Jephian Lin
    • Create new note
    • Create a note from template
      • Sharing URL Link copied
      • /edit
      • View mode
        • Edit mode
        • View mode
        • Book mode
        • Slide mode
        Edit mode View mode Book mode Slide mode
      • Customize slides
      • Note Permission
      • Read
        • Only me
        • Signed-in users
        • Everyone
        Only me Signed-in users Everyone
      • Write
        • Only me
        • Signed-in users
        • Everyone
        Only me Signed-in users Everyone
      • Engagement control Commenting, Suggest edit, Emoji Reply
    • Invite by email
      Invitee

      This note has no invitees

    • Publish Note

      Share your work with the world Congratulations! 🎉 Your note is out in the world Publish Note

      Your note will be visible on your profile and discoverable by anyone.
      Your note is now live.
      This note is visible on your profile and discoverable online.
      Everyone on the web can find and read all notes of this public team.
      See published notes
      Unpublish note
      Please check the box to agree to the Community Guidelines.
      View profile
    • Commenting
      Permission
      Disabled Forbidden Owners Signed-in users Everyone
    • Enable
    • Permission
      • Forbidden
      • Owners
      • Signed-in users
      • Everyone
    • Suggest edit
      Permission
      Disabled Forbidden Owners Signed-in users Everyone
    • Enable
    • Permission
      • Forbidden
      • Owners
      • Signed-in users
    • Emoji Reply
    • Enable
    • Versions and GitHub Sync
    • Note settings
    • Note Insights New
    • Engagement control
    • Transfer ownership
    • Delete this note
    • Save as template
    • Insert from template
    • Import from
      • Dropbox
      • Google Drive
      • Gist
      • Clipboard
    • Export to
      • Dropbox
      • Google Drive
      • Gist
    • Download
      • Markdown
      • HTML
      • Raw HTML
Menu Note settings Note Insights Versions and GitHub Sync Sharing URL Create Help
Create Create new note Create a note from template
Menu
Options
Engagement control Transfer ownership Delete this note
Import from
Dropbox Google Drive Gist Clipboard
Export to
Dropbox Google Drive Gist
Download
Markdown HTML Raw HTML
Back
Sharing URL Link copied
/edit
View mode
  • Edit mode
  • View mode
  • Book mode
  • Slide mode
Edit mode View mode Book mode Slide mode
Customize slides
Note Permission
Read
Only me
  • Only me
  • Signed-in users
  • Everyone
Only me Signed-in users Everyone
Write
Only me
  • Only me
  • Signed-in users
  • Everyone
Only me Signed-in users Everyone
Engagement control Commenting, Suggest edit, Emoji Reply
  • Invite by email
    Invitee

    This note has no invitees

  • Publish Note

    Share your work with the world Congratulations! 🎉 Your note is out in the world Publish Note

    Your note will be visible on your profile and discoverable by anyone.
    Your note is now live.
    This note is visible on your profile and discoverable online.
    Everyone on the web can find and read all notes of this public team.
    See published notes
    Unpublish note
    Please check the box to agree to the Community Guidelines.
    View profile
    Engagement control
    Commenting
    Permission
    Disabled Forbidden Owners Signed-in users Everyone
    Enable
    Permission
    • Forbidden
    • Owners
    • Signed-in users
    • Everyone
    Suggest edit
    Permission
    Disabled Forbidden Owners Signed-in users Everyone
    Enable
    Permission
    • Forbidden
    • Owners
    • Signed-in users
    Emoji Reply
    Enable
    Import from Dropbox Google Drive Gist Clipboard
       Owned this note    Owned this note      
    Published Linked with GitHub
    • Any changes
      Be notified of any changes
    • Mention me
      Be notified of mention me
    • Unsubscribe
    {%hackmd 5xqeIJ7VRCGBfLtfMi0_IQ %} # 排列展開式 ![Creative Commons License](https://i.creativecommons.org/l/by/4.0/88x31.png) This work by Jephian Lin is licensed under a [Creative Commons Attribution 4.0 International License](http://creativecommons.org/licenses/by/4.0/). $\newcommand{\trans}{^\top} \newcommand{\adj}{^{\rm adj}} \newcommand{\cof}{^{\rm cof}} \newcommand{\inp}[2]{\left\langle#1,#2\right\rangle} \newcommand{\dunion}{\mathbin{\dot\cup}} \newcommand{\bzero}{\mathbf{0}} \newcommand{\bone}{\mathbf{1}} \newcommand{\ba}{\mathbf{a}} \newcommand{\bb}{\mathbf{b}} \newcommand{\bc}{\mathbf{c}} \newcommand{\bd}{\mathbf{d}} \newcommand{\be}{\mathbf{e}} \newcommand{\bh}{\mathbf{h}} \newcommand{\bp}{\mathbf{p}} \newcommand{\bq}{\mathbf{q}} \newcommand{\br}{\mathbf{r}} \newcommand{\bx}{\mathbf{x}} \newcommand{\by}{\mathbf{y}} \newcommand{\bz}{\mathbf{z}} \newcommand{\bu}{\mathbf{u}} \newcommand{\bv}{\mathbf{v}} \newcommand{\bw}{\mathbf{w}} \newcommand{\tr}{\operatorname{tr}} \newcommand{\nul}{\operatorname{null}} \newcommand{\rank}{\operatorname{rank}} %\newcommand{\ker}{\operatorname{ker}} \newcommand{\range}{\operatorname{range}} \newcommand{\Col}{\operatorname{Col}} \newcommand{\Row}{\operatorname{Row}} \newcommand{\spec}{\operatorname{spec}} \newcommand{\vspan}{\operatorname{span}} \newcommand{\Vol}{\operatorname{Vol}} \newcommand{\sgn}{\operatorname{sgn}} \newcommand{\idmap}{\operatorname{id}}$ ```python from lingeo import random_int_list from gnm import random_permutation ``` ## Main idea One may inductively apply the Laplace expansion to any given matrix. For example, $$ \begin{aligned} \det\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix} &= \det\begin{bmatrix} 1 & 0 & 0 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix} + \det\begin{bmatrix} 0 & 2 & 0 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix} + \det\begin{bmatrix} 0 & 0 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix} \\ &= \det\begin{bmatrix} 1 & 0 & 0 \\ 0 & 5 & 6 \\ 0 & 8 & 9 \end{bmatrix} + \det\begin{bmatrix} 0 & 2 & 0 \\ 4 & 0 & 6 \\ 7 & 0 & 9 \end{bmatrix} + \det\begin{bmatrix} 0 & 0 & 3 \\ 4 & 5 & 0 \\ 7 & 8 & 0 \end{bmatrix} \\ &= \det\begin{bmatrix} 1 & 0 & 0 \\ 0 & 5 & 0 \\ 0 & 0 & 9 \end{bmatrix} + \det\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 6 \\ 0 & 8 & 0 \end{bmatrix} + \\ &\mathrel{\phantom{=}} \det\begin{bmatrix} 0 & 2 & 0 \\ 4 & 0 & 0 \\ 0 & 0 & 9 \end{bmatrix} + \det\begin{bmatrix} 0 & 2 & 0 \\ 0 & 0 & 6 \\ 7 & 0 & 0 \end{bmatrix} + \\ &\mathrel{\phantom{=}} \det\begin{bmatrix} 0 & 0 & 3 \\ 4 & 0 & 0 \\ 0 & 8 & 0 \end{bmatrix} + \det\begin{bmatrix} 0 & 0 & 3 \\ 0 & 5 & 0 \\ 7 & 0 & 0 \end{bmatrix}. \\ \end{aligned} $$ Let $A = \begin{bmatrix} a_{ij} \end{bmatrix}$ be an $n\times n$ matrix. Recall that $\mathfrak{S}_n$ is the set of all permutations on $[n]$. Define the **weight** of a permutation $\sigma\in\mathfrak{S}_n$ as $$ w_A(\sigma) = a_{1\sigma(1)}\cdots a_{n\sigma(n)}. $$ When the matrix $A$ is clear from the context, we often write $w(\sigma) = w_A(\sigma)$. ##### Permutation expansion Let $A = \begin{bmatrix} a_{ij} \end{bmatrix}$ be an $n\times n$ matrix. Then $$ \det(A) = \sum_{\sigma\in\mathfrak{S}_n} \sgn(\sigma)w(\sigma). $$ ## Side stories - continuity of determinant ## Experiments ##### Exercise 1 執行以下程式碼。 ```python ### code set_random_seed(0) print_ans = False n = 5 A = matrix(n, random_int_list(n^2, 3)) sigma1 = random_permutation(n) sigma2 = random_permutation(n) sigma3 = random_permutation(n) pretty_print(LatexExpr("A ="), A) print("one-line representation of sigma1 =", sigma1.one_line) print("one-line representation of sigma2 =", sigma2.one_line) print("one-line representation of sigma3 =", sigma3.one_line) if print_ans: print("sgn(sigma1) =", sigma1.sign()) print("w_A(sigma1) =", sigma1.weight(A)) print("sgn(sigma2) =", sigma2.sign()) print("w_A(sigma2) =", sigma2.weight(A)) print("sgn(sigma3) =", sigma3.sign()) print("w_A(sigma3) =", sigma3.weight(A)) ``` 藉由 `seed 69` 可以得到 $M=\begin{bmatrix} 0 & 3 & 1 & 0 & 2 \\ -2 & -2 & 1 & 3 & -2 \\ -3 & 0 & -3 & 1 & 0 \\ -2 & 3 & -2 & 3 & 0 \\ 2 & 0 & 1 & 2 & -3 \end{bmatrix}$, one-line representation of sigma1 = $(3,4,1,2,5)$ . one-line representation of sigma2 = $(4, 1, 3, 2, 5)$ . one-line representation of sigma3 = $(2, 4, 3, 1, 5)$ . ##### Exercise 1(a) 求 $\sgn(\sigma_1)$ 及 $w_A(\sigma_1)$。 $Ans:$ 我們把 $1$ 跟 $3$ 交換,再將 $2$ 跟 $4$ 交換後可以把 $\sigma_1$ 單行表示法 $3$ $4$ $1$ $2$ $5$ 變回 $1$ $2$ $3$ $4$ $5$。\ 而根據定義我們可以知道 $\sgn(\sigma_1) = (-1)^k$,其中 $k$ 為元素交換的次數,也就是說 $k=2$,因此我們可以知道 $\sgn(\sigma_1)$ = $(-1)^2$ = $1$ . $w_A(\sigma_1)$ = $1\times 3\times (-3)\times 3\times (-3)$ = $81$ . ##### Exercise 1(b) 求 $\sgn(\sigma_2)$ 及 $w_A(\sigma_2)$。 $Ans:$ 我們把 $1$ 跟 $4$ 交換,再將 $2$ 跟 $4$ 交換後可以把 $\sigma_1$ 單行表示法 $4$ $1$ $3$ $2$ $5$ 變回 $1$ $2$ $3$ $4$ $5$。\ 而根據定義我們可以知道 $\sgn(\sigma_1) = (-1)^k$,其中 $k$ 為元素交換的次數,也就是說 $k=2$,因此我們可以知道 $\sgn(\sigma_2)$ = $(-1)^2$ = $1$ . $w_A(\sigma_2)$ = $0\times (-2)\times (-3)\times 3\times (-3)$ = $0$ . ##### Exercise 1(c) 求 $\sgn(\sigma_3)$ 及 $w_A(\sigma_3)$。 $Ans:$ 我們把 $2$ 跟 $4$ 交換,再將 $1$ 跟 $4$ 交換後可以把 $\sigma_1$ 單行表示法 $2$ $4$ $3$ $1$ $5$ 變回 $1$ $2$ $3$ $4$ $5$。\ 而根據定義我們可以知道 $\sgn(\sigma_1) = (-1)^k$,其中 $k$ 為元素交換的次數,也就是說 $k=2$,因此我們可以知道 $\sgn(\sigma_3)$ = $(-1)^2$ = $1$ . $w_A(\sigma_3)$ = $3\times 3\times (-3)\times (-2)\times (-3)$ = $-162$ . ## Exercises ##### Exercise 2 令 $$ A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 4 \\ 1 & 3 & 9 \end{bmatrix}. $$ 利用拉普拉斯展開,將 $\det(A)$ 寫成 $6$ 個矩陣的行列式值和, 其中每個矩陣的每行每列都至多只有一個非零項。 $Ans:$ $$ \begin{aligned} \det\begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 4 \\ 1 & 3 & 9 \end{bmatrix} &= \det\begin{bmatrix} 1 & 0 & 0 \\ 1 & 2 & 4 \\ 1 & 3 & 9 \end{bmatrix} + \det\begin{bmatrix} 0 & 1 & 0 \\ 1 & 2 & 4 \\ 1 & 3 & 9 \end{bmatrix} + \det\begin{bmatrix} 0 & 0 & 1 \\ 1 & 2 & 4 \\ 1 & 3 & 9 \end{bmatrix} \\ &= \det\begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 4 \\ 0 & 3 & 9 \end{bmatrix} + \det\begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 4 \\ 1 & 0 & 9 \end{bmatrix} + \det\begin{bmatrix} 0 & 0 & 1 \\ 1 & 2 & 0 \\ 1 & 3 & 0 \end{bmatrix} \\ &= \det\begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 9 \end{bmatrix} + \det\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 4 \\ 0 & 3 & 0 \end{bmatrix} + \\ &\mathrel{\phantom{=}} \det\begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 9 \end{bmatrix} + \det\begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 4 \\ 1 & 0 & 0 \end{bmatrix} + \\ &\mathrel{\phantom{=}} \det\begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 3 & 0 \end{bmatrix} + \det\begin{bmatrix} 0 & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 0 & 0 \end{bmatrix}. \\ \end{aligned} $$ :::success Nice that you adopt the usage of `\phantom`, lol. ::: ##### Exercise 3 令 $$ A = \begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix}. $$ 則可建立一個表格包含所有的排列、其正負號、以及其配合 $A$ 的權重。 | one-line repr | cycle repr | sign | weight | |--------|--------|--------|--------| | $12$ | $(1)(2)$ | $1$ | $2$ | | $21$ | $(12)$ | $-1$ | $1$ | 如此可知 $\det(A) = 1\cdot 2 + (-1)\cdot 1 = 1$。 ##### Exercise 3(a) 令 $$ A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 4 \\ 1 & 3 & 9 \end{bmatrix}. $$ 依照同樣方法建立 $\mathfrak{S}_3$ 的表格,並求出 $\det(A)$。 **Ans:** | one-line repr | cycle repr | sign | weight | |--------|--------|--------|--------| | $123$ | $(1)(2)(3)$ | $1$ | $18$ | | $132$ | $(1)(23)$ | $-1$ | $12$ | | $213$ | $(12)(3)$ | $-1$ | $9$ | | $231$ | $(123)$ | $1$ | $4$ | | $312$ | $(132)$ | $1$ | $3$ | | $321$ | $(13)(2)$ | $-1$ | $2$ | $\det(A) = 18-12-9+4+3-2 = 2$. ##### Exercise 3(b) 令 $$ A = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & 4 & 8 \\ 1 & 3 & 9 & 27 \\ 1 & 4 & 16 & 64 \end{bmatrix}. $$ 依照同樣方法建立 $\mathfrak{S}_4$ 的表格,並求出 $\det(A)$。 **Ans:** | one-line repr | cycle repr | sign | weight | |--------|--------|--------|--------| | $1234$ | $(1)(2)(3)(4)$ | $1$ | $1152$ | | $1243$ | $(1)(2)(34)$ | $-1$ | $864$ | | $1324$ | $(1)(23)(4)$ | $-1$ | $768$ | | $1342$ | $(1)(234)$ | $1$ | $432$ | | $1423$ | $(1)(243)$ | $1$ | $384$ | | $1432$ | $(1)(24)(3)$ | $-1$ | $288$ | | $2134$ | $(12)(3)(4)$ | $-1$ | $576$ | | $2143$ | $(12)(34)$ | $1$ | $432$ | | $2314$ | $(123)(4)$ | $1$ | $256$ | | $2341$ | $(1234)$ | $-1$ | $108$ | | $2413$ | $(1243)$ | $-1$ | $128$ | | $2431$ | $(124)(3)$ | $1$ | $72$ | | $3124$ | $(132)(4)$ | $1$ | $192$ | | $3142$ | $(1342)$ | $-1$ | $108$ | | $3214$ | $(13)(2)(4)$ | $-1$ | $128$ | | $3241$ | $(134)(2)$ | $1$ | $54$ | | $3412$ | $(13)(24)$ | $1$ | $32$ | | $3421$ | $(1324)$ | $-1$ | $24$ | | $4123$ | $(1432)$ | $-1$ | $48$ | | $4132$ | $(142)(3)$ | $1$ | $36$ | | $4213$ | $(143)(2)$ | $1$ | $32$ | | $4231$ | $(14)(2)(3)$ | $-1$ | $18$ | | $4312$ | $(1423)$ | $-1$ | $16$ | | $4321$ | $(14)(23)$ | $1$ | $12$ | $$ \begin{aligned} \det(A) = &1152-864-768+432+384-288\\ &-576+432+256-108-128+72\\ &+192-108-128+54+32-24\\ &-48+36+32-18-16+12\\ &=12. \end{aligned} $$ :::success Good job. 辛苦了:) ::: ##### Exercise 4 令 $A$ 為一 $n\times n$ 矩陣。 ##### Exercise 4(a) 已知 $n = 2$ 時 $\det(A)$ 為 $2$ 項相加減、 $n = 3$ 時 $\det(A)$ 為 $6$ 項相加減。 求對於一般的 $n$來說, $\det(A)$ 的排列展開式有幾項相加減? **Ans:** 因為每個 Permutation 對應到一項,而 Permutation 有 $n(n-1) \cdots 2 \cdot 1 = n!$ 項,所以一個 $n \times n$ 的矩陣應該有 $n!$ 項. ##### Exercise 4(b) 在這些項中, 有幾項是要加的($\sgn(\sigma) = 1$)、 有幾項是要減的($\sgn(\sigma) = -1$)? **Ans:** 定義 Odd Permutation 為某個 Permutation $\sigma^-$ 使得 $\sgn(\sigma^-) = -1$. 定義 Even Permutation 為某個 Permutation $\sigma^+$ 使得 $\sgn(\sigma^+) = 1$. 那麼只要說明 Odd Permutation 與 Even Permutation 之間有一個 Bijection 的函數 $f$,就可以知道他們數量一樣多. 只要定義 $f$ 為,把 Permutation 的 One-Line Notation 的前兩項交換. 也就是 $$ f : (x_1 \space x_2 \space x_3 \space \cdots) \mapsto (x_2 \space x_1 \space x_3 \space \cdots). $$ 而且 $f$ 是 Bijection 的,所以 Odd Permutation 與 Even Permutation 數量一樣且相加為 $n!$,所以他們分別有 $n! / 2$ 項. :::success You guys are awesome. ::: ##### Exercise 4(c) 在這些項中,有幾項有用到 $A$ 的 $1,1$-項? **Ans:** 第一項確定為 $1,1$-項,那麼第二項可以有 $n-1$ 項可以選,選完後第三項有 $n-2$ 項可以選. 所以固定第一項後會有 $(n-1)!$ 種可能,也就是用到 $1,1$-項共有 $(n-1)!$ 項. ##### Exercise 5 利用排列展開式說明 $\det(A)$ 是一個以 $A$ 中各元素為變數的整係數多項式。 (因此如果 $A$ 是整數矩陣,則 $\det(A)$ 也是整數; 而如果 $A$ 是有理數,則 $\det(A)$ 也是有理數。 令一方面,這也表示 $\det(A)$ 對 $A$ 中的元素來說是連續的。) **Ans:** 排列展開式 $$ \det(A) = \sum_{\sigma\in\mathfrak{S}_n} \sgn(\sigma)w(\sigma). $$ 其中 $\sgn$ 只會有 $\pm 1$,$w$ 是 $A$ 中元素相乘,若將 $A$ 中的元素看成變數,$A$ 的排列展開式可以看成一個 $n!$ 項 $n \times n$ 元 $n \times n$ 次的整係數多項式,而且係數只會有 $\pm 1$. ##### Exercise 6 對以下 $n\times n$ 矩陣 $A$, 列出所有 $w_A(\sigma) \neq 0$ 的排列及其正號, 並藉此求出 $\det(A)$。 (這個方法在 $A$ 是稀疏矩陣的時候特別有效率。) ##### Exercise 6(a) $$ A = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ \end{bmatrix}. $$ $Ans:$ 當 $\sigma_1=(2143)$ 時,$\sgn(\sigma_1)=(-1)^2=1$,$w_A(\sigma_1)=1$,因此 $$ \det(A) = \sum_{\sigma\in\mathfrak{S}_n} \sgn(\sigma)w(\sigma)=1. $$ ##### Exercise 6(b) $$ A = \begin{bmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ \end{bmatrix}. $$ $Ans:$ $\sigma_1=(2143)$,$\sgn(\sigma_1)=(-1)^2=1$,$w_A(\sigma_1)=1$ $\sigma_2=(2341)$,$\sgn(\sigma_2)=(-1)^3=-1$,$w_A(\sigma_2)=1$ $\sigma_3=(4123)$,$\sgn(\sigma_3)=(-1)^3=-1$,$w_A(\sigma_3)=1$ $\sigma_4=(4321)$,$\sgn(\sigma_4)=(-1)^2=1$,$w_A(\sigma_4)=1$ $$ \det(A) = \sum_{\sigma\in\mathfrak{S}_n} \sgn(\sigma)w(\sigma)=1+(-1)+(-1)+1=0. $$ ##### Exercise 6(c) $$ A = \begin{bmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ \end{bmatrix}. $$ $Ans:$ 在 $A$ 矩陣中無法找到 $w_A(\sigma) \neq 0$, 故 $\det(A)=0$。 ##### Exercise 7 令 $$ A_n = \begin{bmatrix} 0 & 1 & 0 & \cdots & 0 & 1 \\ 1 & 0 & 1 & \ddots & ~ & 0 \\ 0 & 1 & \ddots & \ddots & ~ & \vdots \\ \vdots & \ddots & \ddots & ~ & 1 & 0 \\ 0 & ~ & \ddots & 1 & 0 & 1 \\ 1 & 0 & \cdots & 0 & 1 & 0 \end{bmatrix} $$ 為一 $n\times n$ 矩陣,利用排列展開式的方法來求 $\det(A_n)$。 提示:$n$ 是奇數和偶數的狀況不一樣。 :::warning - [x] 如果是 $n$ 是偶數的話還有 $\sigma = (12)(23) ...$ 以及 $\sigma = (23)(34) ...$,所以 $n$ 是偶數的話答案有錯 - [x] 中英數之間間隔 - [x] $sgn$ --> $\sgn$ - [x] $\sigma_1$ =$(2 \space 3 \space 4 \space 5 \cdots \space n \space 1)$ --> $\sigma_1 = (2 \space 3 \space 4 \space 5 \cdots \space n \space 1)$ <-- 把等號放進數學模式裡,然後 $\sigma_2$ 也是 - [x] 僅 $\sigma_1$ =$(2 \space 3 \space 4 \space 5 \cdots \space n \space 1)$ 與 $\sigma_2$ =$(n \space 1 \space 2 \space 3 \space 4 \cdots \space {n-2} \space {n-1})$ --> 僅 $\sigma_1$ =$(2 \space 3 \space 4 \space 5 \cdots \space n \space 1)$ 與 $\sigma_2$ =$(n \space 1 \space 2 \space 3 \space 4 \cdots \space {n-2} \space {n-1})$。而當 $n$ 是偶數時還有 $\sigma_3 = (1\space2)(3\space4)\cdots$ 以及 $\sigma_4 = (1\space n)(2\space3)(4\space5)\cdots$。 - [x] 因此 $$ \det(A) =\sgn(\sigma_1)w_A(\sigma_1)+\sgn(\sigma_2)w_A(\sigma_2) =(-1)^{n-1} \space (1) + (-1)^{n-1} \space (1) $$ <-- 這部份拿掉,顯然 $n$ 是偶數的時候這個式子不對 - [x] 而其結果會受 $n$ 為奇數或偶數而不同。 --> 因此 $\det(A)$ 會受 $n$ 為奇數或偶數而不同。 - [x] 把長的數學式排好,像這樣 $$ \begin{aligned} \det(A) &= \sgn(\sigma_1)w_A(\sigma_1)+\sgn(\sigma_2)w_A(\sigma_2) \\ &=(-1)^{even} (1) + (-1)^{even} (1) = 2. \end{aligned} $$ - [x] 當 $n$ 為偶數時,考慮A為一個 $6\times 6$ 之矩陣 ... $\sigma_4$ ... <-- 這部份拿掉,已經移到前面了 ::: **Ans:** 因為 $A$ 為稀疏矩陣,因此,我們由排列展開式對 $n\times n$ 矩陣 $A$ 觀察其排列及其 $\sgn$ 值之規律,由於其排列後項排列會對前項排列約束, 因此相鄰排列之項數差值必須小於 $2$ ,且符合此條件的排列僅 $\sigma_1 =(2 \space 3 \space 4 \space 5 \cdots \space n \space 1)$ 與 $\sigma_2 =(n \space 1 \space 2 \space 3 \space 4 \cdots \space {n-2} \space {n-1})$。 而當 $n$ 是偶數時還有 $\sigma_3 = (1\space2)(3\space4)\cdots$ 以及 $\sigma_4 = (1\space n)(2\space3)(4\space5)\cdots$。 \ 因此 $\det(A_n)$ 會受 $n$ 為奇數或偶數而不同。 當 $n$ 為奇數時, $$ \begin{aligned} \det(A)&= \sgn(\sigma_1)w_A(\sigma_1)+\sgn(\sigma_2)w_A(\sigma_2) \\ &=(-1)^{even} \space (1) + (-1)^{even} \space (1) = \space 2. \end{aligned} $$ 當 $n$ 為偶數時,考量當 $n/2$ 為奇數或偶數時 $\sgn(\sigma_3)$ 與 $\sgn(\sigma_4)$ 之值。 當 $n/2$ 為奇數時, \ $$ \begin{aligned} \det(A)&= \sgn(\sigma_1)w_A(\sigma_1)+\sgn(\sigma_2)w_A(\sigma_2)+\sgn(\sigma_3)w_A(\sigma_3)+\sgn(\sigma_4)w_A(\sigma_4) \\ &=(-1)^{odd} \space (1) + (-1)^{odd} \space (1) + (-1)^{odd} \space (1)+ (-1)^{odd} \space (1)= \space 4.\\ \end{aligned} $$ 當 $n/2$ 為偶數時, $$ \begin{aligned} \det(A)&= \sgn(\sigma_1)w_A(\sigma_1)+\sgn(\sigma_2)w_A(\sigma_2)+\sgn(\sigma_3)w_A(\sigma_3)+\sgn(\sigma_4)w_A(\sigma_4) \\ &=(-1)^{odd} \space (1) + (-1)^{odd} \space (1) + (-1)^{even} \space (1)+ (-1)^{even} \space (1)= \space 0.\\ \end{aligned} $$ :::info 目前分數 = 6.5 &pm; 檢討 = 7 :::

    Import from clipboard

    Paste your markdown or webpage here...

    Advanced permission required

    Your current role can only read. Ask the system administrator to acquire write and comment permission.

    This team is disabled

    Sorry, this team is disabled. You can't edit this note.

    This note is locked

    Sorry, only owner can edit this note.

    Reach the limit

    Sorry, you've reached the max length this note can be.
    Please reduce the content or divide it to more notes, thank you!

    Import from Gist

    Import from Snippet

    or

    Export to Snippet

    Are you sure?

    Do you really want to delete this note?
    All users will lose their connection.

    Create a note from template

    Create a note from template

    Oops...
    This template has been removed or transferred.
    Upgrade
    All
    • All
    • Team
    No template.

    Create a template

    Upgrade

    Delete template

    Do you really want to delete this template?
    Turn this template into a regular note and keep its content, versions, and comments.

    This page need refresh

    You have an incompatible client version.
    Refresh to update.
    New version available!
    See releases notes here
    Refresh to enjoy new features.
    Your user state has changed.
    Refresh to load new user state.

    Sign in

    Forgot password

    or

    By clicking below, you agree to our terms of service.

    Sign in via Facebook Sign in via Twitter Sign in via GitHub Sign in via Dropbox Sign in with Wallet
    Wallet ( )
    Connect another wallet

    New to HackMD? Sign up

    Help

    • English
    • 中文
    • Français
    • Deutsch
    • 日本語
    • Español
    • Català
    • Ελληνικά
    • Português
    • italiano
    • Türkçe
    • Русский
    • Nederlands
    • hrvatski jezik
    • język polski
    • Українська
    • हिन्दी
    • svenska
    • Esperanto
    • dansk

    Documents

    Help & Tutorial

    How to use Book mode

    Slide Example

    API Docs

    Edit in VSCode

    Install browser extension

    Contacts

    Feedback

    Discord

    Send us email

    Resources

    Releases

    Pricing

    Blog

    Policy

    Terms

    Privacy

    Cheatsheet

    Syntax Example Reference
    # Header Header 基本排版
    - Unordered List
    • Unordered List
    1. Ordered List
    1. Ordered List
    - [ ] Todo List
    • Todo List
    > Blockquote
    Blockquote
    **Bold font** Bold font
    *Italics font* Italics font
    ~~Strikethrough~~ Strikethrough
    19^th^ 19th
    H~2~O H2O
    ++Inserted text++ Inserted text
    ==Marked text== Marked text
    [link text](https:// "title") Link
    ![image alt](https:// "title") Image
    `Code` Code 在筆記中貼入程式碼
    ```javascript
    var i = 0;
    ```
    var i = 0;
    :smile: :smile: Emoji list
    {%youtube youtube_id %} Externals
    $L^aT_eX$ LaTeX
    :::info
    This is a alert area.
    :::

    This is a alert area.

    Versions and GitHub Sync
    Get Full History Access

    • Edit version name
    • Delete

    revision author avatar     named on  

    More Less

    Note content is identical to the latest version.
    Compare
      Choose a version
      No search result
      Version not found
    Sign in to link this note to GitHub
    Learn more
    This note is not linked with GitHub
     

    Feedback

    Submission failed, please try again

    Thanks for your support.

    On a scale of 0-10, how likely is it that you would recommend HackMD to your friends, family or business associates?

    Please give us some advice and help us improve HackMD.

     

    Thanks for your feedback

    Remove version name

    Do you want to remove this version name and description?

    Transfer ownership

    Transfer to
      Warning: is a public team. If you transfer note to this team, everyone on the web can find and read this note.

        Link with GitHub

        Please authorize HackMD on GitHub
        • Please sign in to GitHub and install the HackMD app on your GitHub repo.
        • HackMD links with GitHub through a GitHub App. You can choose which repo to install our App.
        Learn more  Sign in to GitHub

        Push the note to GitHub Push to GitHub Pull a file from GitHub

          Authorize again
         

        Choose which file to push to

        Select repo
        Refresh Authorize more repos
        Select branch
        Select file
        Select branch
        Choose version(s) to push
        • Save a new version and push
        • Choose from existing versions
        Include title and tags
        Available push count

        Pull from GitHub

         
        File from GitHub
        File from HackMD

        GitHub Link Settings

        File linked

        Linked by
        File path
        Last synced branch
        Available push count

        Danger Zone

        Unlink
        You will no longer receive notification when GitHub file changes after unlink.

        Syncing

        Push failed

        Push successfully