1,$ $s_1=\det(\begin{bmatrix} 0 \end{bmatrix})+\det(\begin{bmatrix} 5 \end{bmatrix})=5,$ $s_2=\det(A)=\det(\begin{bmatrix} 0 & 1 \\ -6 & 5 \end{bmatrix})=6,$ 所以 $$ p_A(x) = x^2-5x+6 = (x-2)(x-3), $$ 因此 $\spec(A)=\{2,3\}$。 ##### Exercise 2(c) $$ A = \begin{bmatrix} 0 & 1 \\ -4 & 0 \end{bmatrix}. $$ :::warning - [x] 同上題 ::: $Ans:$ 因為 $s_0=1,$ $s_1=\det(\begin{bmatrix} 0 \end{bmatrix})+\det(\begin{bmatrix} 0 \end{bmatrix})=0,$ $s_2=\det(A)=\det(\begin{bmatrix} 0 & 1 \\ -4 & 0 \end{bmatrix})=4,$ 所以 $$ p_A(x) = x^2+4 , $$ 因此 $\spec(A)=\{\sqrt{-4},\sqrt{-4}\}$。 ##### Exercise 2(d) $$ A = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}. $$ :::warning - [x] 同上題 ::: $Ans:$ 因為 $s_0=1,$ $s_1=\det(\begin{bmatrix} 0 \end{bmatrix})+\det(\begin{bmatrix} 0 \end{bmatrix})=0,$ $s_2=\det(A)=\det(\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix})=1,$ 所以 $p_A(x)=x^2+1$ $$ p_A(x) = x^2+1 , $$ 因此 $\spec(A)=\{\sqrt{-1},\sqrt{-1}\}$。 ##### Exercise 3 利用 $s_k$ 計算以下矩陣 $A$ 的特徵多項式以及 $\spec(A)$。 ##### Exercise 3(a) $$ A = \begin{bmatrix} 4 & 0 & -1 \\ 0 & 4 & -1 \\ -1 & -1 & 5 \end{bmatrix}. $$ :::warning - [x] If $k = 0$, then $s_0 = 1$ by definition. - [x] Capitalize the first letter of each sentence. - [x] When $p_A(x) = 0$, then $\spec(A)=\{3,4,6\}.$ --> Since $\spec(A)$ is the set of roots of $p_A(x) = 0$, $\spec(A)=\{3,4,6\}.$ ::: $Ans:$ If $k = 0$, then $s_0 = 1$ by definition. If $k = 1$, All $k\times k$ principal submatricies : $\begin{bmatrix} 4 \end{bmatrix} \begin{bmatrix} 4 \end{bmatrix} \begin{bmatrix} 5 \end{bmatrix}.$ So, $s_1 = \det(\begin{bmatrix} 4 \end{bmatrix}) + \det(\begin{bmatrix} 4 \end{bmatrix}) + \det(\begin{bmatrix} 5 \end{bmatrix}) = 4 + 4 + 5 = 13.$ If $k = 2$, All $k\times k$ principal submatricies : $$ \begin{bmatrix} 4 & 0 \\ 0 & 4 \end{bmatrix} \begin{bmatrix} 4 & -1 \\ -1 & 5 \end{bmatrix} \begin{bmatrix} 4 & -1 \\ -1 & 5 \end{bmatrix}. $$ So, $s_2 = \det \begin{bmatrix} 4 & 0 \\ 0 & 4 \end{bmatrix} + \det \begin{bmatrix} 4 & -1 \\ -1 & 5 \end{bmatrix} + \det \begin{bmatrix} 4 & -1 \\ -1 & 5 \end{bmatrix} = 16 + 19 + 19 = 54.$ If $k = 3$, All $k\times k$ principal submatricies : $$ \begin{bmatrix} 4 & 0 & -1 \\ 0 & 4 & -1 \\ -1 & -1 & 5 \end{bmatrix}. $$ So, $s_3 = \det(\begin{bmatrix} 4 & 0 & -1 \\ 0 & 4 & -1 \\ -1 & -1 & 5 \end{bmatrix})=72.$ So, $p_A(x)=(-x)^3 + 13(-x)^2 + 54(-x) + 72 = -x^3 + 13x^2 -54x +72.$ Since $\spec(A)$ is the set of roots of $p_A(x) = 0$, $\spec(A)=\{3,4,6\}.$ ##### Exercise 3(b) $$ A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 6 & -11 & 6 \end{bmatrix}. $$ :::warning - [x] Same as the previous one. ::: $Ans:$ If $k = 0$, then $s_0 = 1$ by definition. If $k = 1$, All $k\times k$ principal submatricies : $\begin{bmatrix} 0 \end{bmatrix} \begin{bmatrix} 0 \end{bmatrix} \begin{bmatrix} 6 \end{bmatrix}.$ So, $s_1 = \det(\begin{bmatrix} 0 \end{bmatrix}) + \det(\begin{bmatrix} 0 \end{bmatrix}) + \det(\begin{bmatrix} 6 \end{bmatrix}) = 0 + 0 + 6 = 6$. If $k = 2$, All $k\times k$ principal submatricies : $$ \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 6 & 6 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ -11 & 6 \end{bmatrix}. $$ So, $s_2 = \det \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} + \det \begin{bmatrix} 0 & 0 \\ 6 & 6 \end{bmatrix} + \det \begin{bmatrix} 0 & 1 \\ -11 & 6 \end{bmatrix} = 0 + 0 + 11 = 11$. If $k = 3$, All $k\times k$ principal submatricies : $$ \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 6 & -11 & 6 \end{bmatrix}. $$ So, $s_3 = \det \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 6 & -11 & 6 \end{bmatrix} = 6$. So, $p_A(x)=(-x)^3 + 6(-x)^2 + 11(-x) + 6 = -x^3 + 6x^2 -11x +6$. Since $\spec(A)$ is the set of roots of $p_A(x) = 0$, $\spec(A)=\{1,2,3\}.$ ##### Exercise 3(c) $$ A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix}. $$ :::warning - [x] Same as the previous one. - [x] When calculating $\spec(A)$, you need to include all roots (including complex numbers). ::: $Ans:$ If $k = 0$, then $s_0 = 1$ by definition. If $k = 1$, All $k\times k$ principal submatricies : $\begin{bmatrix} 0 \end{bmatrix} \begin{bmatrix} 0 \end{bmatrix} \begin{bmatrix} 0 \end{bmatrix}.$ So, $s_1 = \det(\begin{bmatrix} 0 \end{bmatrix}) + \det(\begin{bmatrix} 0 \end{bmatrix}) + \det(\begin{bmatrix} 0 \end{bmatrix}) = 0$. If $k = 2$, All $k\times k$ principal submatricies : $$ \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}. $$ So, $s_2 = \det \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} + \det \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} + \det \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} = 0 + 0 + 0 = 0$. If $k = 3$, All $k\times k$ principal submatricies : $$ \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix}. $$ So, $s_3 = \det \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix} = 1$. So, $p_A(x)=(-x)^3 + 0(-x)^2 + 0(-x) + 1 = -x^3 +1 = (x - 1)(-x^2 - x - 1)$. Since $\spec(A)$ is the set of roots of $p_A(x) = 0$, $\spec(A)=\{1, \frac{-1+\sqrt{-3}}{2}, \frac{-1-\sqrt{-3}}{2}\}.$ ##### Exercise 4 令 $J_n$ 為 $n\times n$ 的全 $1$ 矩陣。 對每一個 $k = 0,\ldots, n$,計算 $s_k$, 並藉此求 $J_n$ 的特徵多項式及 $\spec(J_n)$。 :::warning - [x] $p_A(x)$ 的 $x^{n-1}$ 係數有錯 - [x] $det$ --> $\det$ - [x] $s_1$, $s_2$, $s_3$ 那幾行後面加逗點,$s_3$ 後面加句點;其它標點也補起來 - [x] 特徵多項式用 $p_A(x)$ - [x] 不要用邏輯符號 $\implies$,參考 2(a) 修改 - [x] $\spec$ 那個集合裡少了一個逗號 ::: $Ans:$ 由題目可知 $$J_n= \begin{bmatrix} 1& 1 & 1 & \cdots & 1 \\ 1 & 1 & 1 & \ddots & \vdots \\ 1 & 1 & 1 & \ddots & 1 \\ \vdots & \ddots & \ddots & \ddots & 1 \\ 1 & \cdots & 1 & 1 & 1 \end{bmatrix}. $$ 其中 $s_0=1$, $s_1=\det(\begin{bmatrix} 1 \end{bmatrix})+ \det(\begin{bmatrix} 1 \end{bmatrix})+\cdots + \det(\begin{bmatrix} 1 \end{bmatrix})=n\times \det(\begin{bmatrix} 1 \end{bmatrix})=n\times1=n$, $$ \begin{aligned} s_2 &= \det(\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix})+\det(\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix})+\cdots+\det(\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}) \\ &= C\binom{n}{2}\times\det(\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix})=C\binom{n}{2}\times0=0, \end{aligned} $$ $s_3=C\binom{n}{3}\times\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1& 1 \\ 1 & 1 & 1 \end{bmatrix}=C\binom{n}{3}\times0=0$。 以此類推 $s_n=C\binom{n}{n}\times0=0$ 所以 $$p_A(x)=x^n-nx^{n-1}=x^{n-1}(x-n) $$ 因此 $\spec(J_n)=\{n,0,0,\cdots,0\}$,其中 $0$ 有 $n-1$ 個。 ##### Exercise 5 令 $J_{m,n}$ 為 $m\times n$ 的全 $1$ 矩陣,而 $$ A = \begin{bmatrix} O_{n,n} & J_{n,m} \\ J_{m,n} & O_{m,m} \end{bmatrix}. $$ 對每一個 $k = 0,\ldots, n$,計算 $s_k$, 並藉此求 $A$ 的特徵多項式及 $\spec(A)$。 :::warning - [x] 計算 $s_2$ 的時候,只有在 $\alpha$ 從 $\{1,\ldots,n\}$ 和 $\{n+1,\ldots,n+m\}$ 中各取一個的時候 $\det(A[\alpha])$ 才非零,且這時候 $\det(A[\alpha]) = -1$,所以不管 $m,n$ 是不是 $1$,都是 $s_2 = -mn$。應該不用分那麼多個情況。 - [x] 最後 $0$ 的重根數要記錄上去 ::: **[由林子翔同學修正]** $s_0 = 1$,$s_1 = 0 \times (m+n) = 0$, $$ \begin{aligned} s_2 &= \det \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \times (C\binom{m}{2} + C\binom{n}{2}) + \det \begin{bmatrix} 0 & -1 \\ -1 & 0 \end{bmatrix} \times (C\binom{m}{1} \times C\binom{n}{1})\\ &= 0 \times (C\binom{m}{2} + C\binom{n}{2}) + (-1) \times (C\binom{m}{1} \times C\binom{n}{1}) \\&= -mn, \end{aligned} $$ $s_3 = 0 \times C\binom{m+n}{3}$,...,$s_{m+n} = 0 \times C\binom{m+n}{m+n} = 0$。 因此 $p_A(x) = x^{m+n} + (-mn)x^{m+n-2} = x^{m+n-2} \times (x^2-mn)$ 當 $x = 0,\pm\sqrt{mn}$ 時,$p_A(x)=0$。 因此 $\spec(A) = \{0, \pm\sqrt{mn}\}$,其中 $0$ 有 $n - 2$ 個。 ##### Exercise 6 令 $A$ 為一 $n\times n$ 矩陣。 若特徵多項式 $p_A(x)$ 的根為 $\lambda_1,\ldots,\lambda_n$,則 $$ p_A(x) = (\lambda_1 - x) \cdots (\lambda_n - x). $$ 如此一來我們就有根與係數的關係 $$ \begin{aligned} s_0 &= 1, \\ s_1 &= \lambda_1 + \cdots + \lambda_n, \\ s_2 &= \sum_{i<j}\lambda_i\lambda_j, \\ \vdots & \\ s_n &= \lambda_1\cdots\lambda_n. \end{aligned} $$ ##### Exercise 6(a) 令 $J_n$ 為 $n\times n$ 的全 $1$ 矩陣。 若已知 $\spec(J_n)$ 中有 $n-1$ 個零, 求最後一個特徵值。 (未來會發現這是求 $\spec(J_n)$, 也可以反推特徵多項式, 所以請不要用先前題目的結果來計算這題。) :::warning - [x] 題目可能沒有寫清楚,但這題是要你們觀察 $s_1 = \tr(A) = n = \lambda_1 + \cdots + \lambda_n$。所以當 $\spec(J_n)$ 中已經有 $n-1$ 個零,最後一個特徵值一定是 $n$。 ::: $Ans:$ 根據題目可知, $$ p_{Jn}(x) = (\lambda_1 - x) \cdots (\lambda_n - x). $$ 已知 $\spec(J_n)$ 中有 $n-1$ 個零, 則 $$ \lambda_1 = \lambda_2 = \cdots = \lambda_{n-1} = 0. $$ 因此, $$ \begin{aligned} p_{Jn}(x) & = (-x) (-x) \cdots (-x)(\lambda_n - x) \\ & = (-x)^{n-1} (\lambda_n - x) \\ & = \lambda_n (-x)^{n-1} + (-x)^n. \end{aligned} $$ 已知, $$ p_{Jn}(x) = s_0(-x)^n + s_1(-x)^{n-1} + \cdots + s_n. $$ 因此, $$ \lambda_n = s_1 = n. $$ 最後一個特徵值一定是 $n$。 ##### Exercise 6(b) 令 $J_{m,n}$ 為 $m\times n$ 的全 $1$ 矩陣,而 $$ A = \begin{bmatrix} O_{n,n} & J_{n,m} \\ J_{m,n} & O_{m,m} \end{bmatrix}. $$ 若已知 $\spec(A)$ 中有 $n-2$ 個零, 求最後兩個特徵值。 (未來會發現這是求 $\spec(A)$, 也可以反推特徵多項式, 所以請不要用先前題目的結果來計算這題。) :::warning - [x] 一樣,題目沒有講清楚,你可以用已知的 $s_1 = 0$ 和 $s_2 = -mn$ 來計算所有特徵值 ::: $Ans:$ 根據題目可知, $$ p_{Jn}(x) = (\lambda_1 - x) \cdots (\lambda_n - x). $$ 已知 $\spec(J_n)$ 中有 $n-2$ 個零, 則 $$ \lambda_1 = \lambda_2 = \cdots = \lambda_{n-2} = 0. $$ 因此, $$ \begin{aligned} p_{Jn}(x) & = (-x) (-x) \cdots (-x)(\lambda_{n-1} - x)(\lambda_n - x) \\ & = (-x)^{n-2} (\lambda_{n-1} - x)(\lambda_n - x) \\ & = (-x)^{n-2} (\lambda_{n-1}\lambda_{n} - (\lambda_{n-1} + \lambda_{n})x + (-x)^2) \\ & = \lambda_{n-1}\lambda_{n}(-x)^{n-2} + (\lambda_{n-1}+\lambda_{n})(-x)^{n-1} + (-x)^n. \end{aligned} $$ 已知, $$ p_{Jn}(x) = s_0(-x)^n + s_1(-x)^{n-1} + s_2(-x)^{n-2} + \cdots + s_n. $$ 因此, $$ \begin{cases} \lambda_{n-1} + \lambda_{n} = s_1 = 0. \\ \lambda_{n-1}\lambda_{n} = s_2 = -mn. \end{cases} $$ 經過計算, $$ \begin{aligned} (- \lambda_{n})(\lambda_{n}) = -mn \\ (\lambda_{n})^2 = mn \\ \lambda_{n} = \sqrt{mn} \\ \lambda_{n-1} = -\sqrt{mn} \end{aligned} $$ 最後二個特徵值是 $\sqrt{mn}$ 及 $-\sqrt{mn}$。 ##### Exercise 7 證明若 $A$ 和 $B$ 相似 (也就是存在可逆的 $Q$ 使得 $B = Q^{-1}AQ$), 則對每一個 $k = 0,\ldots, n$ 都有 $s_k(B) = s_k(A)$。 因此我們也可以把任一線性函數 $f:V\rightarrow V$ 的 $s_k(f)$ 定義成 $s_k([f]_\beta^\beta)$, 其中 $\beta$ 可以是 $V$ 的任意基底。 $Ans:$ Note that if $A$ 和 $B$ are similar by $B = Q^{-1}AQ$, then $$ \begin{aligned} \det (B - \lambda I) & = \det(Q^{-1}AQ - Q^{-1}(\lambda I)Q)\\ & = \det(Q^{-1}(A - \lambda I)AQ)\\ & = \det(Q^{-1}) \det(A - \lambda I) \det(Q)\\ & = (\frac{1}{\det(Q)}) \det(A - \lambda I) \det(Q)\\ & = \det(A - \lambda I). \end{aligned} $$ Since $\det (B - \lambda I) = \det(A - \lambda I)$, so $s_k(B) = s_k(A)$ for $k = 0,\ldots, n$. ##### Exercise 8 令 $A$ 與 $B$ 分別為 $m\times n$ 與 $n\times m$ 矩陣,且 $m\leq n$。 若 $\alpha\subseteq [n]$ 是一些下標的集合, 定義 $A[:,\alpha]$ 是由 $A$ 中 $\alpha$ 裡的那些行所組成的 $m\times |\alpha|$ 矩陣, 而 $B[\alpha,:]$ 是由 $B$ 中 $\alpha$ 裡的那些列所組成的 $|\alpha|\times m$ 矩陣。 ##### Theorem (Cauchy–Binet formula) $$ \det(AB) = \sum_{\substack{\alpha\subseteq [n] \\ |\alpha| = m}} \det(A[:,\alpha])\det(B[\alpha,:]). $$ ##### Exercise 8(a) 令 $$ A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} \text{ and } B = \begin{bmatrix} 7 & 8 \\ 9 & 10 \\ 11 & 12 \end{bmatrix}. $$ 對所有大小為 $2$ 的集合 $\alpha\subseteq [3]$, 求出所有的 $A[:,\alpha]$ 及 $B[\alpha,:]$, 並利用柯西比內公式計算 $AB$ 的行列式值。 :::warning - [ ] 當$\alpha$分別取$(1,2),(2,3),(1,3)$, --> 當 $\alpha$ 分別取 $\{1,2\},\{2,3\},\{1,3\}$,(集全用大括號、中英數之間空格) - [ ] 最後一個式子用 `aligned` 環境排好 ::: $Ans:$ 當$\alpha$ 分別取 $\{1,2\},\{2,3\},\{1,3\}$, $$A[:,\alpha]= \begin{bmatrix} 1 &2 \\4 & 5 \end{bmatrix}, \begin{bmatrix} 2 &3 \\5 & 6 \end{bmatrix}, \begin{bmatrix} 1 &3 \\4 & 6 \end{bmatrix}$$ $$B[\alpha,:]= \begin{bmatrix} 7 &8 \\9 & 10 \end{bmatrix}, \begin{bmatrix} 9 &10 \\11 & 12\end{bmatrix}, \begin{bmatrix} 7 &8 \\11 & 12 \end{bmatrix}$$ $$ \det(AB)=\det(\begin{bmatrix} 1 &2 \\4 & 5 \end{bmatrix})\times \det(\begin{bmatrix} 7 &8 \\9 & 10 \end{bmatrix})+\det(\begin{bmatrix} 2 &3 \\5& 6 \end{bmatrix})\times \det(\begin{bmatrix} 9 &10\\11 & 12 \end{bmatrix})+\det(\begin{bmatrix} 1 &3 \\4& 6 \end{bmatrix})\times \det(\begin{bmatrix} 7 &8\\11 & 12 \end{bmatrix}) = 36 $$ ##### Exercise 8(b) 令 $$ M = \begin{bmatrix} O_{n,n} & B \\ A & O_{m,m} \end{bmatrix}. $$ 利用 506-6 求出 $p_M(x)$ 的 $(-x)^{n-m}$ 項係數。 :::warning - [ ] 沒有回答到係數 ::: $Ans:$ $$ \begin{aligned} p_M(x)= \det\begin{bmatrix} -xI_n & B \\ A & -xI_m \end{bmatrix} &= \det (-x I_n) \cdot \det ((-x I_m) - A (-x I_n)^{-1} B) \\ &= (-x)^n \cdot \det (\frac{1}{x}AB - x I_m) \\ &= (-x)^n \cdot (x)^{-m} \cdot \det (AB - x^2 I_m)\\&=(-1)^n \cdot(x)^n \cdot (x)^{-m} \cdot \det (AB - x^2 I_m)\\&= (x)^{n-m} \cdot (-1)^n \cdot \det (AB - x^2 I_m). \end{aligned} $$ ##### Exercise 8(c) 令 $$ M = \begin{bmatrix} O_{n,n} & B \\ A & O_{m,m} \end{bmatrix}. $$ 利用 $s_{2m}$ 的定義直接求出 $s_{2m}(M)$。 配合上一題證明柯西比內公式。 :::warning - [ ] 可以放懸賞沒關係 ::: ##### Exercise 9 令 $A$ 為一 $n\times n$ 矩陣。 將 $p_A(x)$ 代入 $x = 0$ 可得 $$ s_n = p_A(0) = \det(A - 0I) = \det(A). $$ 類似地,我們可以利用 506-10 計算 $$ s_{n-1} = -\frac{dp_A(x)}{dx}\Big|_{x=0} = \sum_{i = 1}^n p_{A(i)}(x)\Big|_{x=0} = \sum_{i=1}^n\det(A(i)). $$ 利用數學歸納法證明 $$ \det(A - xI) = s_0(-x)^n + S_1(-x)^{n-1} + \cdots + s_n. $$ :::warning $\det(A - xI) = ... = \det(A - xI) \times (-x) + s_{k+1}$ 這部份不正確,左式是 $n$ 次式,右式是 $n+1$ 次式 這題是建議在固定 $n$ 的情況下,依序對 $k = 0,1,2,\ldots,$ 證明 $s_{n-k}$ 為所有 $k\times k$ 主餘因子的和 這題可以掛懸賞沒關係 ::: $Ans:$ When $n = 1,$ LHS : $$ \det (A - xI) = \det(A) - x. $$ RHS : $$ s_0(-x)^1 + S_1 = (-x) + \det(A). $$ Since $\det (A - xI) = s_0(-x)^1 + S_1$, so $\det(A - xI) = s_0(-x)^n + S_1(-x)^{n-1} + \cdots + s_n,$ when $n = 1$. Suppose $\det(A - xI) = s_0(-x)^n + S_1(-x)^{n-1} + \cdots + s_n,$ when $n = k$. so $\det(A - xI) = s_0(-x)^k + S_1(-x)^{k-1} + \cdots + s_k$. When $n = k + 1$ , $\det(A - xI) = s_0(-x)^{k+1} + s_1(-x)^k + s_2(-x)^{k-1} + \cdots + s_{k+1} = \det(A - xI) \times (-x) + s_{k+1} = s_0(-x)^{k+1} + s_1(-x)^k + s_2(-x)^{k-1}+ \cdots+ s_{k+1}.$ So $\det(A - xI) = s_0(-x)^n + S_1(-x)^{n-1} + \cdots + s_n.$ :::info 分數 = 6.5 :::

    Import from clipboard

    Paste your markdown or webpage here...

    Advanced permission required

    Your current role can only read. Ask the system administrator to acquire write and comment permission.

    This team is disabled

    Sorry, this team is disabled. You can't edit this note.

    This note is locked

    Sorry, only owner can edit this note.

    Reach the limit

    Sorry, you've reached the max length this note can be.
    Please reduce the content or divide it to more notes, thank you!

    Import from Gist

    Import from Snippet

    or

    Export to Snippet

    Are you sure?

    Do you really want to delete this note?
    All users will lose their connection.

    Create a note from template

    Create a note from template

    Oops...
    This template has been removed or transferred.
    Upgrade
    All
    • All
    • Team
    No template.

    Create a template

    Upgrade

    Delete template

    Do you really want to delete this template?
    Turn this template into a regular note and keep its content, versions, and comments.

    This page need refresh

    You have an incompatible client version.
    Refresh to update.
    New version available!
    See releases notes here
    Refresh to enjoy new features.
    Your user state has changed.
    Refresh to load new user state.

    Sign in

    Forgot password

    or

    By clicking below, you agree to our terms of service.

    Sign in via Facebook Sign in via Twitter Sign in via GitHub Sign in via Dropbox Sign in with Wallet
    Wallet ( )
    Connect another wallet

    New to HackMD? Sign up

    Help

    • English
    • 中文
    • Français
    • Deutsch
    • 日本語
    • Español
    • Català
    • Ελληνικά
    • Português
    • italiano
    • Türkçe
    • Русский
    • Nederlands
    • hrvatski jezik
    • język polski
    • Українська
    • हिन्दी
    • svenska
    • Esperanto
    • dansk

    Documents

    Help & Tutorial

    How to use Book mode

    Slide Example

    API Docs

    Edit in VSCode

    Install browser extension

    Contacts

    Feedback

    Discord

    Send us email

    Resources

    Releases

    Pricing

    Blog

    Policy

    Terms

    Privacy

    Cheatsheet

    Syntax Example Reference
    # Header Header 基本排版
    - Unordered List
    • Unordered List
    1. Ordered List
    1. Ordered List
    - [ ] Todo List
    • Todo List
    > Blockquote
    Blockquote
    **Bold font** Bold font
    *Italics font* Italics font
    ~~Strikethrough~~ Strikethrough
    19^th^ 19th
    H~2~O H2O
    ++Inserted text++ Inserted text
    ==Marked text== Marked text
    [link text](https:// "title") Link
    ![image alt](https:// "title") Image
    `Code` Code 在筆記中貼入程式碼
    ```javascript
    var i = 0;
    ```
    var i = 0;
    :smile: :smile: Emoji list
    {%youtube youtube_id %} Externals
    $L^aT_eX$ LaTeX
    :::info
    This is a alert area.
    :::

    This is a alert area.

    Versions and GitHub Sync
    Get Full History Access

    • Edit version name
    • Delete

    revision author avatar     named on  

    More Less

    Note content is identical to the latest version.
    Compare
      Choose a version
      No search result
      Version not found
    Sign in to link this note to GitHub
    Learn more
    This note is not linked with GitHub
     

    Feedback

    Submission failed, please try again

    Thanks for your support.

    On a scale of 0-10, how likely is it that you would recommend HackMD to your friends, family or business associates?

    Please give us some advice and help us improve HackMD.

     

    Thanks for your feedback

    Remove version name

    Do you want to remove this version name and description?

    Transfer ownership

    Transfer to
      Warning: is a public team. If you transfer note to this team, everyone on the web can find and read this note.

        Link with GitHub

        Please authorize HackMD on GitHub
        • Please sign in to GitHub and install the HackMD app on your GitHub repo.
        • HackMD links with GitHub through a GitHub App. You can choose which repo to install our App.
        Learn more  Sign in to GitHub

        Push the note to GitHub Push to GitHub Pull a file from GitHub

          Authorize again
         

        Choose which file to push to

        Select repo
        Refresh Authorize more repos
        Select branch
        Select file
        Select branch
        Choose version(s) to push
        • Save a new version and push
        • Choose from existing versions
        Include title and tags
        Available push count

        Pull from GitHub

         
        File from GitHub
        File from HackMD

        GitHub Link Settings

        File linked

        Linked by
        File path
        Last synced branch
        Available push count

        Danger Zone

        Unlink
        You will no longer receive notification when GitHub file changes after unlink.

        Syncing

        Push failed

        Push successfully