Jephian Lin
    • Create new note
    • Create a note from template
      • Sharing URL Link copied
      • /edit
      • View mode
        • Edit mode
        • View mode
        • Book mode
        • Slide mode
        Edit mode View mode Book mode Slide mode
      • Customize slides
      • Note Permission
      • Read
        • Only me
        • Signed-in users
        • Everyone
        Only me Signed-in users Everyone
      • Write
        • Only me
        • Signed-in users
        • Everyone
        Only me Signed-in users Everyone
      • Engagement control Commenting, Suggest edit, Emoji Reply
    • Invite by email
      Invitee

      This note has no invitees

    • Publish Note

      Share your work with the world Congratulations! 🎉 Your note is out in the world Publish Note

      Your note will be visible on your profile and discoverable by anyone.
      Your note is now live.
      This note is visible on your profile and discoverable online.
      Everyone on the web can find and read all notes of this public team.
      See published notes
      Unpublish note
      Please check the box to agree to the Community Guidelines.
      View profile
    • Commenting
      Permission
      Disabled Forbidden Owners Signed-in users Everyone
    • Enable
    • Permission
      • Forbidden
      • Owners
      • Signed-in users
      • Everyone
    • Suggest edit
      Permission
      Disabled Forbidden Owners Signed-in users Everyone
    • Enable
    • Permission
      • Forbidden
      • Owners
      • Signed-in users
    • Emoji Reply
    • Enable
    • Versions and GitHub Sync
    • Note settings
    • Note Insights New
    • Engagement control
    • Transfer ownership
    • Delete this note
    • Save as template
    • Insert from template
    • Import from
      • Dropbox
      • Google Drive
      • Gist
      • Clipboard
    • Export to
      • Dropbox
      • Google Drive
      • Gist
    • Download
      • Markdown
      • HTML
      • Raw HTML
Menu Note settings Note Insights Versions and GitHub Sync Sharing URL Create Help
Create Create new note Create a note from template
Menu
Options
Engagement control Transfer ownership Delete this note
Import from
Dropbox Google Drive Gist Clipboard
Export to
Dropbox Google Drive Gist
Download
Markdown HTML Raw HTML
Back
Sharing URL Link copied
/edit
View mode
  • Edit mode
  • View mode
  • Book mode
  • Slide mode
Edit mode View mode Book mode Slide mode
Customize slides
Note Permission
Read
Only me
  • Only me
  • Signed-in users
  • Everyone
Only me Signed-in users Everyone
Write
Only me
  • Only me
  • Signed-in users
  • Everyone
Only me Signed-in users Everyone
Engagement control Commenting, Suggest edit, Emoji Reply
  • Invite by email
    Invitee

    This note has no invitees

  • Publish Note

    Share your work with the world Congratulations! 🎉 Your note is out in the world Publish Note

    Your note will be visible on your profile and discoverable by anyone.
    Your note is now live.
    This note is visible on your profile and discoverable online.
    Everyone on the web can find and read all notes of this public team.
    See published notes
    Unpublish note
    Please check the box to agree to the Community Guidelines.
    View profile
    Engagement control
    Commenting
    Permission
    Disabled Forbidden Owners Signed-in users Everyone
    Enable
    Permission
    • Forbidden
    • Owners
    • Signed-in users
    • Everyone
    Suggest edit
    Permission
    Disabled Forbidden Owners Signed-in users Everyone
    Enable
    Permission
    • Forbidden
    • Owners
    • Signed-in users
    Emoji Reply
    Enable
    Import from Dropbox Google Drive Gist Clipboard
       Owned this note    Owned this note      
    Published Linked with GitHub
    • Any changes
      Be notified of any changes
    • Mention me
      Be notified of mention me
    • Unsubscribe
    # 建構新的向量空間 ![Creative Commons License](https://i.creativecommons.org/l/by/4.0/88x31.png) This work by Jephian Lin is licensed under a [Creative Commons Attribution 4.0 International License](http://creativecommons.org/licenses/by/4.0/). {%hackmd 5xqeIJ7VRCGBfLtfMi0_IQ %} ```python from lingeo import random_good_matrix from linspace import vtop, vtom ``` ## Main idea Let $S_1$ and $S_2$ be two set. The **Cartesian product** of $S_1$ and $S_2$ is $$S_1 \times S_2 = \{ (s_1,s_2) : s_1\in S_1, s_2\in S_2 \}. $$ If $S_1$ and $S_2$ are finite sets, then $|S_1\times S_2| = |S_1|\times |S_2|$. Let $U$ and $V$ be two vector spaces. The **Cartesian product** of $U$ and $V$ is the set $$U\times V = \{ ({\bf u}, {\bf v}) : {\bf u}\in U, {\bf v}\in V \} $$ along with the vector addition $$({\bf u}_1, {\bf v}_1) + ({\bf u}_1, {\bf v}_1) = ({\bf u}_1 + {\bf u}_2, {\bf v}_1 + {\bf v}_2)$$ and the scalr multiplication $$k({\bf u}, {\bf v}) = (k{\bf u}, k{\bf v}). $$ The Cartesian product of two vector spaces is again a vector space. For example, $\mathbb{R}^2 = \mathbb{R} \times \mathbb{R}$. Suppose $\beta_U$ and $\beta_V$ are bases of $U$ and $V$, respectively. Then $$\{ ({\bf u}, {\bf 0}_U) : {\bf u}\in \beta_U \} \cup \{ ({\bf 0}_V, {\bf v}) : {\bf v}\in \beta_V \}$$ is a basis of $U \times V$, where ${\bf 0}_U$ and ${\bf 0}_V$ are the zero vectors in $U$ and $V$, respectively. Therefore, $\dim(U \times V) = \dim(U) + \dim(V)$ if both of $U$ and $V$ are finite-dimensional. Let $U$ be a vector space and $V$ a subspace of $U$. Recall that an affine subspace is of the form ${\bf u} + V$ for some vector ${\bf u}$. Thus, the **quotient space** of $U$ by $V$ is the set of all affine subspaces $$U / V = \{ {\bf u} + V : {\bf u} \in U\} $$ (here each affine subspace ${\bf u} + V$ is treated as a vector) along with the vector addition $$({\bf u}_1 + V) + ({\bf u}_2 + V) = ({\bf u}_1 + {\bf u}_2) + V $$ and the scalar multiplication $$k({\bf u} + V) = (k{\bf u}) + V. $$ For example, when $V$ is the $x,y$-plane, then the structure of $\mathbb{R}^2 / V$ is similar to $\mathbb{R}^1$, since each $z$ value decides an affine plane. By the expanding lemma, one may obtain a basis $\beta_V$ of $V$ and expand it to a basis $\beta_U$. Thus, $$\{ {\bf u} + V : {\bf u} \in \beta_U \setminus \beta_V \} $$ is a basis of $U / V$. (Note that $/$ is the quotient while $\setminus$ is the setminus.) Therefore, $\dim(U / V) = \dim(U) - \dim(V)$ if both $U$ and $V$ are finite-dimensional. ## Side stories - well-defined ## Experiments ##### Exercise 1 執行以下程式碼。 考慮向量空間 $\mathbb{R}^3\times \mathcal{P}_1$。 ```python ### code set_random_seed(0) print_ans = False m,n,r = 3,5,choice([2,3]) A = random_good_matrix(m,n,r) v1,v2,v3 = A[:,:3] p1,p2,p3 = [vtop(v) for v in A[:,3:]] print("u1 = (v1, p1) =", (v1, p1)) print("u2 = (v2, p2) =", (v2, p2)) print("u3 = (v3, p3) =", (v3, p3)) if print_ans: print("u1 + u2 =", (v1 + v2, p1 + p2)) print("Linear independent?", r == 3) ``` ##### Exercise 1(a) 計算 ${\bf u}_1 + {\bf u}_2$。 :::warning - [x] 中文不要放到數學模式裡 - [x] 數學放到數學模式裡 ::: ${\bf u}_1 = ({\bf v}_1, {\bf p}_1 ) = ((1,-4,7), -13 x-12)$ ${\bf u}_2 = ( {\bf v}_2, {\bf p}_2 ) = ((-3,13,-24), 43x+39)$ ${\bf u}_1 + {\bf u}_2 = ({\bf v}_1 + {\bf v}_2 , {\bf p}_1+{\bf p}_2) = ((-2 ,9 ,-17),20x + 27)$ ##### Exercise 1(b) 判斷 $\{ {\bf u}_1, {\bf u}_2, {\bf u}_3 \}$ 是否線性獨立。 :::warning - [x] $rref$ --> rref - [x] 零向量要粗體、純量 $c$ 不用粗體 - [x] $5$ X $3$ --> $5 \times 3$ - [x] 由 $rref$ 可知:${\bf c}_1 = {\bf c}_2 = {\bf c}_3 = 0$ 此條件不成立 , 所以$\{ {\bf u}_1, {\bf u}_2, {\bf u}_3 \}$ 不是線性獨立。 --> 由 rref 可知:$c_1 = -2$, $c_2 = -4$, $c_3 = 1$ 是一組非零解, 所以$\{ {\bf u}_1, {\bf u}_2, {\bf u}_3 \}$ 不是線性獨立。 ::: 線性獨立的條件為 ${c}_1\bu_1 + {c}_2\bu_2+{ c}_3\bu_3 = {\bf 0}$ 時,\ 唯一解為 ${c}_1 = {c}_2 = {c}_3 = {\bf 0}$ 。 將 $\bu_1, \bu_2, \bu_3$ 放入一個 $5 \times 3$ 矩陣 , 將矩陣和 ${c}_1, {c}_2 , {c}_3$ 構成的 $3 \times 1$ 矩陣,可得相當於${c}_1\bu_1 + {c}_2\bu_2+{c}_3\bu_3 = 0$ 之數學結構: $$\left[\begin{array}{ccc|c} 1 & -3 & -10 & 0\\ -4 & 13 & 44 & 0\\ 7 & -24 &-82 & 0\\ -13 & 43 & 146 & 0\\ -12 & 39 & 132 & 0\\ \end{array}\right]\times \left[\begin{array}{c} {c}_1 \\ {c}_2 \\ {c}_3 \\ \end{array}\right]= \left[\begin{array}{c} 0\\ 0\\ 0\\ \end{array}\right] $$ 得到其 rref 為:\ $$\left[\begin{array}{ccc|c} 1 & 0 & 2 & 0\\ 0 & 1 & 4 & 0\\ 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0\\ \end{array}\right]. $$ 由 rref 可知: \ ${c}_1 = -2 , {c}_2 = -4 , {c}_3 = 1$ 為其中一組非零解。\ 由此可知: $\{ {\bf u}_1, {\bf u}_2, {\bf u}_3 \}$ 不是線性獨立。 ## Exercises ##### Exercise 2 考慮 $V = \mathbb{R}^3 \times \mathbb{R}^2$。 ##### Exercise 2(a) 求 $V$ 中的零向量。 答: $$ ((0,0,0), (0,0)) $$ ##### Exercise 2(b) 令 $$\begin{aligned} {\bf v}_1 &= ((1,1,1), (1,1)) \\ {\bf v}_2 &= ((0,1,1), (1,1)) \\ {\bf v}_3 &= ((0,0,1), (1,1)) \\ \end{aligned} $$ $S = \{ {\bf v}_1, {\bf v}_2, {\bf v}_3 \}$。 判斷 $\operatorname{span}(S)$ 是否可以生成全空間 $V$。 :::warning - [x] 中文不要放數學模式,下一題也是 - [x] 標點,下一題也是 ::: 答: 否,因為無法組合出 $((1,1,1), (0,1))$。 ##### Exercise 2(c) 判斷 $S$ 是否線性獨立。 :::warning - [x] $\bc$ --> $c$ - [x] $R$ --> $\mathbb{R}$ - [x] 用中文敘述 ::: 答: 是,對於 $c_1,c_2,c_3 \in \mathbb{R}$,關係式 $$c_1{\bf v}_1+c_2{\bf v}_2+c_3{\bf v}_3=0 $$ 只有 $$c_1=0,c_2=0,c_3=0 $$ 這一組解。 ##### Exercise 3 考慮 $V = \mathcal{P}_2 \times \mathcal{P}_1$。 令 \begin{aligned} p_1 &= (x+1)(x+2), \\ p_2 &= (x+1)(x^2 + x + 1) \\ \end{aligned} ##### Exercise 3(a) 令 $\operatorname{ptov}_d$ 為把 $\mathcal{P}_d$ 中的多項式寫為 $\mathbb{R}^{d+1}$ 中向量的函數。 建一個矩陣 $A$ 其行向量分別為 $\operatorname{ptov}_4(p_1), \operatorname{ptov}_4(xp_1), \operatorname{ptov}_4(x^2p_1), \operatorname{ptov}_4(p_2), \operatorname{ptov}_4(xp_2)$。 寫出 $A$。 $Ans:$ $$A = \begin{bmatrix} 2 & 0 & 0 & 1 & 0 \\ 3 & 2 & 0 & 2 & 1 \\ 1 & 3 & 2 & 2 & 2 \\ 0 & 1 & 3 & 1 & 2 \\ 0 & 0 & 1 & 0 & 1 \end{bmatrix}. $$ ##### Exercise 3(b) 驗證對任何 $a\in\mathcal{P}_2$ 及 $b\in\mathcal{P}_1$ $$A \begin{bmatrix} \operatorname{ptov}_2(a) \\ \operatorname{ptov}_1(b) \end{bmatrix} = \operatorname{ptov}_4(ap_1 + bp_2) $$ 都成立。 :::success 我有重新排版過,不過這題寫得不錯。 ::: $Ans:$\ 令 $a = c_3 + c_2 x + c_1 x^2$, $b = c_5 + c_4x$。 會得出 $$\begin{bmatrix} \operatorname{ptov}_2(a) \\ \operatorname{ptov}_1(b) \end{bmatrix} = \begin{bmatrix} c_3\\ c_2\\ c_1\\ c_5\\ c_4 \end{bmatrix} $$ 以及 $$A \begin{bmatrix} \operatorname{ptov}_2(a) \\ \operatorname{ptov}_1(b) \end{bmatrix} = \begin{bmatrix} 2c_3 + c_5\\ 3c_3 + 2c_2 + 2c_5 + c_4\\ c_3 + 3c_2 + 2c_1 + 2c_5 + 2c_4\\ c_2 + 3c_2 + c_5 + 2c_4\\ c_1 + c_4 \end{bmatrix}. $$ 另一方面,直接計算可得 $$\begin{aligned} ap_1 &= (c_3 + c_2 x + c_1 x^2)(2 + 3 x + x^2) \\ &= c_1x^4 + (3c_1 + c_2)x^3 + (2c_1 + 3c_2 +c_3)x^2 + (2c_2 + 3c_3)x + 2c_3, \\ bp_2 &= (c_5 + c_4 x)(1 + 2 x + 2x^2 + x^3) \\ &= c_4x^4 + (2c_4 + c_5)x^3 + (2c_4 + 2c_5)x^2 + (c_4 + c_5)x + c_5. \end{aligned} $$ 兩式相加後得出 $$\begin{aligned} ap_1 + bp_2 &= (c_1+c_4)x^4 + (c_2 + 3c_1 + c_5 + 2c_4)x^3 + \\ &\mathrel{\phantom{=}} (c_3 + 3c_2 + 2c_1 + 2c_5 + 2c_4)x^2 + \\ &\mathrel{\phantom{=}} (3c_3 + 2c_2 +2c_5 + c_4)x + (2c_3+c_5) \end{aligned}. $$ 因此 $$\operatorname{ptov}_4(ap_1 + bp_2) = \begin{bmatrix} 2c_3 + c_5\\ 3c_3 + 2c_2 + 2c_5 + c_4\\ c_3 + 3c_2 + 2c_1 + 2c_5 + 2c_4\\ c_2 + 3c_2 + c_5 + 2c_4\\ c_1 + c_4 \end{bmatrix} $$ 與上面得出的結果相同,得證。 ##### Exercise 3(c) 求出所有可以讓 $ap_1 + bp_2 = 0$ 的 $(a,b)\in V$。 :::warning 這題要求 3(a) 矩陣的 kernel 再來回答。 ::: $Ans:$ 根據 3(a),所有符合 $ap_1 + bp_2 = 0$ 的 $a = c_3 + c_2x + c_1x^2$ 以及 $b = c_5 + c_4x$ 必滿足 $$ \begin{bmatrix} 2 & 0 & 0 & 1 & 0 \\ 3 & 2 & 0 & 2 & 1 \\ 1 & 3 & 2 & 2 & 2 \\ 0 & 1 & 3 & 1 & 2 \\ 0 & 0 & 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} c_3\\ c_2\\ c_1\\ c_5\\ c_4 \end{bmatrix}=\begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}. $$ 且反之亦然。 令 $A$ 為式子中的 $5\times 5$ 矩陣, 則本題是要求出 $A$ 的零解。 可以計算 $A$ 的 rref 為 $$ \begin{bmatrix} 1 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & -2 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} $$ 從 rref 中得知 $c_5$ 為自由變數, 且 $\ker(A) = \vspan((-1,-1,-1,2,1)\trans)$。 因此所有符合 $ap_1 + bp_2 = 0$ 的解為 $$\begin{aligned} a &= t\cdot (-1 - x - x^2), \\ b &= t\cdot (2 + x). \end{aligned} $$ ##### Exercise 4 令 $U$ 為一向量空間而 $V$ 為其一子空間。 ##### Exercise 4(a) 證明以下敘述等價: 1. ${\bf u}_1 + V = {\bf u}_2 + V$. 2. ${\bf u}_1 - {\bf u}_2 \in V$. 因此另外一個定義商空間的方法是定義向量之間的關係: $${\bf u}_1 \sim {\bf u}_2 \iff {\bf u}_1 - {\bf u}_2 \in V. $$ 可以證明這樣的關係是一個**等價關係**。 如此一來 $U / \sim$ 和 $U / V$ 的概念是一樣的。 :::success Good ::: ***Proof*** $\implies$ : 由於 ${\bf u}_1 \in {\bf u}_1 + V$ 且 ${\bf u}_1 + V = {\bf u}_2 + V$ ,因此 ${\bf u}_1 \in {\bf u}_2 + V$ , 所以存在 ${\bf v} \in V$ 使得 ${\bf u}_1 = {\bf u}_2 + {\bf v}$ ,最後可以推得 ${\bf u}_1 - {\bf u}_2 = {\bf v} \in V$ 。 \ $\impliedby$ : 設 ${\bf v} = {\bf u}_1 - {\bf u}_2$ ,則 ${\bf u}_1 = {\bf u}_2 + {\bf v}$ 、 ${\bf v} \in V$ 。 所以 ${\bf u}_1 + V = ({\bf u}_2 + {\bf v}) + V$ ,又 ${\bf v} \in V$ , 因此 ${\bf u}_1 + V = {\bf u}_2 + V$ ##### Exercise 4(b) 我們可以不管直觀上的任何意義來定義加法: $$({\bf u}_1 + V) + ({\bf u}_2 + V) = ({\bf u}_1 + {\bf u}_2) + V. $$ 然而要小心的是 如果 ${\bf u}_1 + V$ 和 ${\bf u}'_1 + V$ 一樣、 同時 ${\bf u}_2 + V$ 和 ${\bf u}'_2 + V$ 一樣﹐ 那麼加出來的 $({\bf u}_1 + {\bf u}_2) + V$ 和 $({\bf u}'_1 + {\bf u}'_2) + V$ 也會一樣嗎? 符合這樣性質的定義我們稱為是**定義完善的**(well-defined)。 證明商空間上定義的向量加法是定義完善的。 \ \ ***Proof*** 利用 4(a) 的性質可以做出以下推論: 由 ${\bf u}_1 + V = {\bf u}'_1 + V$ 、 ${\bf u}_2 + V = {\bf u}'_2 + V$ 可知 ${\bf u}_1 - {\bf u}'_1 \in V$ 、 ${\bf u}_2 - {\bf u}'_2 \in V$ , 因此 $({\bf u}_1 + {\bf u}_2) - ({\bf u}'_1 + {\bf u}'_2) \in V$ 。 再用一次 4(a) 的性質: 由 $({\bf u}_1 + {\bf u}_2) - ({\bf u}'_1 + {\bf u}'_2) \in V$ 可知 $({\bf u}_1 + {\bf u}_2) + V = ({\bf u}'_1 + {\bf u}'_2) + V$。 ##### Exercise 4(c) 證明商空間上的純量乘法 $$k({\bf u} + V) = (k{\bf u}) + V $$ 是定義完善的。 :::warning 這題是要問: 如果 ${\bf u} + V = {\bf u}' + V$,證明 $k({\bf u} + V) = k({\bf u}' + V)$。 ::: ***Proof*** 對於所有 ${\bf w} \in k({\bf u} + V)$ 存在 ${\bf v} \in V$ 使得 ${\bf w} = k{\bf u} + k{\bf v}$ , 又因 $k{\bf v} \in V$ ,因此 ${\bf w} \in (k{\bf u}) + V$ , 所以 $k({\bf u} + V) = (k{\bf u}) + V$ , 同理 $k({\bf u}' + V) = (k{\bf u}') + V$ , 意即我們只須證明 $(k{\bf u}) + V = (k{\bf u}') + V$ 。\ \ 從題目中知道 ${\bf u} + V = {\bf u}' + V$ ,再由 4(a) 可以知道 ${\bf u} - {\bf u}' \in V$ 因為乘法封閉性,所以 $k({\bf u} - {\bf u}') \in V$ ,也就是 $k{\bf u} - k{\bf u}' \in V$ 再由 4(a) 即可推得 $(k{\bf u}) + V = (k{\bf u}') + V$ ,也就是 $k({\bf u} + V) = k({\bf u}' + V)$ 。 ##### Exercise 5 證明笛卡爾積做出來的新結構是一個向量空間。 找出一組基底並證明其正確性。 ***Ans:*** 設 $U , V$ 為兩個空間, 則 $U , V$ 的笛卡爾積為 $$\begin{cases} U\times V = \{ ({\bf u}, {\bf v}) : {\bf u}\in U, {\bf v}\in V \} \\ \text{addition : } ({\bf u}_1, {\bf v}_1) + ({\bf u}_2, {\bf v}_2) = ({\bf u}_1 + {\bf u}_2, {\bf v}_1 + {\bf v}_2) \\ \text{multiplication : }k({\bf u}, {\bf v}) = (k{\bf u}, k{\bf v}) \end{cases}. $$ 設 ${\bf u}_1, {\bf u}_2, {\bf u}_3 \in U$ , ${\bf v}_1, {\bf v}_2, {\bf v}_3 \in V$ , $k_1, k_2 \in \mathbb{R}$ , 證明 $U \times V$ 具以下性質 : :::success Good job! 辛苦了。 ::: 1. **加法封閉性** $$({\bf u}_1, {\bf v}_1) + ({\bf u}_2, {\bf v}_2) = ({\bf u}_1 + {\bf u}_2, {\bf v}_1 + {\bf v}_2)$$ 由於 $({\bf u}_1 + {\bf u}_2) \in U$ 且 $({\bf v}_1 + {\bf v}_2) \in V$, 因此 $({\bf u}_1 + {\bf u}_2, {\bf v}_1 + {\bf v}_2) \in U \times V$, 所以 **$U \times V$ 具加法封閉性**。 2. **加法交換律** 因為 $$ \begin{aligned} ({\bf u}_1, {\bf v}_1) + ({\bf u}_2, {\bf v}_2) &= ({\bf u}_1 + {\bf u}_2, {\bf v}_1 + {\bf v}_2) \\ &= ({\bf u}_2 + {\bf u}_1, {\bf v}_2 + {\bf v}_1) \\ &= ({\bf u}_2, {\bf v}_2) + ({\bf u}_1, {\bf v}_1), \end{aligned} $$ 所以 **$U \times V$ 具加法交換律**。 3. **加法結合律** 因為 $$ \begin{aligned}[] [({\bf u}_1, {\bf v}_1) + ({\bf u}_2, {\bf v}_2)] + ({\bf u}_3, {\bf v}_3) &= ({\bf u}_1 + {\bf u}_2 + {\bf u}_3, {\bf v}_1 + {\bf v}_2 + {\bf v}_3) \\ &= ({\bf u}_1, {\bf v}_1) + [({\bf u}_2, {\bf v}_2) + ({\bf u}_3, {\bf v}_3)] \end{aligned} $$ 所以 **$U \times V$ 具加法結合律**。 4. **存在零元素** 因為 $U , V$ 為兩個空間, 可設 $U$ 中的零元素為 ${\bf 0}_U$ , $V$ 中的零元素為 ${\bf 0}_V$ 。 則 $({\bf 0}_U, {\bf 0}_V) + ({\bf u}_1, {\bf v}_1) = ({\bf 0}_U + {\bf u}_1, {\bf 0}_V + {\bf v}_1) = ({\bf u}_1, {\bf v}_1)$ , 可知 $({\bf 0}_U , {\bf 0}_V)$ 為 $U \times V$ 的零元素。 因此 **$U \times V$ 存在零元素**。 5. **加法反元素** 因為 $U , V$ 為兩個空間, 所以 $U$ 中每個 ${\bf u}$ 皆有一個 ${\bf p}$ 使 ${\bf u} + {\bf p} = {\bf 0}$ 。 同理, $V$ 中每個 ${\bf v}$ 皆有一個 ${\bf q}$ 使 ${\bf v} + {\bf q} = {\bf 0}$ 。 因此 $({\bf u} , {\bf v}) + ({\bf p} , {\bf q}) = ({\bf u} + {\bf p} , {\bf v} + {\bf q}) = ({\bf 0} , {\bf 0})$ , 因此 **$U \times V$ 具有加法反元素**。 6. **乘法封閉性** 由於 $k {\bf u} \in U$ 且 $k {\bf v} \in V$ , 所以 $k ({\bf u} , {\bf v}) = (k {\bf u}, k {\bf v}) \in U \times V$ , 因此 **$U \times V$ 具乘法封閉性**。 7. **純量乘法對向量加法的分配律** 因為 $k ({\bf u}_1 + {\bf u}_2) = k {\bf u}_1 + k {\bf u}_2$ 且 $k ({\bf v}_1 + {\bf v}_2) = k {\bf v}_1 + k {\bf v}_2$ , 所以 $$ \begin{aligned} k [({\bf u}_1 , {\bf v}_1) + ({\bf u}_2 , {\bf v}_2)] &= k ({\bf u}_1 + {\bf u}_2 , {\bf v}_1 + {\bf v}_2) \\ &= (k {\bf u}_1 + k {\bf u}_2 , k {\bf v}_1 + k {\bf v}_2) \\ &= (k {\bf u}_1 , k {\bf v}_1) + (k {\bf u}_2 , k {\bf v}_2) = k ({\bf u}_1 , {\bf v}_1) + k ({\bf u}_2 , {\bf v}_2), \end{aligned} $$ 也就是說, $k [({\bf u}_1 , {\bf v}_1) + ({\bf u}_2 , {\bf v}_2)] = k ({\bf u}_1 , {\bf v}_1) + k ({\bf u}_2 , {\bf v}_2)$ , 因此 **$U \times V$ 具純量乘法對向量加法的分配律**。 8. **純量乘法對純量加法的分配律** $[k_1 + k_2] ({\bf u} , {\bf v}) = ([k_1 + k_2] {\bf u} , [k_1 + k_2] {\bf v}).$ 因為 $U$ 與 $V$ 皆具純量乘法對純量加法的分配律, 所以 $$ \begin{aligned} ([k_1 + k_2] {\bf u} , [k_1 + k_2] {\bf v}) &= (k_1 {\bf u} + k_2 {\bf u} , k_1 {\bf v} + k_2 {\bf v}) \\ &= (k_1 {\bf u} , k_1 {\bf v}) + (k_1 {\bf u} , k_2 {\bf v}) \\ &= k_1 ({\bf u} , {\bf v}) + k_2 ({\bf u} , {\bf v}), \end{aligned} $$ 也就是說, $[k_1 + k_2] ({\bf u} , {\bf v}) = k_1 ({\bf u} , {\bf v}) + k_2 ({\bf u} , {\bf v})$ , 因此 **$U \times V$ 具純量乘法對純量加法的分配律**。 9. **乘法結合律** $k_1 [k_2 ({\bf u} , {\bf v})] = k_1 (k_2 {\bf u} , k_2 {\bf v}) = (k_1 [k_2 {\bf u}] , k_1 [k_2 {\bf v}]).$ 因為 $U$ 與 $V$ 皆具乘法結合律, 所以 $(k_1 [k_2 {\bf u}] , k_1 [k_2 {\bf v}]) = ([k_1 k_2] {\bf u} , [k_1 k_2] {\bf v}) = [k_1 k_2] ({\bf u} , {\bf v})$ , 也就是說, $k_1 [k_2 ({\bf u} , {\bf v})] = [k_1 k_2] ({\bf u} , {\bf v})$ , 因此 **$U \times V$ 具乘法結合律**。 10. **乘法單位元素** 因為 $1 \times ({\bf u} , {\bf v}) = (1 \times {\bf u} , 1 \times {\bf v}) = ({\bf u} , {\bf v})$ , 因此 **$U \times V$ 具乘法單位元素**。 **找基底:** 設 $U$ 為 $\mathbb{R}^2$ , $V$ 為 $\mathbb{R}$ 。 則 $\begin{Bmatrix} (1,0) \\ (0,1) \end{Bmatrix}$ 為 $U$ 的一組基底, $\begin{Bmatrix} 1 \end{Bmatrix}$ 為 $V$ 的一組基底。 假設 $S = \begin{Bmatrix} ((1,0), 0) \\ ((0,1), 0) \\ ((0,0), 1) \end{Bmatrix}$ 是 $U \times V$ 的一組基底, 證明其正確性 : 1. **$\vspan(S) = U \times V.$** 設 $c_1 , c_2 , c_3 \in \mathbb{R}$ , 則任何 $((c_1 , c_2) , c_3) \in U \times V$ 都可寫成 $c_1 ((1,0), 0) + c_2 ((0,1), 0) + c_3((0,0), 1)$ 。 可知 **$\vspan(S) = U \times V.$** 2. **$S$ 線性獨立** 若 $c_1 ((1,0), 0) + c_2 ((0,1), 0) + c_3((0,0), 1) = ((0,0),0)$ 則唯有 $c_1 = c_2 = c_3 = 0$ 時成立。 可知 **$S$ 線性獨立**。 因此 $S = \begin{Bmatrix} ((1,0), 0) \\ ((0,1), 0) \\ ((0,0), 1) \end{Bmatrix}$ 是 $U \times V$ 的一組基底。 ##### Exercise 6 證明商空間做出來的新結構是一個向量空間。 找出一組基底並證明其正確性。 ***Ans:*** 設 $U$ 為兩個空間,$V$ 為 $U$ 中的子空間。 則 $U , V$ 的商空間為 $$\begin{cases} U / V = \{ {\bf p} + V : {\bf p}\in U\} \\ \text{addition : } ({\bf p}_1 + V) + ({\bf p}_2 + V) = ({\bf p}_1 + {\bf p}_2) + V \\ \text{multiplication : }k({\bf p} + V) = (k{\bf p}) + V \end{cases}. $$ 設 ${\bf p}_1, {\bf p}_2, {\bf p}_3 \in U$ , $k_1, k_2 \in \mathbb{R}$ , 證明 $U / V$ 具以下性質 : 1. **加法封閉性** 由於 ${\bf p}_1 + {\bf p}_2 \in U$ , 因此 $({\bf p}_1 + V) + ({\bf p}_2 + V) = [({\bf p}_1 + {\bf p}_2) + V] \in U / V$, 所以 **$U / V$ 具加法封閉性**。 2. **加法交換律** 因為 $$ \begin{aligned} ({\bf p}_1 + V) + ({\bf p}_2 + V) &= ({\bf p}_1 + {\bf p}_2) + V \\ &= ({\bf p}_2 + {\bf p}_1) + V \\ &= ({\bf p}_2 + V) + ({\bf p}_1 + V), \end{aligned} $$ 所以 **$U / V$ 具加法交換律**。 3. **加法結合律** 因為 $$ \begin{aligned}[] [({\bf p}_1 + V) + ({\bf p}_2 + V)] + ({\bf p}_3 + V) &= [{\bf p}_1 + {\bf p}_2 + {\bf p}_3] + V \\ &= ({\bf p}_1 + V) + [({\bf p}_2 + V) + ({\bf p}_3 + V)], \end{aligned} $$ 所以 **$U / V$ 具加法結合律**。 4. **存在零元素** 因為 $U$ 為一個空間, 所以 $U$ 中存在 ${\bf 0}$ 。 且 $({\bf 0} + V) + ({\bf p} + V) = ({\bf 0} + {\bf p}) + V = {\bf p} + V$ , 可知 ${\bf 0} + V$ 為 $U / V$ 中的零元素。 因此 **$U / V$ 存在零元素**。 5. **加法反元素** 因為 $U$ 為一個空間, 所以 $U$ 中每個 ${\bf p}$ 皆有一個 ${\bf q}$ 使 ${\bf p} + {\bf q} = {\bf 0}$ 。 則 $({\bf p} + V) + ({\bf q} + V) = ({\bf p} + {\bf q}) + V = {\bf 0} + V$ , 因此 **$U / V$ 具有加法反元素**。 6. **乘法封閉性** 由於 $k {\bf p} \in U$ , 所以 $k ({\bf p} + V) = (k {\bf p} + V) \in U / V$ , 因此 **$U / V$ 具乘法封閉性**。 7. **純量乘法對向量加法的分配律** 因為 $k ({\bf p}_1 + {\bf p}_2) = k {\bf p}_1 + k {\bf p}_2$ , 所以 $$ \begin{aligned} k [({\bf p}_1 + V) + ({\bf p}_2 + V)] &= k ({\bf p}_1 + {\bf p}_2) + V \\ &= (k{\bf p}_1 + k{\bf p}_2) + V = (k{\bf p}_1 + V) + (k{\bf p}_2 + V) \\ &= k({\bf p}_1 + V) + k({\bf p}_2 + V), \end{aligned} $$ 也就是說, $k [({\bf p}_1 + V) + ({\bf p}_2 + V)] = k({\bf p}_1 + V) + k({\bf p}_2 + V)$ , 因此 **$U / V$ 具純量乘法對向量加法的分配律**。 8. **純量乘法對純量加法的分配律** $[k_1 + k_2] ({\bf p} + V) = ([k_1 + k_2]{\bf p} + V).$ 因為 $U$ 具純量乘法對純量加法的分配律, 所以 $$ \begin{aligned} ([k_1 + k_2]{\bf p} + V) &= (k_1{\bf p} + k_2{\bf p}) + V \\ &= (k_1{\bf p} + V) + (k_2{\bf p} + V) \\ &= k_1({\bf p} + V) + k_2({\bf p} + V), \end{aligned} $$ 也就是說, $[k_1 + k_2] ({\bf p} + V) = k_1({\bf p} + V) + k_2({\bf p} + V)$ , 因此 **$U / V$ 具純量乘法對純量加法的分配律**。 9. **乘法結合律** $k_1 [k_2 ({\bf p} + V)] = k_1 (k_2 {\bf p} + V).$ 因為 $U$ 具乘法結合律, 所以 $k_1 (k_2 {\bf p} + V) = [k_1 k_2] {\bf p} + V = [k_1 k_2] ({\bf p} + V)$ , 也就是說, $k_1 [k_2 ({\bf p} + V)] = [k_1 k_2] ({\bf p} + V)$ , 因此 **$U / V$ 具乘法結合律**。 10. **乘法單位元素** 因為 $1 \times ({\bf p} + V) = (1 \times {\bf p}) + V = ({\bf p} + V)$ , 因此 **$U \times V$ 具乘法單位元素**。 :::warning 基底的部份要小心一點,以你給的例子來說 $U/V$ 的維度是 $1$。 特別的是 $(1,0) + V = (0,0) + V$。 ::: **找基底:** 設 $U$ 為 $\mathbb{R}^2$ , $V$ 為 $\vspan\{(1,0)\}$ 。 則假設 $S = \{ (0,1) + V \}$ 是 $U / V$ 的一組基底, 證明其正確性 : 1. **$\vspan(S) = U / V.$** 設 $c_1 , c_2 \in \mathbb{R}$ , 則任何 $(c_1 , c_2) + V \in U / V$ 都可寫成 $c_1 [(1,0) + V] + c_2 [(0,1) + V]$ 。 且已知 $(1,0) + V = (0,0) + V$ , 則 $c_1 [(1,0) + V] + c_2 [(0,1) + V] = c_1 [(0,0) + V] + c_2 [(0,1) + V] = c_2 [(0,1) + V]$ , 也就是說,任何 $(c_1 , c_2) + V \in U / V$ 都可寫成 $c_2 [(0,1) + V]$ 。 可知 **$\vspan(S) = U / V.$** 2. **$S$ 線性獨立** 若 $c_2 [(0,1) + V] = (0,0) + V$, 這表示 $c_2(0,1) \in V = \vspan(\{(1,0)\})$。 而此條件唯有 $c_2 = 0$ 時成立。 可知 **$S$ 線性獨立**。 因此 $S = \{ (0,1) + V \}$ 是 $U / V$ 的一組基底。 :::info 目前分數 6.5 :::

    Import from clipboard

    Paste your markdown or webpage here...

    Advanced permission required

    Your current role can only read. Ask the system administrator to acquire write and comment permission.

    This team is disabled

    Sorry, this team is disabled. You can't edit this note.

    This note is locked

    Sorry, only owner can edit this note.

    Reach the limit

    Sorry, you've reached the max length this note can be.
    Please reduce the content or divide it to more notes, thank you!

    Import from Gist

    Import from Snippet

    or

    Export to Snippet

    Are you sure?

    Do you really want to delete this note?
    All users will lose their connection.

    Create a note from template

    Create a note from template

    Oops...
    This template has been removed or transferred.
    Upgrade
    All
    • All
    • Team
    No template.

    Create a template

    Upgrade

    Delete template

    Do you really want to delete this template?
    Turn this template into a regular note and keep its content, versions, and comments.

    This page need refresh

    You have an incompatible client version.
    Refresh to update.
    New version available!
    See releases notes here
    Refresh to enjoy new features.
    Your user state has changed.
    Refresh to load new user state.

    Sign in

    Forgot password

    or

    By clicking below, you agree to our terms of service.

    Sign in via Facebook Sign in via Twitter Sign in via GitHub Sign in via Dropbox Sign in with Wallet
    Wallet ( )
    Connect another wallet

    New to HackMD? Sign up

    Help

    • English
    • 中文
    • Français
    • Deutsch
    • 日本語
    • Español
    • Català
    • Ελληνικά
    • Português
    • italiano
    • Türkçe
    • Русский
    • Nederlands
    • hrvatski jezik
    • język polski
    • Українська
    • हिन्दी
    • svenska
    • Esperanto
    • dansk

    Documents

    Help & Tutorial

    How to use Book mode

    Slide Example

    API Docs

    Edit in VSCode

    Install browser extension

    Contacts

    Feedback

    Discord

    Send us email

    Resources

    Releases

    Pricing

    Blog

    Policy

    Terms

    Privacy

    Cheatsheet

    Syntax Example Reference
    # Header Header 基本排版
    - Unordered List
    • Unordered List
    1. Ordered List
    1. Ordered List
    - [ ] Todo List
    • Todo List
    > Blockquote
    Blockquote
    **Bold font** Bold font
    *Italics font* Italics font
    ~~Strikethrough~~ Strikethrough
    19^th^ 19th
    H~2~O H2O
    ++Inserted text++ Inserted text
    ==Marked text== Marked text
    [link text](https:// "title") Link
    ![image alt](https:// "title") Image
    `Code` Code 在筆記中貼入程式碼
    ```javascript
    var i = 0;
    ```
    var i = 0;
    :smile: :smile: Emoji list
    {%youtube youtube_id %} Externals
    $L^aT_eX$ LaTeX
    :::info
    This is a alert area.
    :::

    This is a alert area.

    Versions and GitHub Sync
    Get Full History Access

    • Edit version name
    • Delete

    revision author avatar     named on  

    More Less

    Note content is identical to the latest version.
    Compare
      Choose a version
      No search result
      Version not found
    Sign in to link this note to GitHub
    Learn more
    This note is not linked with GitHub
     

    Feedback

    Submission failed, please try again

    Thanks for your support.

    On a scale of 0-10, how likely is it that you would recommend HackMD to your friends, family or business associates?

    Please give us some advice and help us improve HackMD.

     

    Thanks for your feedback

    Remove version name

    Do you want to remove this version name and description?

    Transfer ownership

    Transfer to
      Warning: is a public team. If you transfer note to this team, everyone on the web can find and read this note.

        Link with GitHub

        Please authorize HackMD on GitHub
        • Please sign in to GitHub and install the HackMD app on your GitHub repo.
        • HackMD links with GitHub through a GitHub App. You can choose which repo to install our App.
        Learn more  Sign in to GitHub

        Push the note to GitHub Push to GitHub Pull a file from GitHub

          Authorize again
         

        Choose which file to push to

        Select repo
        Refresh Authorize more repos
        Select branch
        Select file
        Select branch
        Choose version(s) to push
        • Save a new version and push
        • Choose from existing versions
        Include title and tags
        Available push count

        Pull from GitHub

         
        File from GitHub
        File from HackMD

        GitHub Link Settings

        File linked

        Linked by
        File path
        Last synced branch
        Available push count

        Danger Zone

        Unlink
        You will no longer receive notification when GitHub file changes after unlink.

        Syncing

        Push failed

        Push successfully