changed 4 years ago
Linked with GitHub

建構新的向量空間

Creative Commons License
This work by Jephian Lin is licensed under a Creative Commons Attribution 4.0 International License.

\(\newcommand{\trans}{^\top} \newcommand{\adj}{^{\rm adj}} \newcommand{\cof}{^{\rm cof}} \newcommand{\inp}[2]{\left\langle#1,#2\right\rangle} \newcommand{\dunion}{\mathbin{\dot\cup}} \newcommand{\bzero}{\mathbf{0}} \newcommand{\bone}{\mathbf{1}} \newcommand{\ba}{\mathbf{a}} \newcommand{\bb}{\mathbf{b}} \newcommand{\bc}{\mathbf{c}} \newcommand{\bd}{\mathbf{d}} \newcommand{\be}{\mathbf{e}} \newcommand{\bh}{\mathbf{h}} \newcommand{\bp}{\mathbf{p}} \newcommand{\bq}{\mathbf{q}} \newcommand{\br}{\mathbf{r}} \newcommand{\bx}{\mathbf{x}} \newcommand{\by}{\mathbf{y}} \newcommand{\bz}{\mathbf{z}} \newcommand{\bu}{\mathbf{u}} \newcommand{\bv}{\mathbf{v}} \newcommand{\bw}{\mathbf{w}} \newcommand{\tr}{\operatorname{tr}} \newcommand{\nul}{\operatorname{null}} \newcommand{\rank}{\operatorname{rank}} %\newcommand{\ker}{\operatorname{ker}} \newcommand{\range}{\operatorname{range}} \newcommand{\Col}{\operatorname{Col}} \newcommand{\Row}{\operatorname{Row}} \newcommand{\spec}{\operatorname{spec}} \newcommand{\vspan}{\operatorname{span}} \newcommand{\Vol}{\operatorname{Vol}} \newcommand{\sgn}{\operatorname{sgn}} \newcommand{\idmap}{\operatorname{id}} \newcommand{\am}{\operatorname{am}} \newcommand{\gm}{\operatorname{gm}} \newcommand{\mult}{\operatorname{mult}} \newcommand{\iner}{\operatorname{iner}}\)

from lingeo import random_good_matrix
from linspace import vtop, vtom

Main idea

Let \(S_1\) and \(S_2\) be two set.
The Cartesian product of \(S_1\) and \(S_2\) is
\[S_1 \times S_2 = \{ (s_1,s_2) : s_1\in S_1, s_2\in S_2 \}. \]
If \(S_1\) and \(S_2\) are finite sets, then \(|S_1\times S_2| = |S_1|\times |S_2|\).

Let \(U\) and \(V\) be two vector spaces.
The Cartesian product of \(U\) and \(V\) is the set
\[U\times V = \{ ({\bf u}, {\bf v}) : {\bf u}\in U, {\bf v}\in V \} \]
along with the vector addition
\[({\bf u}_1, {\bf v}_1) + ({\bf u}_1, {\bf v}_1) = ({\bf u}_1 + {\bf u}_2, {\bf v}_1 + {\bf v}_2)\]
and the scalr multiplication
\[k({\bf u}, {\bf v}) = (k{\bf u}, k{\bf v}). \]
The Cartesian product of two vector spaces is again a vector space.
For example, \(\mathbb{R}^2 = \mathbb{R} \times \mathbb{R}\).

Suppose \(\beta_U\) and \(\beta_V\) are bases of \(U\) and \(V\), respectively.
Then
\[\{ ({\bf u}, {\bf 0}_U) : {\bf u}\in \beta_U \} \cup \{ ({\bf 0}_V, {\bf v}) : {\bf v}\in \beta_V \}\] is a basis of \(U \times V\), where \({\bf 0}_U\) and \({\bf 0}_V\) are the zero vectors in \(U\) and \(V\), respectively.
Therefore, \(\dim(U \times V) = \dim(U) + \dim(V)\) if both of \(U\) and \(V\) are finite-dimensional.

Let \(U\) be a vector space and \(V\) a subspace of \(U\).
Recall that an affine subspace is of the form \({\bf u} + V\) for some vector \({\bf u}\).
Thus, the quotient space of \(U\) by \(V\) is the set of all affine subspaces
\[U / V = \{ {\bf u} + V : {\bf u} \in U\} \]
(here each affine subspace \({\bf u} + V\) is treated as a vector)
along with the vector addition
\[({\bf u}_1 + V) + ({\bf u}_2 + V) = ({\bf u}_1 + {\bf u}_2) + V \] and the scalar multiplication
\[k({\bf u} + V) = (k{\bf u}) + V. \]
For example, when \(V\) is the \(x,y\)-plane, then the structure of \(\mathbb{R}^2 / V\) is similar to \(\mathbb{R}^1\), since each \(z\) value decides an affine plane.

By the expanding lemma, one may obtain a basis \(\beta_V\) of \(V\) and expand it to a basis \(\beta_U\).
Thus,
\[\{ {\bf u} + V : {\bf u} \in \beta_U \setminus \beta_V \} \] is a basis of \(U / V\).
(Note that \(/\) is the quotient while \(\setminus\) is the setminus.)
Therefore, \(\dim(U / V) = \dim(U) - \dim(V)\) if both \(U\) and \(V\) are finite-dimensional.

Side stories

  • well-defined

Experiments

Exercise 1

執行以下程式碼。
考慮向量空間 \(\mathbb{R}^3\times \mathcal{P}_1\)

### code
set_random_seed(0)
print_ans = False
m,n,r = 3,5,choice([2,3])
A = random_good_matrix(m,n,r)
v1,v2,v3 = A[:,:3]
p1,p2,p3 = [vtop(v) for v in A[:,3:]]

print("u1 = (v1, p1) =", (v1, p1))
print("u2 = (v2, p2) =", (v2, p2))
print("u3 = (v3, p3) =", (v3, p3))


if print_ans:
    print("u1 + u2 =", (v1 + v2, p1 + p2))
    print("Linear independent?", r == 3)
Exercise 1(a)

計算 \({\bf u}_1 + {\bf u}_2\)

  • 中文不要放到數學模式裡
  • 數學放到數學模式裡

\({\bf u}_1 = ({\bf v}_1, {\bf p}_1 ) = ((1,-4,7), -13 x-12)\)
\({\bf u}_2 = ( {\bf v}_2, {\bf p}_2 ) = ((-3,13,-24), 43x+39)\)

\({\bf u}_1 + {\bf u}_2 = ({\bf v}_1 + {\bf v}_2 , {\bf p}_1+{\bf p}_2) = ((-2 ,9 ,-17),20x + 27)\)

Exercise 1(b)

判斷 \(\{ {\bf u}_1, {\bf u}_2, {\bf u}_3 \}\) 是否線性獨立。

  • \(rref\) > rref
  • 零向量要粗體、純量 \(c\) 不用粗體
  • \(5\) X \(3\) > \(5 \times 3\)
  • \(rref\) 可知:\({\bf c}_1 = {\bf c}_2 = {\bf c}_3 = 0\) 此條件不成立 , 所以\(\{ {\bf u}_1, {\bf u}_2, {\bf u}_3 \}\) 不是線性獨立。 > 由 rref 可知:\(c_1 = -2\), \(c_2 = -4\), \(c_3 = 1\) 是一組非零解, 所以\(\{ {\bf u}_1, {\bf u}_2, {\bf u}_3 \}\) 不是線性獨立。

線性獨立的條件為 \({c}_1\bu_1 + {c}_2\bu_2+{ c}_3\bu_3 = {\bf 0}\) 時,
唯一解為 \({c}_1 = {c}_2 = {c}_3 = {\bf 0}\)

\(\bu_1, \bu_2, \bu_3\) 放入一個 \(5 \times 3\) 矩陣 , 將矩陣和 \({c}_1, {c}_2 , {c}_3\) 構成的 \(3 \times 1\) 矩陣,可得相當於\({c}_1\bu_1 + {c}_2\bu_2+{c}_3\bu_3 = 0\) 之數學結構:

\[\left[\begin{array}{ccc|c} 1 & -3 & -10 & 0\\ -4 & 13 & 44 & 0\\ 7 & -24 &-82 & 0\\ -13 & 43 & 146 & 0\\ -12 & 39 & 132 & 0\\ \end{array}\right]\times \left[\begin{array}{c} {c}_1 \\ {c}_2 \\ {c}_3 \\ \end{array}\right]= \left[\begin{array}{c} 0\\ 0\\ 0\\ \end{array}\right] \]

得到其 rref 為:
\[\left[\begin{array}{ccc|c} 1 & 0 & 2 & 0\\ 0 & 1 & 4 & 0\\ 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0\\ \end{array}\right]. \]

由 rref 可知:
\({c}_1 = -2 , {c}_2 = -4 , {c}_3 = 1\) 為其中一組非零解。
由此可知: \(\{ {\bf u}_1, {\bf u}_2, {\bf u}_3 \}\) 不是線性獨立。

Exercises

Exercise 2

考慮 \(V = \mathbb{R}^3 \times \mathbb{R}^2\)

Exercise 2(a)

\(V\) 中的零向量。
答: \[ ((0,0,0), (0,0)) \]

Exercise 2(b)


\[\begin{aligned} {\bf v}_1 &= ((1,1,1), (1,1)) \\ {\bf v}_2 &= ((0,1,1), (1,1)) \\ {\bf v}_3 &= ((0,0,1), (1,1)) \\ \end{aligned} \]
\(S = \{ {\bf v}_1, {\bf v}_2, {\bf v}_3 \}\)
判斷 \(\operatorname{span}(S)\) 是否可以生成全空間 \(V\)

  • 中文不要放數學模式,下一題也是
  • 標點,下一題也是

答: 否,因為無法組合出 \(((1,1,1), (0,1))\)

Exercise 2©

判斷 \(S\) 是否線性獨立。

  • \(\bc\) > \(c\)
  • \(R\) > \(\mathbb{R}\)
  • 用中文敘述

答: 是,對於 \(c_1,c_2,c_3 \in \mathbb{R}\),關係式 \[c_1{\bf v}_1+c_2{\bf v}_2+c_3{\bf v}_3=0 \]
只有 \[c_1=0,c_2=0,c_3=0 \] 這一組解。

Exercise 3

考慮 \(V = \mathcal{P}_2 \times \mathcal{P}_1\)
\begin{aligned} p_1 &= (x+1)(x+2), \\ p_2 &= (x+1)(x^2 + x + 1) \\ \end{aligned}

Exercise 3(a)

\(\operatorname{ptov}_d\) 為把 \(\mathcal{P}_d\) 中的多項式寫為 \(\mathbb{R}^{d+1}\) 中向量的函數。
建一個矩陣 \(A\) 其行向量分別為
\(\operatorname{ptov}_4(p_1), \operatorname{ptov}_4(xp_1), \operatorname{ptov}_4(x^2p_1), \operatorname{ptov}_4(p_2), \operatorname{ptov}_4(xp_2)\)
寫出 \(A\)

\(Ans:\) \[A = \begin{bmatrix} 2 & 0 & 0 & 1 & 0 \\ 3 & 2 & 0 & 2 & 1 \\ 1 & 3 & 2 & 2 & 2 \\ 0 & 1 & 3 & 1 & 2 \\ 0 & 0 & 1 & 0 & 1 \end{bmatrix}. \]

Exercise 3(b)

驗證對任何 \(a\in\mathcal{P}_2\)\(b\in\mathcal{P}_1\)
\[A \begin{bmatrix} \operatorname{ptov}_2(a) \\ \operatorname{ptov}_1(b) \end{bmatrix} = \operatorname{ptov}_4(ap_1 + bp_2) \]
都成立。

我有重新排版過,不過這題寫得不錯。

\(Ans:\)
\(a = c_3 + c_2 x + c_1 x^2\) \(b = c_5 + c_4x\)
會得出 \[\begin{bmatrix} \operatorname{ptov}_2(a) \\ \operatorname{ptov}_1(b) \end{bmatrix} = \begin{bmatrix} c_3\\ c_2\\ c_1\\ c_5\\ c_4 \end{bmatrix} \] 以及
\[A \begin{bmatrix} \operatorname{ptov}_2(a) \\ \operatorname{ptov}_1(b) \end{bmatrix} = \begin{bmatrix} 2c_3 + c_5\\ 3c_3 + 2c_2 + 2c_5 + c_4\\ c_3 + 3c_2 + 2c_1 + 2c_5 + 2c_4\\ c_2 + 3c_2 + c_5 + 2c_4\\ c_1 + c_4 \end{bmatrix}. \]

另一方面,直接計算可得 \[\begin{aligned} ap_1 &= (c_3 + c_2 x + c_1 x^2)(2 + 3 x + x^2) \\ &= c_1x^4 + (3c_1 + c_2)x^3 + (2c_1 + 3c_2 +c_3)x^2 + (2c_2 + 3c_3)x + 2c_3, \\ bp_2 &= (c_5 + c_4 x)(1 + 2 x + 2x^2 + x^3) \\ &= c_4x^4 + (2c_4 + c_5)x^3 + (2c_4 + 2c_5)x^2 + (c_4 + c_5)x + c_5. \end{aligned} \]

兩式相加後得出 \[\begin{aligned} ap_1 + bp_2 &= (c_1+c_4)x^4 + (c_2 + 3c_1 + c_5 + 2c_4)x^3 + \\ &\mathrel{\phantom{=}} (c_3 + 3c_2 + 2c_1 + 2c_5 + 2c_4)x^2 + \\ &\mathrel{\phantom{=}} (3c_3 + 2c_2 +2c_5 + c_4)x + (2c_3+c_5) \end{aligned}. \]

因此 \[\operatorname{ptov}_4(ap_1 + bp_2) = \begin{bmatrix} 2c_3 + c_5\\ 3c_3 + 2c_2 + 2c_5 + c_4\\ c_3 + 3c_2 + 2c_1 + 2c_5 + 2c_4\\ c_2 + 3c_2 + c_5 + 2c_4\\ c_1 + c_4 \end{bmatrix} \] 與上面得出的結果相同,得證。

Exercise 3©

求出所有可以讓 \(ap_1 + bp_2 = 0\)\((a,b)\in V\)

這題要求 3(a) 矩陣的 kernel 再來回答。

\(Ans:\) 根據 3(a),所有符合 \(ap_1 + bp_2 = 0\)\(a = c_3 + c_2x + c_1x^2\) 以及 \(b = c_5 + c_4x\) 必滿足 \[ \begin{bmatrix} 2 & 0 & 0 & 1 & 0 \\ 3 & 2 & 0 & 2 & 1 \\ 1 & 3 & 2 & 2 & 2 \\ 0 & 1 & 3 & 1 & 2 \\ 0 & 0 & 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} c_3\\ c_2\\ c_1\\ c_5\\ c_4 \end{bmatrix}=\begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}. \] 且反之亦然。

\(A\) 為式子中的 \(5\times 5\) 矩陣,
則本題是要求出 \(A\) 的零解。

可以計算 \(A\) 的 rref 為 \[ \begin{bmatrix} 1 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & -2 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} \]

從 rref 中得知 \(c_5\) 為自由變數,
\(\ker(A) = \vspan((-1,-1,-1,2,1)\trans)\)
因此所有符合 \(ap_1 + bp_2 = 0\) 的解為
\[\begin{aligned} a &= t\cdot (-1 - x - x^2), \\ b &= t\cdot (2 + x). \end{aligned} \]

Exercise 4

\(U\) 為一向量空間而 \(V\) 為其一子空間。

Exercise 4(a)

證明以下敘述等價:

  1. \({\bf u}_1 + V = {\bf u}_2 + V\).
  2. \({\bf u}_1 - {\bf u}_2 \in V\).

因此另外一個定義商空間的方法是定義向量之間的關係:
\[{\bf u}_1 \sim {\bf u}_2 \iff {\bf u}_1 - {\bf u}_2 \in V. \]
可以證明這樣的關係是一個等價關係
如此一來 \(U / \sim\)\(U / V\) 的概念是一樣的。

Good

Proof
\(\implies\)
由於 \({\bf u}_1 \in {\bf u}_1 + V\)\({\bf u}_1 + V = {\bf u}_2 + V\) ,因此 \({\bf u}_1 \in {\bf u}_2 + V\)
所以存在 \({\bf v} \in V\) 使得 \({\bf u}_1 = {\bf u}_2 + {\bf v}\) ,最後可以推得 \({\bf u}_1 - {\bf u}_2 = {\bf v} \in V\)

\(\impliedby\)
\({\bf v} = {\bf u}_1 - {\bf u}_2\) ,則 \({\bf u}_1 = {\bf u}_2 + {\bf v}\)\({\bf v} \in V\)
所以 \({\bf u}_1 + V = ({\bf u}_2 + {\bf v}) + V\) ,又 \({\bf v} \in V\) , 因此 \({\bf u}_1 + V = {\bf u}_2 + V\)

Exercise 4(b)

我們可以不管直觀上的任何意義來定義加法:
\[({\bf u}_1 + V) + ({\bf u}_2 + V) = ({\bf u}_1 + {\bf u}_2) + V. \] 然而要小心的是
如果 \({\bf u}_1 + V\)\({\bf u}'_1 + V\) 一樣、
同時 \({\bf u}_2 + V\)\({\bf u}'_2 + V\) 一樣﹐
那麼加出來的 \(({\bf u}_1 + {\bf u}_2) + V\)\(({\bf u}'_1 + {\bf u}'_2) + V\) 也會一樣嗎?
符合這樣性質的定義我們稱為是定義完善的(well-defined)。

證明商空間上定義的向量加法是定義完善的。

Proof
利用 4(a) 的性質可以做出以下推論:
\({\bf u}_1 + V = {\bf u}'_1 + V\)\({\bf u}_2 + V = {\bf u}'_2 + V\) 可知 \({\bf u}_1 - {\bf u}'_1 \in V\)\({\bf u}_2 - {\bf u}'_2 \in V\)
因此 \(({\bf u}_1 + {\bf u}_2) - ({\bf u}'_1 + {\bf u}'_2) \in V\)
再用一次 4(a) 的性質:
\(({\bf u}_1 + {\bf u}_2) - ({\bf u}'_1 + {\bf u}'_2) \in V\) 可知 \(({\bf u}_1 + {\bf u}_2) + V = ({\bf u}'_1 + {\bf u}'_2) + V\)

Exercise 4©

證明商空間上的純量乘法 \[k({\bf u} + V) = (k{\bf u}) + V \]
是定義完善的。

這題是要問:
如果 \({\bf u} + V = {\bf u}' + V\),證明 \(k({\bf u} + V) = k({\bf u}' + V)\)

Proof
對於所有 \({\bf w} \in k({\bf u} + V)\) 存在 \({\bf v} \in V\) 使得 \({\bf w} = k{\bf u} + k{\bf v}\)
又因 \(k{\bf v} \in V\) ,因此 \({\bf w} \in (k{\bf u}) + V\)
所以 \(k({\bf u} + V) = (k{\bf u}) + V\)
同理 \(k({\bf u}' + V) = (k{\bf u}') + V\)
意即我們只須證明 \((k{\bf u}) + V = (k{\bf u}') + V\)

從題目中知道 \({\bf u} + V = {\bf u}' + V\) ,再由 4(a) 可以知道 \({\bf u} - {\bf u}' \in V\)
因為乘法封閉性,所以 \(k({\bf u} - {\bf u}') \in V\) ,也就是 \(k{\bf u} - k{\bf u}' \in V\)
再由 4(a) 即可推得 \((k{\bf u}) + V = (k{\bf u}') + V\) ,也就是 \(k({\bf u} + V) = k({\bf u}' + V)\)

Exercise 5

證明笛卡爾積做出來的新結構是一個向量空間。
找出一組基底並證明其正確性。

Ans:
\(U , V\) 為兩個空間,
\(U , V\) 的笛卡爾積為
\[\begin{cases} U\times V = \{ ({\bf u}, {\bf v}) : {\bf u}\in U, {\bf v}\in V \} \\ \text{addition : } ({\bf u}_1, {\bf v}_1) + ({\bf u}_2, {\bf v}_2) = ({\bf u}_1 + {\bf u}_2, {\bf v}_1 + {\bf v}_2) \\ \text{multiplication : }k({\bf u}, {\bf v}) = (k{\bf u}, k{\bf v}) \end{cases}. \]
\({\bf u}_1, {\bf u}_2, {\bf u}_3 \in U\)\({\bf v}_1, {\bf v}_2, {\bf v}_3 \in V\)\(k_1, k_2 \in \mathbb{R}\)
證明 \(U \times V\) 具以下性質 :

Good job!
辛苦了。

  1. 加法封閉性
    \[({\bf u}_1, {\bf v}_1) + ({\bf u}_2, {\bf v}_2) = ({\bf u}_1 + {\bf u}_2, {\bf v}_1 + {\bf v}_2)\] 由於 \(({\bf u}_1 + {\bf u}_2) \in U\)\(({\bf v}_1 + {\bf v}_2) \in V\)
    因此 \(({\bf u}_1 + {\bf u}_2, {\bf v}_1 + {\bf v}_2) \in U \times V\)
    所以 \(U \times V\) 具加法封閉性
  2. 加法交換律
    因為
    \[ \begin{aligned} ({\bf u}_1, {\bf v}_1) + ({\bf u}_2, {\bf v}_2) &= ({\bf u}_1 + {\bf u}_2, {\bf v}_1 + {\bf v}_2) \\ &= ({\bf u}_2 + {\bf u}_1, {\bf v}_2 + {\bf v}_1) \\ &= ({\bf u}_2, {\bf v}_2) + ({\bf u}_1, {\bf v}_1), \end{aligned} \] 所以 \(U \times V\) 具加法交換律
  3. 加法結合律
    因為 \[ \begin{aligned}[] [({\bf u}_1, {\bf v}_1) + ({\bf u}_2, {\bf v}_2)] + ({\bf u}_3, {\bf v}_3) &= ({\bf u}_1 + {\bf u}_2 + {\bf u}_3, {\bf v}_1 + {\bf v}_2 + {\bf v}_3) \\ &= ({\bf u}_1, {\bf v}_1) + [({\bf u}_2, {\bf v}_2) + ({\bf u}_3, {\bf v}_3)] \end{aligned} \] 所以 \(U \times V\) 具加法結合律
  4. 存在零元素
    因為 \(U , V\) 為兩個空間,
    可設 \(U\) 中的零元素為 \({\bf 0}_U\)\(V\) 中的零元素為 \({\bf 0}_V\)
    \(({\bf 0}_U, {\bf 0}_V) + ({\bf u}_1, {\bf v}_1) = ({\bf 0}_U + {\bf u}_1, {\bf 0}_V + {\bf v}_1) = ({\bf u}_1, {\bf v}_1)\)
    可知 \(({\bf 0}_U , {\bf 0}_V)\)\(U \times V\) 的零元素。
    因此 \(U \times V\) 存在零元素
  5. 加法反元素
    因為 \(U , V\) 為兩個空間,
    所以 \(U\) 中每個 \({\bf u}\) 皆有一個 \({\bf p}\) 使 \({\bf u} + {\bf p} = {\bf 0}\)
    同理, \(V\) 中每個 \({\bf v}\) 皆有一個 \({\bf q}\) 使 \({\bf v} + {\bf q} = {\bf 0}\)
    因此 \(({\bf u} , {\bf v}) + ({\bf p} , {\bf q}) = ({\bf u} + {\bf p} , {\bf v} + {\bf q}) = ({\bf 0} , {\bf 0})\)
    因此 \(U \times V\) 具有加法反元素
  6. 乘法封閉性
    由於 \(k {\bf u} \in U\)\(k {\bf v} \in V\)
    所以 \(k ({\bf u} , {\bf v}) = (k {\bf u}, k {\bf v}) \in U \times V\)
    因此 \(U \times V\) 具乘法封閉性
  7. 純量乘法對向量加法的分配律
    因為 \(k ({\bf u}_1 + {\bf u}_2) = k {\bf u}_1 + k {\bf u}_2\)\(k ({\bf v}_1 + {\bf v}_2) = k {\bf v}_1 + k {\bf v}_2\)
    所以 \[ \begin{aligned} k [({\bf u}_1 , {\bf v}_1) + ({\bf u}_2 , {\bf v}_2)] &= k ({\bf u}_1 + {\bf u}_2 , {\bf v}_1 + {\bf v}_2) \\ &= (k {\bf u}_1 + k {\bf u}_2 , k {\bf v}_1 + k {\bf v}_2) \\ &= (k {\bf u}_1 , k {\bf v}_1) + (k {\bf u}_2 , k {\bf v}_2) = k ({\bf u}_1 , {\bf v}_1) + k ({\bf u}_2 , {\bf v}_2), \end{aligned} \]
    也就是說, \(k [({\bf u}_1 , {\bf v}_1) + ({\bf u}_2 , {\bf v}_2)] = k ({\bf u}_1 , {\bf v}_1) + k ({\bf u}_2 , {\bf v}_2)\)
    因此 \(U \times V\) 具純量乘法對向量加法的分配律
  8. 純量乘法對純量加法的分配律
    \([k_1 + k_2] ({\bf u} , {\bf v}) = ([k_1 + k_2] {\bf u} , [k_1 + k_2] {\bf v}).\)
    因為 \(U\)\(V\) 皆具純量乘法對純量加法的分配律,
    所以 \[ \begin{aligned} ([k_1 + k_2] {\bf u} , [k_1 + k_2] {\bf v}) &= (k_1 {\bf u} + k_2 {\bf u} , k_1 {\bf v} + k_2 {\bf v}) \\ &= (k_1 {\bf u} , k_1 {\bf v}) + (k_1 {\bf u} , k_2 {\bf v}) \\ &= k_1 ({\bf u} , {\bf v}) + k_2 ({\bf u} , {\bf v}), \end{aligned} \]
    也就是說, \([k_1 + k_2] ({\bf u} , {\bf v}) = k_1 ({\bf u} , {\bf v}) + k_2 ({\bf u} , {\bf v})\)
    因此 \(U \times V\) 具純量乘法對純量加法的分配律
  9. 乘法結合律
    \(k_1 [k_2 ({\bf u} , {\bf v})] = k_1 (k_2 {\bf u} , k_2 {\bf v}) = (k_1 [k_2 {\bf u}] , k_1 [k_2 {\bf v}]).\)
    因為 \(U\)\(V\) 皆具乘法結合律,
    所以 \((k_1 [k_2 {\bf u}] , k_1 [k_2 {\bf v}]) = ([k_1 k_2] {\bf u} , [k_1 k_2] {\bf v}) = [k_1 k_2] ({\bf u} , {\bf v})\)
    也就是說, \(k_1 [k_2 ({\bf u} , {\bf v})] = [k_1 k_2] ({\bf u} , {\bf v})\)
    因此 \(U \times V\) 具乘法結合律
  10. 乘法單位元素
    因為 \(1 \times ({\bf u} , {\bf v}) = (1 \times {\bf u} , 1 \times {\bf v}) = ({\bf u} , {\bf v})\)
    因此 \(U \times V\) 具乘法單位元素

找基底:
\(U\)\(\mathbb{R}^2\)\(V\)\(\mathbb{R}\)
\(\begin{Bmatrix} (1,0) \\ (0,1) \end{Bmatrix}\)\(U\) 的一組基底,
\(\begin{Bmatrix} 1 \end{Bmatrix}\)\(V\) 的一組基底。
假設 \(S = \begin{Bmatrix} ((1,0), 0) \\ ((0,1), 0) \\ ((0,0), 1) \end{Bmatrix}\)\(U \times V\) 的一組基底,
證明其正確性 :

  1. \(\vspan(S) = U \times V.\)
    \(c_1 , c_2 , c_3 \in \mathbb{R}\)
    則任何 \(((c_1 , c_2) , c_3) \in U \times V\) 都可寫成 \(c_1 ((1,0), 0) + c_2 ((0,1), 0) + c_3((0,0), 1)\)
    可知 \(\vspan(S) = U \times V.\)
  2. \(S\) 線性獨立
    \(c_1 ((1,0), 0) + c_2 ((0,1), 0) + c_3((0,0), 1) = ((0,0),0)\)
    則唯有 \(c_1 = c_2 = c_3 = 0\) 時成立。
    可知 \(S\) 線性獨立
    因此 \(S = \begin{Bmatrix} ((1,0), 0) \\ ((0,1), 0) \\ ((0,0), 1) \end{Bmatrix}\)\(U \times V\) 的一組基底。
Exercise 6

證明商空間做出來的新結構是一個向量空間。
找出一組基底並證明其正確性。

Ans:
\(U\) 為兩個空間,\(V\)\(U\) 中的子空間。
\(U , V\) 的商空間為
\[\begin{cases} U / V = \{ {\bf p} + V : {\bf p}\in U\} \\ \text{addition : } ({\bf p}_1 + V) + ({\bf p}_2 + V) = ({\bf p}_1 + {\bf p}_2) + V \\ \text{multiplication : }k({\bf p} + V) = (k{\bf p}) + V \end{cases}. \]
\({\bf p}_1, {\bf p}_2, {\bf p}_3 \in U\)\(k_1, k_2 \in \mathbb{R}\)
證明 \(U / V\) 具以下性質 :

  1. 加法封閉性
    由於 \({\bf p}_1 + {\bf p}_2 \in U\)
    因此 \(({\bf p}_1 + V) + ({\bf p}_2 + V) = [({\bf p}_1 + {\bf p}_2) + V] \in U / V\)
    所以 \(U / V\) 具加法封閉性
  2. 加法交換律
    因為 \[ \begin{aligned} ({\bf p}_1 + V) + ({\bf p}_2 + V) &= ({\bf p}_1 + {\bf p}_2) + V \\ &= ({\bf p}_2 + {\bf p}_1) + V \\ &= ({\bf p}_2 + V) + ({\bf p}_1 + V), \end{aligned} \]
    所以 \(U / V\) 具加法交換律
  3. 加法結合律
    因為 \[ \begin{aligned}[] [({\bf p}_1 + V) + ({\bf p}_2 + V)] + ({\bf p}_3 + V) &= [{\bf p}_1 + {\bf p}_2 + {\bf p}_3] + V \\ &= ({\bf p}_1 + V) + [({\bf p}_2 + V) + ({\bf p}_3 + V)], \end{aligned} \]
    所以 \(U / V\) 具加法結合律
  4. 存在零元素
    因為 \(U\) 為一個空間,
    所以 \(U\) 中存在 \({\bf 0}\)
    \(({\bf 0} + V) + ({\bf p} + V) = ({\bf 0} + {\bf p}) + V = {\bf p} + V\)
    可知 \({\bf 0} + V\)\(U / V\) 中的零元素。
    因此 \(U / V\) 存在零元素
  5. 加法反元素
    因為 \(U\) 為一個空間,
    所以 \(U\) 中每個 \({\bf p}\) 皆有一個 \({\bf q}\) 使 \({\bf p} + {\bf q} = {\bf 0}\)
    \(({\bf p} + V) + ({\bf q} + V) = ({\bf p} + {\bf q}) + V = {\bf 0} + V\)
    因此 \(U / V\) 具有加法反元素
  6. 乘法封閉性
    由於 \(k {\bf p} \in U\)
    所以 \(k ({\bf p} + V) = (k {\bf p} + V) \in U / V\)
    因此 \(U / V\) 具乘法封閉性
  7. 純量乘法對向量加法的分配律
    因為 \(k ({\bf p}_1 + {\bf p}_2) = k {\bf p}_1 + k {\bf p}_2\)
    所以 \[ \begin{aligned} k [({\bf p}_1 + V) + ({\bf p}_2 + V)] &= k ({\bf p}_1 + {\bf p}_2) + V \\ &= (k{\bf p}_1 + k{\bf p}_2) + V = (k{\bf p}_1 + V) + (k{\bf p}_2 + V) \\ &= k({\bf p}_1 + V) + k({\bf p}_2 + V), \end{aligned} \] 也就是說, \(k [({\bf p}_1 + V) + ({\bf p}_2 + V)] = k({\bf p}_1 + V) + k({\bf p}_2 + V)\)
    因此 \(U / V\) 具純量乘法對向量加法的分配律
  8. 純量乘法對純量加法的分配律
    \([k_1 + k_2] ({\bf p} + V) = ([k_1 + k_2]{\bf p} + V).\)
    因為 \(U\) 具純量乘法對純量加法的分配律,
    所以 \[ \begin{aligned} ([k_1 + k_2]{\bf p} + V) &= (k_1{\bf p} + k_2{\bf p}) + V \\ &= (k_1{\bf p} + V) + (k_2{\bf p} + V) \\ &= k_1({\bf p} + V) + k_2({\bf p} + V), \end{aligned} \]
    也就是說, \([k_1 + k_2] ({\bf p} + V) = k_1({\bf p} + V) + k_2({\bf p} + V)\)
    因此 \(U / V\) 具純量乘法對純量加法的分配律
  9. 乘法結合律
    \(k_1 [k_2 ({\bf p} + V)] = k_1 (k_2 {\bf p} + V).\)
    因為 \(U\) 具乘法結合律,
    所以 \(k_1 (k_2 {\bf p} + V) = [k_1 k_2] {\bf p} + V = [k_1 k_2] ({\bf p} + V)\)
    也就是說, \(k_1 [k_2 ({\bf p} + V)] = [k_1 k_2] ({\bf p} + V)\)
    因此 \(U / V\) 具乘法結合律
  10. 乘法單位元素
    因為 \(1 \times ({\bf p} + V) = (1 \times {\bf p}) + V = ({\bf p} + V)\)
    因此 \(U \times V\) 具乘法單位元素

基底的部份要小心一點,以你給的例子來說 \(U/V\) 的維度是 \(1\)
特別的是 \((1,0) + V = (0,0) + V\)

找基底:
\(U\)\(\mathbb{R}^2\)\(V\)\(\vspan\{(1,0)\}\)
則假設 \(S = \{ (0,1) + V \}\)\(U / V\) 的一組基底,
證明其正確性 :

  1. \(\vspan(S) = U / V.\)
    \(c_1 , c_2 \in \mathbb{R}\)
    則任何 \((c_1 , c_2) + V \in U / V\) 都可寫成 \(c_1 [(1,0) + V] + c_2 [(0,1) + V]\)
    且已知 \((1,0) + V = (0,0) + V\)
    \(c_1 [(1,0) + V] + c_2 [(0,1) + V] = c_1 [(0,0) + V] + c_2 [(0,1) + V] = c_2 [(0,1) + V]\)
    也就是說,任何 \((c_1 , c_2) + V \in U / V\) 都可寫成 \(c_2 [(0,1) + V]\)
    可知 \(\vspan(S) = U / V.\)
  2. \(S\) 線性獨立
    \(c_2 [(0,1) + V] = (0,0) + V\)
    這表示 \(c_2(0,1) \in V = \vspan(\{(1,0)\})\)
    而此條件唯有 \(c_2 = 0\) 時成立。
    可知 \(S\) 線性獨立
    因此 \(S = \{ (0,1) + V \}\)\(U / V\) 的一組基底。

目前分數 6.5

Select a repo