Jephian Lin
    • Create new note
    • Create a note from template
      • Sharing URL Link copied
      • /edit
      • View mode
        • Edit mode
        • View mode
        • Book mode
        • Slide mode
        Edit mode View mode Book mode Slide mode
      • Customize slides
      • Note Permission
      • Read
        • Only me
        • Signed-in users
        • Everyone
        Only me Signed-in users Everyone
      • Write
        • Only me
        • Signed-in users
        • Everyone
        Only me Signed-in users Everyone
      • Engagement control Commenting, Suggest edit, Emoji Reply
    • Invite by email
      Invitee

      This note has no invitees

    • Publish Note

      Share your work with the world Congratulations! 🎉 Your note is out in the world Publish Note

      Your note will be visible on your profile and discoverable by anyone.
      Your note is now live.
      This note is visible on your profile and discoverable online.
      Everyone on the web can find and read all notes of this public team.
      See published notes
      Unpublish note
      Please check the box to agree to the Community Guidelines.
      View profile
    • Commenting
      Permission
      Disabled Forbidden Owners Signed-in users Everyone
    • Enable
    • Permission
      • Forbidden
      • Owners
      • Signed-in users
      • Everyone
    • Suggest edit
      Permission
      Disabled Forbidden Owners Signed-in users Everyone
    • Enable
    • Permission
      • Forbidden
      • Owners
      • Signed-in users
    • Emoji Reply
    • Enable
    • Versions and GitHub Sync
    • Note settings
    • Note Insights
    • Engagement control
    • Transfer ownership
    • Delete this note
    • Save as template
    • Insert from template
    • Import from
      • Dropbox
      • Google Drive
      • Gist
      • Clipboard
    • Export to
      • Dropbox
      • Google Drive
      • Gist
    • Download
      • Markdown
      • HTML
      • Raw HTML
Menu Note settings Versions and GitHub Sync Note Insights Sharing URL Create Help
Create Create new note Create a note from template
Menu
Options
Engagement control Transfer ownership Delete this note
Import from
Dropbox Google Drive Gist Clipboard
Export to
Dropbox Google Drive Gist
Download
Markdown HTML Raw HTML
Back
Sharing URL Link copied
/edit
View mode
  • Edit mode
  • View mode
  • Book mode
  • Slide mode
Edit mode View mode Book mode Slide mode
Customize slides
Note Permission
Read
Only me
  • Only me
  • Signed-in users
  • Everyone
Only me Signed-in users Everyone
Write
Only me
  • Only me
  • Signed-in users
  • Everyone
Only me Signed-in users Everyone
Engagement control Commenting, Suggest edit, Emoji Reply
  • Invite by email
    Invitee

    This note has no invitees

  • Publish Note

    Share your work with the world Congratulations! 🎉 Your note is out in the world Publish Note

    Your note will be visible on your profile and discoverable by anyone.
    Your note is now live.
    This note is visible on your profile and discoverable online.
    Everyone on the web can find and read all notes of this public team.
    See published notes
    Unpublish note
    Please check the box to agree to the Community Guidelines.
    View profile
    Engagement control
    Commenting
    Permission
    Disabled Forbidden Owners Signed-in users Everyone
    Enable
    Permission
    • Forbidden
    • Owners
    • Signed-in users
    • Everyone
    Suggest edit
    Permission
    Disabled Forbidden Owners Signed-in users Everyone
    Enable
    Permission
    • Forbidden
    • Owners
    • Signed-in users
    Emoji Reply
    Enable
    Import from Dropbox Google Drive Gist Clipboard
       owned this note    owned this note      
    Published Linked with GitHub
    Subscribed
    • Any changes
      Be notified of any changes
    • Mention me
      Be notified of mention me
    • Unsubscribe
    Subscribe
    # Python: NumPy 與數值線性代數 Python: NumPy and numerical linear algebra ![Creative Commons License](https://i.creativecommons.org/l/by/4.0/88x31.png) This work by Jephian Lin is licensed under a [Creative Commons Attribution 4.0 International License](http://creativecommons.org/licenses/by/4.0/). ```python import numpy as np from numpy import linalg as LA ``` ## 符號運算與數值運算 **符號運算** 通常比較慢,但帶來精確的結果; **數值運算** 通常比較快,但必須處理計算誤差。 在線性代數裡, 符號運算擅長的包含:最簡階梯型、零解空間、秩與零維度、喬丹標準型等等; 數值運算擅長的包含:矩陣指數、特徵值、特徵向量、奇異值分解、QR 分解等等。 Sage 為建立在 Python 上的一套代數系統, 主要目的在於處理符號運算; 而 NumPy 為純 Python 環境中的一個套件, 主要目的在於處理大型陣列 (把矩陣看成兩個維度的話,NumPy 可以處理任意維度的陣列) 的數值運算。 <!-- eng start --> **Symbolic computation** is slower but leads to an exact solution; while **numerical computation** is faster but leads to a solution with numerical errors. In linear algebra, symbolic computation is good for finding the reduced echelon form, the kernel, the rank and the nullity, and the Jordan canonical form, etc.; while numerical computation is good for finding the matrix exponential, the eigenvalues, the eigenvectors, the singular value decomposition, and the QR decomposition, etc. Sage is a algebra system built on Python, which is good at symbolic computation; while NumPy is a package in Python, which is good at numerical computation on huge arrays. (A matrix can be viewed as an array of two dimension, while NumPy can deal with arrays of arbitrary dimensions. <!-- eng end --> ## 建構矩陣 1. `np.array( list of lists )`:把 `list of lists` 中的每個 `list` 當作矩陣的列。 2. `np.array(list).reshape(m,n)`:把 `list` 重組成 `m x n` 的矩陣。 3. `np.eye(n)`:單位矩陣。 4. `np.zeros((m,n))`:全零矩陣。 5. `np.diag(list)`:對角矩陣,其對角線上元素由 `list` 決定。 利用 `print` 來顯示矩陣。 <!-- eng start --> 1. `np.array( list of lists )` : construct an array whose rows are the `list` in `list of lists`. 2. `np.array(list).reshape(m,n)` : make `list` into an `m x n` matrix. 3. `np.eye(n)` : identity matrix. 4. `np.zeros((m,n))` : zero matrix. 5. `np.diag(list)` : diagonal matrix whose entries are determined by `list` . Use `print` to show the matrix. <!-- eng end --> ```python A = np.array([[1,2,3], [4,5,6]]) print(A) ``` ```python A = np.array([1,2,3,4,5,6]).reshape(2,3) print(A) ``` ```python A = np.eye(3) # A = np.zeros((3,3)) # A = np.diag([1,2,3]) print(A) ``` ## 陣列之間的運算 Operations between matrices 有別於 Sage,在 NumPy 中的所有常見運算都是逐項處理。 若要處理矩陣相乘,可以使用 `A.dot(B)`。 <!-- eng start --> Different from Sage, most of the operations in NumPy is entrywise. We may use `A.dot(B)` for the usual matrix multiplication. <!-- eng end --> ```python A = np.array([1,2,3,4,5,6]).reshape(2,3) B = np.array([6,5,4,3,2,1]).reshape(2,3) C = A + B # C = A - B # C = A * B # C = A / B # C = A ** B print(C) ``` ```python A = np.array([1,2,3,4,5,6]).reshape(2,3) B = np.array([6,5,4,3,2,1]).reshape(3,2) C = A.dot(B) print(C) ``` ## 從矩陣中選取各項或子矩陣 Selecting an entry or a submatrix from a matrix 若 `A` 是一個矩陣。 1. `A[i,j]`:選取第 `ij` 項。 2. `A[list1, list2]`:選取列在 `list1` 中行在 `list2` 中的子矩陣。 也可以混合使用﹐如 `A[i, list]` 或 `A[list, j]`。 <!-- eng start --> Let `A` be a matrix. 1. `A[i,j]` : the `ij` entry of `A` . 2. `A[list1, list2]` : the submatrix of $A$ induced on rows in `list1` and columns in `list2` . One may also mix the two usages, such as `A[i, list]` or `A[list, j]` . <!-- eng end --> ```python A = np.array([1,2,3,4,5,6]).reshape(2,3) print(A) print(A[0,1]) print(A[[0,1],[1,2]]) ``` 選取子矩陣中 `list` 的可以用 `a:b` 的格式取代。 1. `a:b`:從 `a` 到 `b`(不包含 `b`)。 2. `a:`:從 `a` 到底。 3. `:b`:從頭到 `b`(不包含 `b`)。 4. `:`:全部。 <!-- eng start --> When selecting a submatrix, the argument `list` can be replaced by `a:b` . 1. `a:b` : from `a` to `b` (excluding `b` ). 2. `a:` : from `a` to the end. 3. `:b` : from the beginning to `b` (excluding `b` ). 4. `:` : all. <!-- eng end --> ```python A = np.array([1,2,3,4,5,6]).reshape(2,3) print(A[:,1:]) ``` 可以把選出來的子矩陣設定成給定的矩陣。 <!-- eng start --> We may also assign values to the selected submatrix. <!-- eng end --> ```python A = np.zeros((2,3) ) print(A) A[0,0] = 100 print(A) A[:,1:] = np.eye(2) print(A) ``` ## 線性代數上的運算 Operations in linear algebra 若 `A` 為一矩陣。 1. `A.T`:`A` 的轉置。 2. `LA.det`:`A` 的行列式值。 3. `np.trace(A)`:`A` 的跡。 4. `LA.inv`:`A` 的反矩陣。 5. `np.poly`:`A` 的特徵多項式。 <!-- eng start --> Let `A` be a matrix. 1. `A.T` : the transpose of `A` . 2. `LA.det` : the determinant of `A` . 3. `np.trace(A)` : the trace of `A` . 4. `LA.inv` : the inverse of `A` . 5. `np.poly` : the characteristic polynomial of `A` . <!-- eng end --> ```python A = np.array([1,2,3,4,5,6]).reshape(2,3) print(A.T) ``` ```python A = np.array([1,2,3,4]).reshape(2,2) print(LA.det(A)) ``` ```python A = np.array([1,2,3,4]).reshape(2,2) print(np.trace(A)) ``` ```python A = np.array([1,2,3,4]).reshape(2,2) Ainv = LA.inv(A) print("A^{-1} =") print(Ainv) print("A A^{-1} =") print(A.dot(Ainv)) ``` ```python A = np.array([1,2,3,4]).reshape(2,2) p = np.poly(A) print("characteristic polynomial has coefficients") print(p) ### Cayley--Hamilton Theorem print("p_A(A) =") print(p[0] * A.dot(A) + p[1] * A + p[2] * np.eye(2)) ``` ## 特徵值、特徵向量、對角化 Eigenvalues, eigenvectors, and diagonalization 若 `A` 為一矩陣。 1. `eig` 或 `eigh`:回傳一個列表及一個矩陣,列表為 `A` 的特徵值,而矩陣的行向量為 `A` 的特徵向量。 2. `eigvals` 或 `eigvalsh`:回傳 `A` 的特徵值。 其中有 `h` 的版本是專為對稱矩陣而設計,並有以下特點: - 回傳的特徵值都是實數,且由小到大排列。 - 回傳的特徵向量會互向垂直,且長度是一。 - 只適用對稱矩陣。 <!-- eng start --> Let `A` be a matrix. 1. `eig` or `eigh` : returns a list and a matrix, where the list consists of the eigenvalues of `A` , while the matrix contains the eigenvectors of `A` as the columns. 2. `eigvals` or `eigvalsh` : only the eigenvalues of `A` . Here the version with an extra `h` is customized for Hermitian matrices and has the following features: - The eigenvalues are all real, and they are sorted from small to large in the output. - The eigenvectors are orthonormal. - It only works for Hermitian matrices. <!-- eng end --> ```python A = np.array([1,2,3,4]).reshape(2,2) vals, vecs = LA.eig(A) print("eigenvalues =") print(vals) print("eigenvectors are the columns of") print(vecs) ``` ```python A = np.array([1,2,3,4]).reshape(2,2) vals, vecs = LA.eig(A) ### A v = lambda v k = 0 print("A v") print(A.dot(vecs[:,k])) print("lambda v") print(vals[k] * vecs[:,k]) ``` ```python A = np.array([1,2,3,4]).reshape(2,2) vals, vecs = LA.eig(A) ### D = Qinv A Q print("D =") print(np.diag(vals)) print("Q^{-1} A Q =") print(LA.inv(vecs).dot(A).dot(vecs)) ``` ```python A = np.array([1,2,3,4]).reshape(2,2) vals, vecs = LA.eig(A) ### e^A = Q e^D Qinv eD = np.diag(np.exp(vals)) print("e^D =") print(eD) eA = vecs.dot(eD).dot(LA.inv(vecs)) print("e^A =") print(eA) ```

    Import from clipboard

    Paste your markdown or webpage here...

    Advanced permission required

    Your current role can only read. Ask the system administrator to acquire write and comment permission.

    This team is disabled

    Sorry, this team is disabled. You can't edit this note.

    This note is locked

    Sorry, only owner can edit this note.

    Reach the limit

    Sorry, you've reached the max length this note can be.
    Please reduce the content or divide it to more notes, thank you!

    Import from Gist

    Import from Snippet

    or

    Export to Snippet

    Are you sure?

    Do you really want to delete this note?
    All users will lose their connection.

    Create a note from template

    Create a note from template

    Oops...
    This template has been removed or transferred.
    Upgrade
    All
    • All
    • Team
    No template.

    Create a template

    Upgrade

    Delete template

    Do you really want to delete this template?
    Turn this template into a regular note and keep its content, versions, and comments.

    This page need refresh

    You have an incompatible client version.
    Refresh to update.
    New version available!
    See releases notes here
    Refresh to enjoy new features.
    Your user state has changed.
    Refresh to load new user state.

    Sign in

    Forgot password

    or

    By clicking below, you agree to our terms of service.

    Sign in via Facebook Sign in via Twitter Sign in via GitHub Sign in via Dropbox Sign in with Wallet
    Wallet ( )
    Connect another wallet

    New to HackMD? Sign up

    Help

    • English
    • 中文
    • Français
    • Deutsch
    • 日本語
    • Español
    • Català
    • Ελληνικά
    • Português
    • italiano
    • Türkçe
    • Русский
    • Nederlands
    • hrvatski jezik
    • język polski
    • Українська
    • हिन्दी
    • svenska
    • Esperanto
    • dansk

    Documents

    Help & Tutorial

    How to use Book mode

    Slide Example

    API Docs

    Edit in VSCode

    Install browser extension

    Contacts

    Feedback

    Discord

    Send us email

    Resources

    Releases

    Pricing

    Blog

    Policy

    Terms

    Privacy

    Cheatsheet

    Syntax Example Reference
    # Header Header 基本排版
    - Unordered List
    • Unordered List
    1. Ordered List
    1. Ordered List
    - [ ] Todo List
    • Todo List
    > Blockquote
    Blockquote
    **Bold font** Bold font
    *Italics font* Italics font
    ~~Strikethrough~~ Strikethrough
    19^th^ 19th
    H~2~O H2O
    ++Inserted text++ Inserted text
    ==Marked text== Marked text
    [link text](https:// "title") Link
    ![image alt](https:// "title") Image
    `Code` Code 在筆記中貼入程式碼
    ```javascript
    var i = 0;
    ```
    var i = 0;
    :smile: :smile: Emoji list
    {%youtube youtube_id %} Externals
    $L^aT_eX$ LaTeX
    :::info
    This is a alert area.
    :::

    This is a alert area.

    Versions and GitHub Sync
    Get Full History Access

    • Edit version name
    • Delete

    revision author avatar     named on  

    More Less

    Note content is identical to the latest version.
    Compare
      Choose a version
      No search result
      Version not found
    Sign in to link this note to GitHub
    Learn more
    This note is not linked with GitHub
     

    Feedback

    Submission failed, please try again

    Thanks for your support.

    On a scale of 0-10, how likely is it that you would recommend HackMD to your friends, family or business associates?

    Please give us some advice and help us improve HackMD.

     

    Thanks for your feedback

    Remove version name

    Do you want to remove this version name and description?

    Transfer ownership

    Transfer to
      Warning: is a public team. If you transfer note to this team, everyone on the web can find and read this note.

        Link with GitHub

        Please authorize HackMD on GitHub
        • Please sign in to GitHub and install the HackMD app on your GitHub repo.
        • HackMD links with GitHub through a GitHub App. You can choose which repo to install our App.
        Learn more  Sign in to GitHub

        Push the note to GitHub Push to GitHub Pull a file from GitHub

          Authorize again
         

        Choose which file to push to

        Select repo
        Refresh Authorize more repos
        Select branch
        Select file
        Select branch
        Choose version(s) to push
        • Save a new version and push
        • Choose from existing versions
        Include title and tags
        Available push count

        Pull from GitHub

         
        File from GitHub
        File from HackMD

        GitHub Link Settings

        File linked

        Linked by
        File path
        Last synced branch
        Available push count

        Danger Zone

        Unlink
        You will no longer receive notification when GitHub file changes after unlink.

        Syncing

        Push failed

        Push successfully