changed 4 years ago
Linked with GitHub

向量、長度、角度

\(\newcommand{\trans}{^\top} \newcommand{\adj}{^{\rm adj}} \newcommand{\cof}{^{\rm cof}} \newcommand{\inp}[2]{\left\langle#1,#2\right\rangle} \newcommand{\dunion}{\mathbin{\dot\cup}} \newcommand{\bzero}{\mathbf{0}} \newcommand{\bone}{\mathbf{1}} \newcommand{\ba}{\mathbf{a}} \newcommand{\bb}{\mathbf{b}} \newcommand{\bc}{\mathbf{c}} \newcommand{\bd}{\mathbf{d}} \newcommand{\be}{\mathbf{e}} \newcommand{\bh}{\mathbf{h}} \newcommand{\bp}{\mathbf{p}} \newcommand{\bq}{\mathbf{q}} \newcommand{\br}{\mathbf{r}} \newcommand{\bx}{\mathbf{x}} \newcommand{\by}{\mathbf{y}} \newcommand{\bz}{\mathbf{z}} \newcommand{\bu}{\mathbf{u}} \newcommand{\bv}{\mathbf{v}} \newcommand{\bw}{\mathbf{w}} \newcommand{\tr}{\operatorname{tr}} \newcommand{\nul}{\operatorname{null}} \newcommand{\rank}{\operatorname{rank}} %\newcommand{\ker}{\operatorname{ker}} \newcommand{\range}{\operatorname{range}} \newcommand{\Col}{\operatorname{Col}} \newcommand{\Row}{\operatorname{Row}} \newcommand{\spec}{\operatorname{spec}} \newcommand{\vspan}{\operatorname{span}} \newcommand{\Vol}{\operatorname{Vol}} \newcommand{\sgn}{\operatorname{sgn}} \newcommand{\idmap}{\operatorname{id}} \newcommand{\am}{\operatorname{am}} \newcommand{\gm}{\operatorname{gm}} \newcommand{\mult}{\operatorname{mult}} \newcommand{\iner}{\operatorname{iner}}\)

Exercise 7

複數向量的集合記作 \(\mathbb{C}^n\)
\({\bf x} = (x_1,\ldots,x_n)\) 為複數向量﹐
長度定義為 \(\|{\bf x}\| = \sqrt{|x_1|^2 + \cdots |x_n|^2}\)
\({\bf x} = (x_1,\ldots,x_n)\)\({\bf y} = (y_1,\ldots,y_n)\) 為兩複數向量﹐
內積定義為 \(\langle{\bf x},{\bf y}\rangle = x_1\overline{y_1} + \cdots + x_n\overline{y_n}\)

Exercise 7(a)

證明複數向量有以下性質:

  1. \(\|{\bf x}\| \geq 0\) and the equality holds if and only if \({\bf x} = {\bf 0}\).
  2. \(\|k{\bf x}\| = |k|\cdot\|{\bf x}\|\)
  3. \(\|{\bf x}\| + \|{\bf y}\| \geq \|{\bf x} - {\bf y}\|\) (triangle inequality).
  4. \(\|{\bf x}\|^2 = \langle{\bf x},{\bf x}\rangle\).
  5. \(\langle{\bf x}_1 + {\bf x}_2,{\bf y}\rangle = \langle{\bf x}_1,{\bf y}\rangle + \langle{\bf x}_2,{\bf y}\rangle\).
  6. \(\langle k{\bf x},{\bf y}\rangle = k\langle{\bf x},{\bf y}\rangle\) and \(\langle {\bf x},k{\bf y}\rangle = \overline{k}\langle{\bf x},{\bf y}\rangle\).
  7. \(\langle {\bf x},{\bf y}\rangle = \overline{\langle {\bf y},{\bf x}\rangle}\).
  8. \(|\langle {\bf x},{\bf y}\rangle| \leq \|{\bf x}\|\cdot \|{\bf y}\|\) (CauchySchwarz inequality).

在通篇證明裡,我們令 \(\bx = (x_1,\ldots,x_n)\)\(\by = (y_1,\ldots,y_n)\)

提示:
可以先證明 \(\|{\bf x}\pm{\bf y}\|^2 = \|{\bf x}\|^2 \pm \operatorname{Re}\langle {\bf x},{\bf y}\rangle+ \|{\bf y}\|^2\)
我們總是可以找到一個好的 \(e^{i\theta}\)
使得 \(\operatorname{Re}\langle e^{i\theta}{\bf x},{\bf y}\rangle = |\langle{\bf x},{\bf y}\rangle|\)

[由廖緯程同學提供]
在通篇證明裡,我們令 \(\bx = (x_1,\ldots,x_n)\)\(\by = (y_1,\ldots,y_n)\)

我們先考慮提示裡的第一部份: 證明\(\|{\bf x}\pm{\bf y}\|^2 = \|{\bf x}\|^2 \pm \operatorname{Re}\langle {\bf x},{\bf y}\rangle+ \|{\bf y}\|^2\)

先證明 \(|z_1\pm z_2|^2=|z_1|^2+|z_2|^2\pm2\operatorname{Re}(z_1\overline{z_2})\)
\(z_1,z_2\in\mathbb{C},\)其中 \(z_1=a_1+b_1i,z_2=a_2+b_2i,a_1,a_2,b_1,b_2\in\mathbb{R}\)

\[ \begin{aligned} |z_1\pm z_2|^2 &= |(a_1\pm a_2)+(b_1\pm b_2)i|^2\\ &=(a_1^2+b_1^2)+(a_2^2+b_2^2)\pm 2(a_1a_2+b_1b_2)\\ &=|z_1|^2+|z_2|^2\pm 2\operatorname{Re}(z_1\overline{z_2})\\ \end{aligned} \]

再證明 \(\|{\bf x}\pm{\bf y}\|^2 = \|{\bf x}\|^2 \pm \operatorname{Re}\langle {\bf x},{\bf y}\rangle+ \|{\bf y}\|^2\)
\(\bx,\by\in\mathbb{C}^n\),我們可以假設 \(\bx = (x_1,\ldots, x_n)\)\(\by = (y_1,\ldots, y_n)\),其中對於 \(i = 1,\ldots,n\) 來說 \(x_i,y_i\in\mathbb{C}\)

\[ \begin{aligned} \|{\bf x}\pm {\bf y}\|^2 &=\|(x_1\pm y_1)+\cdots+(x_n\pm y_n)\|^2\\ &=\sqrt{|x_1\pm y_1|^2+\cdots+|x_n\pm y_n|^2}^2\\ &=(|x_1|^2+\cdots+|x_n|^2)+(|y_1|^2+\cdots+|y_n|^2)\pm 2\operatorname{Re}(x_1{\overline y_1}+\cdots x_n{\overline y_n})\\ &=\|{\bf x}\|^2\pm 2\operatorname{Re}\langle{\bf x},{\bf y}\rangle+\|{\bf y}\|^2, \end{aligned} \]

所以 \(\|{\bf x}\pm{\bf y}\|^2 = \|{\bf x}\|^2 \pm \operatorname{Re}\langle {\bf x},{\bf y}\rangle+ \|{\bf y}\|^2\)

[由廖緯程同學提供]
接下來我們考慮提示的第二部份:
證明存在一個 \(e^{i\theta}\) 使得 \(\operatorname{Re}\langle e^{i\theta}{\bf x},{\bf y}\rangle = |\langle{\bf x},{\bf y}\rangle|\)

我們首先觀察到 \(\operatorname{Re}\langle e^{i\theta}{\bf x},{\bf y}\rangle=\operatorname{Re}(e^{i\theta}\langle{\bf x},{\bf y}\rangle)\)
\(z=\langle{\bf x},{\bf y}\rangle=a+bi=|z|(\cos\eta+i\sin\eta)\),其中 \(\cos\eta=\frac{a}{|z|}\)\(\sin\eta=\frac{b}{|z|}\)
\(|\langle{\bf x},{\bf y}\rangle |\) 代表 \(z\) 在複數平面上的長度,
\(e^{i\theta}\langle{\bf x},{\bf y}\rangle\)代表將 \(z\) 在複數平面上逆時針旋轉 \(\theta\) 後的複數。
\(\operatorname{Re}(e^{i\theta}\langle{\bf x},{\bf y}\rangle)\) 代表 \(e^{i\theta}\langle{\bf x},{\bf y}\rangle\) 在實數軸上的投影長。

所以我們只要令 \(\theta+\eta=2n\pi,\) 就可以得 \(\operatorname{Re}\langle e^{i\theta}{\bf x},{\bf y}\rangle = |\langle{\bf x},{\bf y}\rangle|\)

[由廖緯程同學提供]

  1. 證明 \(\|{\bf x}\| \geq 0\)\({\bf x} = {\bf 0}\iff \|{\bf x}\|=0\)

    因為對於所有 \(k = 1,\ldots, n\) 都有 \(|x_k|^2\geq 0\),得 \(\|{\bf x}\|=\sqrt{{|x_1|}^2+\cdots+{|x_n|}^2}\geq 0\)

    並且,若 \({\bf x}=0\)\(\|{\bf x}\|=\sqrt{|0|^2+\cdots+|0|^2}=0\)

    \(\|\bx\| = 0,\)因為對於所有 \(k = 1,\ldots, n\) 都有 \(|x_k|^2\geq 0,\)如果有任一個 \(|x_k|^2>0,\)會有 \(\|\bx\|>0,\) 這與假設矛盾,所以所有的 \(|x_k|^2=0,\)\({\bf x} = {\bf 0}。\)

    所以 \(\|{\bf x}\| \geq 0\)\({\bf x} = {\bf 0}\iff \|{\bf x}\|=0\)

  2. 證明 \(\|k{\bf x}\| = |k|\cdot\|{\bf x}\|\)

    因為 \[\begin{aligned} \|k{\bf x}\| &=\sqrt{|kx_1|^2+\cdots+|kx_n|^2}\\ &=\sqrt{|k|^2|x_1|^2+\cdots+|k|^2|x_n|^2}\\ &=|k|\sqrt{|x_1|^2+\cdots+|x_n|^2}\\ &=|k|\cdot\|{\bf x}\|, \end{aligned} \]

    所以 \(\|k{\bf x}\| = |k|\cdot\|{\bf x}\|\)

  3. 證明 \(\|{\bf x}\| + \|{\bf y}\| \geq \|{\bf x} - {\bf y}\|\)

    根據柯西-施瓦茨不等式,我們有
    \[ \|{\bf x}\|\cdot\|{\bf y}\|\geq|\langle{\bf x},{\bf y}\rangle|\geq|\operatorname{Re}\langle{\bf x},{\bf y}\rangle|\geq -\operatorname{Re}\langle{\bf x},{\bf y}\rangle. \] 於是 \(\|{\bf x}\|\cdot\|{\bf y}\|\geq-\operatorname{Re}\langle{\bf x},{\bf y}\rangle\)
    同乘 \(2\) 後,同加 \(\|{\bf x}\|^2+\|{\bf y}\|^2\)

    \[ \|{\bf x}\|^2+2\|{\bf x}\|\cdot\|{\bf y}\|+\|{\bf y}\|^2\geq|{\bf x}\|^2-2\operatorname{Re}\langle{\bf x},{\bf y}\rangle+\|{\bf y}\|^2, \] 而此不等式等價於
    \[ (\|{\bf x}\| + \|{\bf y}\|)^2 \geq \|{\bf x} - {\bf y}\|^2 \geq 0 \] 以及
    \[ \|{\bf x}\| + \|{\bf y}\| \geq \|{\bf x} - {\bf y}\|. \]

  4. 證明 \(\|{\bf x}\|^2 = \langle{\bf x},{\bf x}\rangle\)

    直接展開 \[\begin{aligned} \| {\bf x} \|^2 &= | x_1 |^2 + \cdots + |x_n|^2\\ &= x_1 \overline{x_1} + \cdots + x_n \overline{x_n}\\ &=\langle {\bf x} , {\bf x} \rangle. \end{aligned} \] 所以 \(\|{\bf x}\|^2 = \langle{\bf x},{\bf x}\rangle\)

  5. 證明 \(\langle \bx_1 + \bx_2,{\bf y}\rangle = \langle \bx_1,{\bf y}\rangle + \langle \bx_2,{\bf y}\rangle\)

    \(\bx_1 = (x_{11},\ldots, x_{1n})\)\(\bx_2 = (x_{21}, \ldots, x_{2n})\)

    直接展開
    \[\begin{aligned}\langle \bx_1 + \bx_2 , {\bf y} \rangle &=(x_{11} + x_{21}) \overline{y_1} + \cdots + (x_{1n} + x_{2n}) \overline{y_n}\\ &=(x_{11} \overline{y_1} + \cdots + x_{1n} \overline{y_n}) + (x_{21} \overline{y_1} + \cdots + x_{2n} \overline{y_n})\\ &=\langle \bx_1, {\bf y} \rangle + \langle \bx_2 , {\bf y} \rangle.\end{aligned} \] 所以 \(\langle{\bf x}_1 + {\bf x}_2,{\bf y}\rangle = \langle{\bf x}_1,{\bf y}\rangle + \langle{\bf x}_2,{\bf y}\rangle\)

  6. 證明 \(\langle k{\bf x},{\bf y}\rangle = k\langle{\bf x},{\bf y}\rangle\)\(\langle {\bf x},k{\bf y}\rangle = \overline{k}\langle{\bf x},{\bf y}\rangle\)

    直接展開
    \[\begin{aligned}\langle k {\bf x} , {\bf y} \rangle &= k x_1 \overline{y_1} + \cdots + k x_n \overline{y_n}\\ &= k (x_1 \overline{y_1} + \cdots + x_n \overline{y_n})\\ &= k \langle {\bf x} , {\bf y} \rangle,\end{aligned} \] 再次展開
    \[\begin{aligned}\langle {\bf x} , k{\bf y} \rangle&= x_1(\overline{ky_1}) + \cdots + x_n(\overline{ky_n})\\ &= x_1\overline{k}\overline{y_1} + \cdots + x_n\overline{k}\overline{y_n}\\ &=\overline{k}(x_1\overline{y_1}+\cdots+x_n\overline{y_n})\\ &=\overline{k}\langle{\bf x},{\bf y}\rangle.\end{aligned} \] 所以 \(\langle k{\bf x},{\bf y}\rangle = k\langle{\bf x},{\bf y}\rangle\)\(\langle {\bf x},k{\bf y}\rangle = \overline{k}\langle{\bf x},{\bf y}\rangle\)

  7. 證明 \(\langle {\bf x},{\bf y}\rangle = \overline{\langle {\bf y},{\bf x}\rangle}\)

    直接展開
    \[\begin{aligned} \overline{\langle {\bf y} , {\bf x} \rangle}&=\overline{(y_1\overline{x_1} + \cdots + y_n \overline{x_n})}\\ &=\overline{y_1 \overline{x_1}} + \cdots + \overline{y_n \overline{x_n}}\\ &= \overline{y_1} x_1 + \cdots + \overline{y_n} x_n\\ &= \langle {\bf x} , {\bf y} \rangle.\end{aligned} \] 所以 \(\langle {\bf x},{\bf y}\rangle = \overline{\langle {\bf y},{\bf x}\rangle}\)

  8. 證明 \(|\langle {\bf x},{\bf y}\rangle| \leq \|{\bf x}\|\cdot \|{\bf y}\|\) (柯西-施瓦茨不等式)。

    \({\bf z} = {\bf x} - \frac{\langle {\bf x} , {\bf y} \rangle}{\langle{\bf y} , {\bf y} \rangle} {\bf y}\)

    \[\begin{aligned}\langle {\bf z} , {\bf y} \rangle&= \langle {\bf x} - \frac{\langle {\bf x} , {\bf y} \rangle}{\langle{\bf y} , {\bf y} \rangle} {\bf y} , {\bf y} \rangle\\ &= \langle {\bf x} , {\bf y} \rangle - \frac{\langle {\bf x} , {\bf y} \rangle}{\langle{\bf y} , {\bf y} \rangle} \langle {\bf y} , {\bf y} \rangle\\ &= 0.\end{aligned} \] 所以 \({\bf z}\) 正交於 \({\bf y}\)\({\bf x} = \frac{\langle {\bf x} , {\bf y} \rangle}{\langle{\bf y} , {\bf y} \rangle} {\bf y} + {\bf z}\)
    再由 \({\bf z}\)
    \[\begin{aligned} \|{\bf x}\|^2&= \left|\frac{\langle {\bf x} , {\bf y} \rangle}{\langle{\bf y} , {\bf y} \rangle}\right|^2 \|{\bf y}\|^2 + \|{\bf z}\|^2\\ &= \frac{|\langle {\bf x} , {\bf y} \rangle|}{\|{\bf y} \|^2}^2 + \|{\bf z}\|^2\\ &\geq \frac{|\langle {\bf x} , {\bf y} \rangle|}{\|{\bf y} \|^2}^2\\ \end{aligned}\] 所以
    \[\|{\bf x}\|^2 \geq \frac{|\langle {\bf x} , {\bf y} \rangle|}{\|{\bf y} \|^2}^2. \] 而此不等式等價於 \[|\langle {\bf x} , {\bf y} \rangle|^2 \leq (\|{\bf x}\|\cdot \|{\bf y}\|)^2 \] 以及 \[ |\langle {\bf x},{\bf y}\rangle| \leq \|{\bf x}\|\cdot \|{\bf y}\|. \]

Exercise 7(b)

\({\bf x},{\bf y}\in\mathbb{C}^n\)
證明

\[\frac{\operatorname{Re}\langle{\bf x}, {\bf y}\rangle}{\|{\bf x}\|\|{\bf y}\|} = \frac{\|{\bf x}\|^2 + \|{\bf y}\|^2 - \|{\bf x} - {\bf y}\|^2}{2\|{\bf x}\|\|{\bf y}\|}. \]

因此我們可以把兩複數向量的夾角定義為 \(\theta\)
而這個 \(\theta\) 要滿足 \(\cos\theta = \frac{\operatorname{Re}\langle{\bf x}, {\bf y}\rangle}{\|{\bf x}\|\|{\bf y}\|}\)

[由廖緯程同學提供]
直接展開
\[ \|{\bf x} - {\bf y}\|^2 = \|{\bf x}\|^2 - 2\operatorname{Re}\langle {\bf x},{\bf y}\rangle + \|{\bf y}\|^2. \] 移項後得到 \[ 2\operatorname{Re}\langle {\bf x},{\bf y}\rangle = \|{\bf x}\|^2 + \|{\bf y}\|^2 - \|{\bf x} - {\bf y}\|^2. \] 將兩側同除 \(2\|{\bf x}\|\|{\bf y}\|\) 得到
\[ \frac{\operatorname{Re}\langle{\bf x}, {\bf y}\rangle}{\|{\bf x}\|\|{\bf y}\|} = \frac{\|{\bf x}\|^2 + \|{\bf y}\|^2 - \|{\bf x} - {\bf y}\|^2}{2\|{\bf x}\|\|{\bf y}\|}. \]

Exercise 7©

\({\bf x},{\bf y}\in\mathbb{C}^n\)
\({\bf y}\)\({\bf x}\) 上的投影。

注意 \(\langle {\bf x},{\bf y}\rangle\)\(\langle {\bf y},{\bf x}\rangle\) 不一樣喔!

[由廖緯程同學提供]
\({\bf w}\)\({\bf y}\)\({\bf x}\) 上的投影,且 \({\bf y} = {\bf w} + {\bf h}\)\(\langle {\bf h},{\bf x}\rangle = 0\)\({\bf w} = k {\bf x}\)

自然地
\[ \begin{aligned} \langle {\bf h},{\bf x}\rangle &= \langle {\bf y} - {\bf w},{\bf x}\rangle\\ &= \langle {\bf y},{\bf x}\rangle - k \langle {\bf x},{\bf x}\rangle\\ &=0. \end{aligned} \] 所以 \(k = \frac{\langle {\bf y},{\bf x}\rangle}{\langle {\bf x},{\bf x}\rangle}\)

因此 \({\bf y}\)\({\bf x}\) 上的投影 \({\bf w} = \frac{\langle {\bf y},{\bf x}\rangle}{\langle {\bf x},{\bf x}\rangle} {\bf x}\)

Select a repo