Jephian Lin
    • Create new note
    • Create a note from template
      • Sharing URL Link copied
      • /edit
      • View mode
        • Edit mode
        • View mode
        • Book mode
        • Slide mode
        Edit mode View mode Book mode Slide mode
      • Customize slides
      • Note Permission
      • Read
        • Only me
        • Signed-in users
        • Everyone
        Only me Signed-in users Everyone
      • Write
        • Only me
        • Signed-in users
        • Everyone
        Only me Signed-in users Everyone
      • Engagement control Commenting, Suggest edit, Emoji Reply
    • Invite by email
      Invitee

      This note has no invitees

    • Publish Note

      Share your work with the world Congratulations! 🎉 Your note is out in the world Publish Note

      Your note will be visible on your profile and discoverable by anyone.
      Your note is now live.
      This note is visible on your profile and discoverable online.
      Everyone on the web can find and read all notes of this public team.
      See published notes
      Unpublish note
      Please check the box to agree to the Community Guidelines.
      View profile
    • Commenting
      Permission
      Disabled Forbidden Owners Signed-in users Everyone
    • Enable
    • Permission
      • Forbidden
      • Owners
      • Signed-in users
      • Everyone
    • Suggest edit
      Permission
      Disabled Forbidden Owners Signed-in users Everyone
    • Enable
    • Permission
      • Forbidden
      • Owners
      • Signed-in users
    • Emoji Reply
    • Enable
    • Versions and GitHub Sync
    • Note settings
    • Note Insights
    • Engagement control
    • Transfer ownership
    • Delete this note
    • Save as template
    • Insert from template
    • Import from
      • Dropbox
      • Google Drive
      • Gist
      • Clipboard
    • Export to
      • Dropbox
      • Google Drive
      • Gist
    • Download
      • Markdown
      • HTML
      • Raw HTML
Menu Note settings Versions and GitHub Sync Note Insights Sharing URL Create Help
Create Create new note Create a note from template
Menu
Options
Engagement control Transfer ownership Delete this note
Import from
Dropbox Google Drive Gist Clipboard
Export to
Dropbox Google Drive Gist
Download
Markdown HTML Raw HTML
Back
Sharing URL Link copied
/edit
View mode
  • Edit mode
  • View mode
  • Book mode
  • Slide mode
Edit mode View mode Book mode Slide mode
Customize slides
Note Permission
Read
Only me
  • Only me
  • Signed-in users
  • Everyone
Only me Signed-in users Everyone
Write
Only me
  • Only me
  • Signed-in users
  • Everyone
Only me Signed-in users Everyone
Engagement control Commenting, Suggest edit, Emoji Reply
  • Invite by email
    Invitee

    This note has no invitees

  • Publish Note

    Share your work with the world Congratulations! 🎉 Your note is out in the world Publish Note

    Your note will be visible on your profile and discoverable by anyone.
    Your note is now live.
    This note is visible on your profile and discoverable online.
    Everyone on the web can find and read all notes of this public team.
    See published notes
    Unpublish note
    Please check the box to agree to the Community Guidelines.
    View profile
    Engagement control
    Commenting
    Permission
    Disabled Forbidden Owners Signed-in users Everyone
    Enable
    Permission
    • Forbidden
    • Owners
    • Signed-in users
    • Everyone
    Suggest edit
    Permission
    Disabled Forbidden Owners Signed-in users Everyone
    Enable
    Permission
    • Forbidden
    • Owners
    • Signed-in users
    Emoji Reply
    Enable
    Import from Dropbox Google Drive Gist Clipboard
       owned this note    owned this note      
    Published Linked with GitHub
    Subscribed
    • Any changes
      Be notified of any changes
    • Mention me
      Be notified of mention me
    • Unsubscribe
    Subscribe
    # 特徵空間 Eigenspace ![Creative Commons License](https://i.creativecommons.org/l/by/4.0/88x31.png) This work by Jephian Lin is licensed under a [Creative Commons Attribution 4.0 International License](http://creativecommons.org/licenses/by/4.0/). $\newcommand{\trans}{^\top} \newcommand{\adj}{^{\rm adj}} \newcommand{\cof}{^{\rm cof}} \newcommand{\inp}[2]{\left\langle#1,#2\right\rangle} \newcommand{\dunion}{\mathbin{\dot\cup}} \newcommand{\bzero}{\mathbf{0}} \newcommand{\bone}{\mathbf{1}} \newcommand{\ba}{\mathbf{a}} \newcommand{\bb}{\mathbf{b}} \newcommand{\bc}{\mathbf{c}} \newcommand{\bd}{\mathbf{d}} \newcommand{\be}{\mathbf{e}} \newcommand{\bh}{\mathbf{h}} \newcommand{\bp}{\mathbf{p}} \newcommand{\bq}{\mathbf{q}} \newcommand{\br}{\mathbf{r}} \newcommand{\bx}{\mathbf{x}} \newcommand{\by}{\mathbf{y}} \newcommand{\bz}{\mathbf{z}} \newcommand{\bu}{\mathbf{u}} \newcommand{\bv}{\mathbf{v}} \newcommand{\bw}{\mathbf{w}} \newcommand{\tr}{\operatorname{tr}} \newcommand{\nul}{\operatorname{null}} \newcommand{\rank}{\operatorname{rank}} %\newcommand{\ker}{\operatorname{ker}} \newcommand{\range}{\operatorname{range}} \newcommand{\Col}{\operatorname{Col}} \newcommand{\Row}{\operatorname{Row}} \newcommand{\spec}{\operatorname{spec}} \newcommand{\vspan}{\operatorname{span}} \newcommand{\Vol}{\operatorname{Vol}} \newcommand{\sgn}{\operatorname{sgn}} \newcommand{\idmap}{\operatorname{id}} \newcommand{\am}{\operatorname{am}} \newcommand{\gm}{\operatorname{gm}} \newcommand{\mult}{\operatorname{mult}} \newcommand{\iner}{\operatorname{iner}}$ ```python from lingeo import random_int_list, random_good_matrix ``` ## Main idea Let $A$ be a square matrix and $\lambda\in\spec(A)$. The **eigenspace** of $A$ with respect to $\lambda$ is defined as $$ E_\lambda = \ker(A - \lambda I). $$ By definition, we have $\gm(\lambda) = \dim(E_\lambda)$. Similarly, if $f:V \rightarrow V$ is a linear function and $\lambda\in\spec(f)$, then the **eigenspace** of $f$ with respect to $\lambda$ is $$ E_\lambda = \ker(f - \lambda\idmap_V) = \{\bv\in V: f(v) = \lambda \bv\}. $$ Recall that a set of subspaces $\{V_1,\ldots,V_k\}$ is linearly independent if the only choice of ${\bf v}_1\in V_1, \ldots, {\bf v}_k\in V_k$ satisfying $$ {\bf v}_1 + \cdots + {\bf v}_k = {\bf 0} $$ is ${\bf v}_1 = \cdots = {\bf v}_k = {\bf 0}$. (See 211 for more details and exercises.) Let $A$ be an $n\times n$ matrix with distinct eigenvalues $\lambda_1, \ldots, \lambda_q$. Then $\{E_{\lambda_1}, \ldots, E_{\lambda_q}\}$ is linearly independent. Therefore, if $\gm(\lambda_i) = \am(\lambda_i)$, or, equivalently, the sum of geometric multiplicity is $n$, then one may pick a basis $\beta_{\lambda_i}$ for each $E_{\lambda_i}$ and $\beta = \beta_{\lambda_1} \cup \cdots \cup \beta_{\lambda_q}$ is a basis of $\mathbb{R}^n$. Therefore, $A$ is diagonalizable. In a different language, the following are equivalent. - $A$ is diagonalizable. - $\mathbb{R}^n = E_{\lambda_1} \oplus \cdots \oplus E_{\lambda_q}$. That is, $\mathbb{R}^n$ can be written as the direct sum of the eigenspaces of $A$. ## Side stories - simultaneously diagonalizable ## Experiments ##### Exercise 1 執行以下程式碼。 令 $\bu_1$ 為 $A_1$ 的行向量、 $\bu_2,\bu_3$ 為 $A_2$ 的行向量、 $\bu_4,\bu_5$ 為 $A_3$ 的行向量、 而 $R$ 為 $\begin{bmatrix} A_1 A_2 A_3 \end{bmatrix}$ 的最簡階梯型。 (已知 $\ker(A_1) = \ker(A_2) = \ker(A_3) = \{\bzero\}$。) <!-- eng start --> Run the code below. Let $\bu_1$ be the column of $A_1$, $\bu_2,\bu_3$ the columns of $A_2$, $\bu_4,\bu_5$ the columns of $A_3$, and $R$ the reduced echelon form of $\begin{bmatrix} A_1 A_2 A_3 \end{bmatrix}$. (Suppose $\ker(A_1) = \ker(A_2) = \ker(A_3) = \{\bzero\}$.) <!-- eng end --> ```python ### code set_random_seed(0) print_ans = False indep = choice([True, False]) n = 6 A = random_good_matrix(n,5,5) if not indep: while True: l = random_int_list(4) if 0 not in l: break A[:,-1] = A[:,[0,1,2,3]] * matrix(4, l) A1 = A[:,[0]] A2 = A[:,[1,2]] A3 = A[:,[3,4]] R = A.rref() pretty_print(LatexExpr("A_1 ="), A1, LatexExpr(", A_2 ="), A2, LatexExpr("A_3 ="), A3) pretty_print(LatexExpr("R ="), R) if print_ans: print("Linearly independent?", indep) if indep: print("If v1 + v2 + v3 = 0,") print("then v1 = a1 u1, v2 = a2 u2 + a3 u3, v3 = a4 u4 + a5 u5,") print("and a1 u1 + a2 u2 + a3 u3 + a4 u4 + a5 u5 = 0.") print("But then {u1, u2, u3, u4, u5} is linearly independent.") else: v1 = A1 * vector(l[:1]) v2 = A2 * vector(l[1:3]) v3 = A3 * vector(l[3:] + [-1]) print("v1 = (%s)u1"%l[0], v1) print("v2 = (%s)u2 + (%s)u3"%(l[1], l[2]), v2) print("v3 = (%s)u4 + (%s)u5"%(l[3], -1), v3) ``` ##### Exercise 1(a) 判斷 $\{\Col(A_1), \Col(A_2), \Col(A_3)\}$ 是否線性獨立。 <!-- eng start --> Determine if $\{\Col(A_1), \Col(A_2), \Col(A_3)\}$ is linearly independent. <!-- eng end --> ##### Exercise 1(b) 若線性獨立,請說明原因。 若不線性獨立,請找出 $\bv_1\in\Col(A_1)$、$\bv_2\in\Col(A_2)$、及 $\bv_3\in\Col(A_3)$ 使得 $\bv_1 + \bv_2 + \bv_3 = \bzero$ 且三向量不全為零向量。 <!-- eng start --> If yes, provide your reasonse. If no, find nonzero vectors $\bv_1\in\Col(A_1)$, $\bv_2\in\Col(A_2)$, and $\bv_3\in\Col(A_3)$ such that $\bv_1 + \bv_2 + \bv_3 = \bzero$. <!-- eng end --> :::info What do the experiments try to tell you? (open answer) ... ::: ## Exercises ##### Exercise 2 令 $$ A = \begin{bmatrix} 8 & -2 & 3 & -5 & -1 \\ -11 & 7 & -5 & 11 & 1 \\ -34 & 14 & -14 & 33 & 4 \\ 0 & 0 & 0 & 3 & 0 \\ -40 & 16 & -19 & 39 & 7 \end{bmatrix}. $$ 已知 $A$ 有三個相異的特徵值 $1,2,3$, 對於 $\lambda = 1,2,3$, 找出特徵空間 $E_\lambda$ 的一組基底 $\beta_\lambda$。 判斷 $\beta = \beta_1 \cup \beta_2 \cup \beta_3$ 是否為 $\mathbb{R}^5$ 的一組基底。 <!-- eng start --> Let $$ A = \begin{bmatrix} 8 & -2 & 3 & -5 & -1 \\ -11 & 7 & -5 & 11 & 1 \\ -34 & 14 & -14 & 33 & 4 \\ 0 & 0 & 0 & 3 & 0 \\ -40 & 16 & -19 & 39 & 7 \end{bmatrix}. $$ It is known that $A$ has three distinct eigenvalues $1,2,3$. For each of $\lambda = 1,2,3$, find a basis for the eigenspace $E_\lambda$. Determine if $\beta = \beta_1 \cup \beta_2 \cup \beta_3$ is a basis of $\mathbb{R}^5$. <!-- eng end --> ##### Exercise 3 令 $$ A = \begin{bmatrix} -1 & 5 & -6 & 5 & -2 \\ 4 & -9 & 11 & -8 & 3 \\ 6 & -18 & 19 & -12 & 4 \\ -1 & -2 & 1 & 2 & 0 \\ -6 & 15 & -13 & 9 & 0 \end{bmatrix}. $$ 已知 $A$ 有三個相異的特徵值 $1,2,3$, 對於 $\lambda = 1,2,3$, 找出特徵空間 $E_\lambda$ 的一組基底 $\beta_\lambda$。 判斷 $\beta = \beta_1 \cup \beta_2 \cup \beta_3$ 是否為 $\mathbb{R}^5$ 的一組基底。 <!-- eng start --> Let $$ A = \begin{bmatrix} -1 & 5 & -6 & 5 & -2 \\ 4 & -9 & 11 & -8 & 3 \\ 6 & -18 & 19 & -12 & 4 \\ -1 & -2 & 1 & 2 & 0 \\ -6 & 15 & -13 & 9 & 0 \end{bmatrix}. $$ It is known that $A$ has three distinct eigenvalues $1,2,3$. For each of $\lambda = 1,2,3$, find a basis for the eigenspace $E_\lambda$. Determine if $\beta = \beta_1 \cup \beta_2 \cup \beta_3$ is a basis of $\mathbb{R}^5$. <!-- eng end --> ##### Exercise 4 對以下線性函數 $f$,描述它的每一個特徵空間。 <!-- eng start --> For the following linear functions, describe their eigenspaces. <!-- eng end --> ##### Exercise 4(a) 令 $V$ 為 $\mathbb{R}^3$ 中的一個二維空間, 而 $f:\mathbb{R}^3 \rightarrow \mathbb{R}^3$ 將向量 $\bv\in\mathbb{R}^3$ 投影到 $V$ 上。 <!-- eng start --> Let $V$ be a $2$-dimensional subspace of $\mathbb{R}^3$ and $f:\mathbb{R}^3 \rightarrow \mathbb{R}^3$ the projection that sends vectors in $\bv\in\mathbb{R}^3$ onto $V$. <!-- eng end --> ##### Exercise 4(b) 令 $V$ 為 $\mathbb{R}^3$ 中的一個二維空間, 而 $f:\mathbb{R}^3 \rightarrow \mathbb{R}^3$ 將向量 $\bv\in\mathbb{R}^3$ 鏡射到 $V$ 的對面。 <!-- eng start --> Let $V$ be a $2$-dimensional subspace of $\mathbb{R}^3$ and $f:\mathbb{R}^3 \rightarrow \mathbb{R}^3$ the reflection that sends vectors in $\bv\in\mathbb{R}^3$ the other side of $V$. <!-- eng end --> ##### Exercise 5 令 $V_1,\ldots, V_k$ 為同一向量空間中的子空間, 且 $\{V_1, \ldots, V_k\}$ 線性獨立。 若對於 $i = 1,\ldots, k$ 分別有 $\beta_i$ 為 $V_i$ 的基底。 證明 $\beta = \beta_1 \cup \cdots \cup \beta_k$ 為 $V_1 \oplus \cdots \oplus V_k$ 的基底。 <!-- eng start --> Let $V_1,\ldots, V_k$ be subspaces of the same universal space. Suppose $\{V_1, \ldots, V_k\}$ is linearlyl independent. For each $i = 1,\ldots, k$, let $\beta_i$ be a basis of $V_i$. Show that $\beta = \beta_1 \cup \cdots \cup \beta_k$ is a basis of $V_1 \oplus \cdots \oplus V_k$. <!-- eng end --> ##### Exercise 6 令 $A$ 為一矩陣且其相異的特徵值為 $\lambda_1,\ldots,\lambda_q$。 證明其所有特徵空間 $\{E_{\lambda_1}, \ldots, E_{\lambda_q}\}$ 線性獨立。 (參考 311-5。) <!-- eng start --> Let $A$ be a matrix with distinct eigenvalues $\lambda_1,\ldots,\lambda_q$. Show that the collection of its eigenspaces $\{E_{\lambda_1}, \ldots, E_{\lambda_q}\}$ is linearly independent. (See 311-5.) <!-- eng end --> ##### Exercise 7 給定兩大小相同的方陣 $A$ 和 $B$, 若存在一個可逆矩陣 $Q$ 使得 $Q^{-1}AQ$ 和 $Q^{-1}BQ$ 同時是對角矩陣, 則我們稱 $A$ 和 $B$ 可 **同時對角化(simultaneously diagonalizable)**。 依照以下步驟說明: 若 $A$ 和 $B$ 皆可對角化,且 $AB = BA$, 則 $A$ 和 $B$ 可同時對角化。 <!-- eng start --> Let $A$ and $B$ be square matrices of the same size. If there is an invertible matrix $Q$ such that both $Q^{-1}AQ$ and $Q^{-1}BQ$ are diagonal matrices, then we say $A$ and $B$ are **simultaneously diagonalizable** . Use the given instructions to show: If $A$ and $B$ are diagonalizable with $AB = BA$, then $A$ and $B$ are simultaneously diagonalizable. <!-- eng end --> ##### Exercise 7(a) 令 $A$ 和 $B$ 為大小相同的方陣。 令 $\lambda$ 為 $A$ 的一個特徵值,而 $E_\lambda$ 為其特徵空間。 證明若 $AB = BA$,則 $E_\lambda$ 同時為 $A$-不變子空間、也是 $B$-不變子空間。 <!-- eng start --> Let $A$ and $B$ be square matrices of the same size. Let $\lambda$ be an eigenvalue of $A$ and $E_\lambda$ its eigenspace. Show that if $AB = BA$, then $E_\lambda$ is both $A$-invariant and $B$-invariant. <!-- eng end --> ##### Exercise 7(b) 令 $A_1$ 和 $A_2$ 分別為 $n_1\times n_1$ 及 $n_2\times n_2$ 的可對角化的方陣。 若一 $n_1\times n_2$ 矩陣 $X$ 滿足 $A_1X = XA_2$, 且 $A_1$ 和 $A_2$ 沒有共同的特徵值, 說明 $X$ 必為零矩陣。 提示:先考慮 $A_1$ 和 $A_2$ 都是對角矩陣的情況。 <!-- eng start --> Let $A_1$ and $A_2$ be $n_1\times n_1$ and $n_2\times n_2$ diagonalizable matrices, respectively. Suppose $X$ is an $n_1\times n_2$ matrix with $A_1X = XA_2$ and $A$ and $B$ share no common eigenvalues. Then $X$ must be the zero matrix. Hint: Consider the case when both $A_1$ and $A_2$ are diagonal. <!-- eng end --> ##### Exercise 7(c) 令 $A$ 和 $B$ 為大小相同的方陣且 $AB = BA$。 假設 $A$ 的相異特徵值為 $\lambda_1, \ldots, \lambda_q$、$q \geq 2$、 且 $E_{\lambda_1},\ldots,E_{\lambda_q}$ 分別為其特徵空間。 令 $V_1 = E_{\lambda_1}$ 而 $V_2 = E_{\lambda_2}\oplus \cdots \oplus E_{\lambda_q}$、 且 $\beta_1$ 和 $\beta_2$ 分別為 $V_1$ 和 $V_2$ 的基底。 取 $\beta = \beta_1 \cup \beta_2$, 證明有以下型式: $$ [f_A]_\beta^\beta = \begin{bmatrix} A_1 & O \\ O & A_2 \end{bmatrix} \text{ and } [f_B]_\beta^\beta = \begin{bmatrix} B_1 & O \\ O & B_2 \end{bmatrix}, $$ 其中 $A_1$ 和 $B_1$ 的大小為 $V_1$ 的維度、 而 $A_2$ 和 $B_2$ 的大小為 $V_2$ 的維度。 <!-- eng start --> Let $A$ and $B$ be square matrices of the same size such that $AB = BA$. Let $\lambda_1, \ldots, \lambda_q$ be the distinct eigenvalues of $A$ and $E_{\lambda_1},\ldots,E_{\lambda_q}$ their eigenspaces, respectively. Suppose $q \geq 2$. Let $V_1 = E_{\lambda_1}$ and $V_2 = E_{\lambda_2}\oplus \cdots \oplus E_{\lambda_q}$. Let $\beta_1$ and $\beta_2$ be the bases of $V_1$ and $V_2$, respectively. Let $\beta = \beta_1 \cup \beta_2$. Show that the matrices have the following form: $$ [f_A]_\beta^\beta = \begin{bmatrix} A_1 & O \\ O & A_2 \end{bmatrix} \text{ and } [f_B]_\beta^\beta = \begin{bmatrix} B_1 & O \\ O & B_2 \end{bmatrix}, $$ Here the sizes of $A_1$ and $B_2$ are equal to the dimension of $V_1$, and the sizes of $A_2$ and $B_2$ are equal to the dimension of $V_2$. <!-- eng end --> ##### Exercise 7(d) 證明將前一題 $q = 1$ 的情況, 並用數學歸納法證明: 若 $A$ 和 $B$ 皆可對角化,且 $AB = BA$, 則 $A$ 和 $B$ 可同時對角化。 <!-- eng start --> Finish the case when $q = 1$. Then prove the statement by induction: If $A$ and $B$ are diagonalizable with $AB = BA$, then $A$ and $B$ are simultaneously diagonalizable. <!-- eng end -->

    Import from clipboard

    Paste your markdown or webpage here...

    Advanced permission required

    Your current role can only read. Ask the system administrator to acquire write and comment permission.

    This team is disabled

    Sorry, this team is disabled. You can't edit this note.

    This note is locked

    Sorry, only owner can edit this note.

    Reach the limit

    Sorry, you've reached the max length this note can be.
    Please reduce the content or divide it to more notes, thank you!

    Import from Gist

    Import from Snippet

    or

    Export to Snippet

    Are you sure?

    Do you really want to delete this note?
    All users will lose their connection.

    Create a note from template

    Create a note from template

    Oops...
    This template has been removed or transferred.
    Upgrade
    All
    • All
    • Team
    No template.

    Create a template

    Upgrade

    Delete template

    Do you really want to delete this template?
    Turn this template into a regular note and keep its content, versions, and comments.

    This page need refresh

    You have an incompatible client version.
    Refresh to update.
    New version available!
    See releases notes here
    Refresh to enjoy new features.
    Your user state has changed.
    Refresh to load new user state.

    Sign in

    Forgot password

    or

    By clicking below, you agree to our terms of service.

    Sign in via Facebook Sign in via Twitter Sign in via GitHub Sign in via Dropbox Sign in with Wallet
    Wallet ( )
    Connect another wallet

    New to HackMD? Sign up

    Help

    • English
    • 中文
    • Français
    • Deutsch
    • 日本語
    • Español
    • Català
    • Ελληνικά
    • Português
    • italiano
    • Türkçe
    • Русский
    • Nederlands
    • hrvatski jezik
    • język polski
    • Українська
    • हिन्दी
    • svenska
    • Esperanto
    • dansk

    Documents

    Help & Tutorial

    How to use Book mode

    Slide Example

    API Docs

    Edit in VSCode

    Install browser extension

    Contacts

    Feedback

    Discord

    Send us email

    Resources

    Releases

    Pricing

    Blog

    Policy

    Terms

    Privacy

    Cheatsheet

    Syntax Example Reference
    # Header Header 基本排版
    - Unordered List
    • Unordered List
    1. Ordered List
    1. Ordered List
    - [ ] Todo List
    • Todo List
    > Blockquote
    Blockquote
    **Bold font** Bold font
    *Italics font* Italics font
    ~~Strikethrough~~ Strikethrough
    19^th^ 19th
    H~2~O H2O
    ++Inserted text++ Inserted text
    ==Marked text== Marked text
    [link text](https:// "title") Link
    ![image alt](https:// "title") Image
    `Code` Code 在筆記中貼入程式碼
    ```javascript
    var i = 0;
    ```
    var i = 0;
    :smile: :smile: Emoji list
    {%youtube youtube_id %} Externals
    $L^aT_eX$ LaTeX
    :::info
    This is a alert area.
    :::

    This is a alert area.

    Versions and GitHub Sync
    Get Full History Access

    • Edit version name
    • Delete

    revision author avatar     named on  

    More Less

    Note content is identical to the latest version.
    Compare
      Choose a version
      No search result
      Version not found
    Sign in to link this note to GitHub
    Learn more
    This note is not linked with GitHub
     

    Feedback

    Submission failed, please try again

    Thanks for your support.

    On a scale of 0-10, how likely is it that you would recommend HackMD to your friends, family or business associates?

    Please give us some advice and help us improve HackMD.

     

    Thanks for your feedback

    Remove version name

    Do you want to remove this version name and description?

    Transfer ownership

    Transfer to
      Warning: is a public team. If you transfer note to this team, everyone on the web can find and read this note.

        Link with GitHub

        Please authorize HackMD on GitHub
        • Please sign in to GitHub and install the HackMD app on your GitHub repo.
        • HackMD links with GitHub through a GitHub App. You can choose which repo to install our App.
        Learn more  Sign in to GitHub

        Push the note to GitHub Push to GitHub Pull a file from GitHub

          Authorize again
         

        Choose which file to push to

        Select repo
        Refresh Authorize more repos
        Select branch
        Select file
        Select branch
        Choose version(s) to push
        • Save a new version and push
        • Choose from existing versions
        Include title and tags
        Available push count

        Pull from GitHub

         
        File from GitHub
        File from HackMD

        GitHub Link Settings

        File linked

        Linked by
        File path
        Last synced branch
        Available push count

        Danger Zone

        Unlink
        You will no longer receive notification when GitHub file changes after unlink.

        Syncing

        Push failed

        Push successfully