# 區塊矩陣

This work by Jephian Lin is licensed under a [Creative Commons Attribution 4.0 International License](http://creativecommons.org/licenses/by/4.0/).
$\newcommand{\trans}{^\top}
\newcommand{\adj}{^{\rm adj}}
\newcommand{\cof}{^{\rm cof}}
\newcommand{\inp}[2]{\left\langle#1,#2\right\rangle}
\newcommand{\dunion}{\mathbin{\dot\cup}}
\newcommand{\bzero}{\mathbf{0}}
\newcommand{\bone}{\mathbf{1}}
\newcommand{\ba}{\mathbf{a}}
\newcommand{\bb}{\mathbf{b}}
\newcommand{\bc}{\mathbf{c}}
\newcommand{\bd}{\mathbf{d}}
\newcommand{\be}{\mathbf{e}}
\newcommand{\bh}{\mathbf{h}}
\newcommand{\bp}{\mathbf{p}}
\newcommand{\bq}{\mathbf{q}}
\newcommand{\br}{\mathbf{r}}
\newcommand{\bx}{\mathbf{x}}
\newcommand{\by}{\mathbf{y}}
\newcommand{\bz}{\mathbf{z}}
\newcommand{\bu}{\mathbf{u}}
\newcommand{\bv}{\mathbf{v}}
\newcommand{\bw}{\mathbf{w}}
\newcommand{\tr}{\operatorname{tr}}
\newcommand{\nul}{\operatorname{null}}
\newcommand{\rank}{\operatorname{rank}}
%\newcommand{\ker}{\operatorname{ker}}
\newcommand{\range}{\operatorname{range}}
\newcommand{\Col}{\operatorname{Col}}
\newcommand{\Row}{\operatorname{Row}}
\newcommand{\spec}{\operatorname{spec}}
\newcommand{\vspan}{\operatorname{span}}
\newcommand{\Vol}{\operatorname{Vol}}$
```python
from lingeo import random_int_list
```
## Main idea
For different purposes, we often partition a matrix into several blocks.
The dimensions of each block should be clear through the context.
The multiplication of two block matrices can be just as expected.
Let
$$
A = \begin{bmatrix}
A_{11} & \cdots & A_{1n} \\
\vdots & ~ & \vdots \\
A_{m1} & \cdots & A_{mn}
\end{bmatrix}
\text{ and }
B = \begin{bmatrix}
B_{11} & \cdots & B_{1\ell} \\
\vdots & ~ & \vdots \\
B_{n1} & \cdots & B_{n\ell}
\end{bmatrix}
$$
such that the width of $A_{1k}$ is the same as the height of $B_{k1}$ for $k = 1,\ldots, n$.
Then $AB$ can be written as a block matrix such that its $ij$-block is
$$
\sum_{k = 1}^n A_{ik} B_{kj}.
$$
For block matrices, one may perform the **block row operations**.
1. swapping: swap the $i$-th and the $j$-th block rows.
Its block elementary matrix $E$ has $\det(E) = (-1)^{m_im_j}$, where $m_i$ and $m_j$ are the number of rows in these two block rows, respectively.
2. rescaling: multiply the $i$-th block row by an invertible matrix $K$.
Its block elementary matrix $E$ has $\det(E) = \det(K)$.
3. row combination: multiply the $j$-th block row by a matrix $K$ and add the result to the $i$-th block row.
Its block elementary matrix $E$ has $\det(E) = 1$.
Similar **block column operations** also apply.
Consider the matrix
$$
M =
\begin{bmatrix}
A & B \\
O & D
\end{bmatrix}.
$$
If both $A$ and $D$ are invertible (sqaure) matrice, one may rescale the first block row and the second block column and get
$$
\begin{bmatrix}
A & B \\
O & D
\end{bmatrix}
=
\begin{bmatrix}
A & O \\
O & I
\end{bmatrix}
\begin{bmatrix}
I & A^{-1}BD^{-1} \\
O & I
\end{bmatrix}
\begin{bmatrix}
I & O \\
O & D
\end{bmatrix}.
$$
Therefore,
$$
\det(M) = \det(A)\det(D).
$$
If $A$ or $D$ is not invertible, then M is also not invertible.
Therefore, the same equality still holds.
$$
\det(M) = \det(A)\det(D) = 0.
$$
Consider the other matrix
$$
M = \begin{bmatrix}
A & B \\
C & D
\end{bmatrix}
$$
such that $A$ is invertible.
One may take the first block row, pre-multiply by $-CA^{-1}$, and add it to the second block row.
Thus,
$$
\begin{bmatrix}
A & B \\
C & D
\end{bmatrix}
=
\begin{bmatrix}
I & O \\
CA^{-1} & I
\end{bmatrix}
\begin{bmatrix}
A & B \\
O & D - CA^{-1}B
\end{bmatrix}.
$$
Therefore,
$$
\det(M) = \det(A)\det(D - CA^{-1}B).
$$
The matrix $D - CA^{-1}B$ is called the **Schur complement** of $A$ in $M$, denoted as $M / A$.
The notation is justified by $\det(M/A) = \det(M) / \det(A)$.
## Side stories
- Schur complement
## Experiments
##### Exercise 1
執行以下程式碼。
```python
### code
set_random_seed(0)
print_ans = False
while True:
A = matrix(2, random_int_list(4,2))
if A.det() != 0:
break
B = matrix(2, random_int_list(6,3))
C = matrix(3, random_int_list(6,3))
D = matrix(3, random_int_list(9,3))
M = block_matrix([
[A, B],
[C, D]
])
op = choice([1,2,3])
if op == 1:
E = block_matrix([[zero_matrix(3,2), identity_matrix(3)], [identity_matrix(2), zero_matrix(2,3)]])
if op == 2:
E = block_matrix([[A.inverse(), zero_matrix(2,3)], [zero_matrix(3,2), identity_matrix(3)]])
if op == 3:
E = block_matrix([[identity_matrix(2), zero_matrix(2,3)], [-C*A.inverse(), identity_matrix(3)]])
W = E * M
if op == 1:
W.subdivide(3,2)
print("M =")
pretty_print(M)
print("W =")
pretty_print(W)
if print_ans:
print("E =")
pretty_print(E)
print("det(E) =", E.det())
```
##### Exercise 1(a)
觀察如何從 $M$ 經過區塊列運算得到 $W$,
並寫出相對應的區塊基本矩陣 $E$。
$Ans:$
藉由 `seed 0` 可以得到
$M=\begin{bmatrix}
-2 & 2 & -1 & 3 & 1 \\
-2 & -2 & -2 & 1 & 2 \\
1 & -3 & -1 & 3 & -2 \\
-2 & 0 & -2 & -2 & 3 \\
1 & -3 & -3 & 3 & -2 \end{bmatrix}$,
$W=\begin{bmatrix}
1 & 0 & -1 & \frac{3}{4} & -\frac{3}{4} \\
0 & 1 & \frac{1}{4} & \frac{1}{2} & -\frac{1}{4} \\
1 & -3 & -1 & 3 & -2 \\
-2 & 0 & -2 & -2 & 3 \\
1 & -3 & -3 & 3 & -2 \end{bmatrix}$.
藉由列運算可以得到:
$$E_3\cdot E_2\cdot E_1\cdot M=W.
$$
其中
$$E_1=\begin{bmatrix}
1 & 0 & 0 & 0 & 0 \\
-1 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 \end{bmatrix},
E_2=\begin{bmatrix}
1 & \frac{1}{2} & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 \end{bmatrix},
E_3=\begin{bmatrix}
-\frac{1}{2} & 0 & 0 & 0 & 0 \\
0 & -\frac{1}{4} & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 \end{bmatrix}.$$
又
$$E=E_3\cdot E_2\cdot E_1 = E=\begin{bmatrix}
-\frac{1}{4} & -\frac{1}{4} & 0 & 0 & 0 \\
\frac{1}{4} & -\frac{1}{4} & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 \end{bmatrix}.
$$
**[由汪駿佑同學提供]**
藉由 `seed 10` 可以得到
$$
M = \begin{bmatrix}
2 & 1 & 0 & -3 & -3 \\
0 & 1 & 0 & -2 & 0 \\
-2 & 0 & 2 & -3 & 2 \\
3 & 2 & -1 & 0 & -1 \\
-2 & 0 & 3 & 2 & 2
\end{bmatrix},
W = \begin{bmatrix}
2 & 1 & 0 & -3 & -3 \\
0 & 1 & 0 & -2 & 0 \\
0 & 0 & 2 & -4 & -1 \\
0 & 0 & -1 & \frac{11}{2} & \frac{7}{2} \\
0 & 0 & 3 & 1 & -1
\end{bmatrix}.
$$
觀察:$M$ 跟 $W$ 的上兩列是一樣的,表示列運算是對底下三列做的。
那麼我們將 $M$ 分成以下四個區塊:
$$
M = \left[\begin{array}{rr|rrr}
2 & 1 & 0 & -3 & -3 \\
0 & 1 & 0 & -2 & 0 \\ \hline
-2 & 0 & 2 & -3 & 2 \\
3 & 2 & -1 & 0 & -1 \\
-2 & 0 & 3 & 2 & 2
\end{array}\right] =
\begin{bmatrix}
A & B \\
C & D
\end{bmatrix}.
$$
令 $C = FA$,其中 $F$ 為一個由執行區塊列運算所用到的係數矩陣。
那麼因為 $A$ 可逆,故我們可以求得
$$
F = CA^{-1} =
\begin{bmatrix}
-2 & 0 \\
3 & 2 \\
-2 & 0
\end{bmatrix}
\begin{bmatrix}
\frac{1}{2} & \frac{-1}{2} \\
0 & 1
\end{bmatrix} =
\begin{bmatrix}
-1 & 1 \\
\frac{3}{2} & \frac{1}{2} \\
-1 & 1
\end{bmatrix}.
$$
因此,$C + (-1)FA = O$。
另外,
$$
D + (-1)FB =
\begin{bmatrix}
2 & -4 & -1 \\
-1 & \frac{11}{2} & \frac{7}{2} \\
3 & 1 & -1
\end{bmatrix}.
$$
也符合我們要 $W$ 在那個區域的矩陣,故我們可以經由列運算 $\rho_2: + (-1)F \rho_1$ 得到 $W$。
而這個列運算的基本矩陣 $E$ 可以由以下區塊矩陣表達:
$$
E = \begin{bmatrix}
I_2 & O \\
-F & I_3
\end{bmatrix}.
$$
展開後得
$$
E = \begin{bmatrix}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
1 & -1 & 1 & 0 & 0 \\
\frac{-3}{2} & \frac{-1}{2} & 0 & 1 & 0 \\
1 & -1 & 0 & 0 & 1
\end{bmatrix}.
$$
##### Exercise 1(b)
求 $\det(E)$。
:::warning
- [x] $det$ --> $\det$
:::
$Ans:$
$$\det(E) = \det\begin{bmatrix}
-\frac{1}{4} & -\frac{1}{4} & 0 & 0 & 0 \\
\frac{1}{4} & -\frac{1}{4} & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 \end{bmatrix}=\frac{1}{8}.
$$
## Exercises
##### Exercise 2
計算以下矩陣的行列式值。
##### Exercise 2(a)
$$
A = \begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 2 \\
0 & 3 & 4
\end{bmatrix}.
$$
**[由張書鳴同學提供]**
將 $A$ 視為區塊矩陣,即
$$
A= \begin{bmatrix}
I & O\trans \\
O & M
\end{bmatrix}.
$$
其中
$$
M = \begin{bmatrix}
1 & 2 \\
3 & 4
\end{bmatrix},\det(M) = (-2).
$$
且 $I$ 為 $1 \times 1$ 矩陣,$O$ 為一個 $2 \times 1$ 矩陣。
所以
$$
\det(A) = \det(M) \times \det(I) =(-2).
$$
**[由汪駿佑同學提供]**
令
$$
A = \begin{bmatrix}
I_1 & O\trans \\
O & M
\end{bmatrix}.
$$
根據定義,我們可以求出
$$
\det(A) = \det(I_1) \times \det(M) = -2.
$$
##### Exercise 2(b)
$$
A = \begin{bmatrix}
0 & 1 & 2 \\
1 & 0 & 0 \\
0 & 3 & 4
\end{bmatrix}.
$$
**[由張書鳴同學提供]**
將$A$的第一列和第二列互換得到
$$
A'= \begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 2 \\
0 & 3 & 4
\end{bmatrix}.
$$
將 $A'$ 視為區塊矩陣 $$
A' = \begin{bmatrix}
I & O\trans \\
O & M
\end{bmatrix}.
$$
其中
$$
M = \begin{bmatrix}
1 & 2 \\
3 & 4
\end{bmatrix},\det(M)=(-2).
$$
且 $I$ 為 $1 \times 1$ 矩陣,$O$ 為一個 $2 \times 1$ 矩陣。
所以
$$\det(A')=\det(M) \times \det(I) =(-2),$$
且因為列互換行列式值 $\times (-1),$
$$\det(A)=\det(A')\times (-1)=2.
$$
**[由汪駿佑同學提供]**
由於 $A_{2(b)}$ 是由 $A_{2(a)}$ 經由列運算 $\rho_2 \leftrightarrow \rho_1$ 而來,根據行列式值與列運算的關係,
$$
\det(A_{2(b)}) = -\det(A_{2(a)}) = 2.
$$
##### Exercise 2(c)
$$
A = \begin{bmatrix}
0 & 1 & 2 \\
0 & 3 & 4 \\
1 & 0 & 0
\end{bmatrix}.
$$
**[由張書鳴同學提供]**
將第一列與第三列互換,得到
$$
A' = \begin{bmatrix}
1 & 0 & 0 \\
0 & 3 & 4 \\
0 & 1 & 2
\end{bmatrix}.$$
將$A'$ 視為區塊矩陣
$$
A' = \begin{bmatrix}
I & O\trans \\
O & M
\end{bmatrix}.$$
設
$$ M = \begin{bmatrix}
3 & 4 \\
1 & 2
\end{bmatrix},\det(M) = 2.
$$
且 $I$ 為 $1 \times 1$ 矩陣,$O$ 為一個 $2 \times 1$ 矩陣。
所以
$$\det(A')=\det(M) \times \det(I) =2,$$
且因為列互換行列式值 $\times (-1),$
$$\det(A)=\det(A')\times (-1)=(-2).
$$
**[由汪駿佑同學提供]**
由於 $A_{2(c)}$ 是由 $A_{2(b)}$ 經由列運算 $\rho_3 \leftrightarrow \rho_2$ 而來,根據行列式值與列運算的關係,
$$
\det(A_{2(c)}) = -\det(A_{2(b)}) = -2.
$$
##### Exercise 2(d)
$$
A = \begin{bmatrix}
1 & 0 & 2 \\
3 & 0 & 4 \\
0 & 1 & 0
\end{bmatrix}.
$$
**[由張書鳴同學提供]**
將$A$的第一行和第二行互換得到
$$
A'= \begin{bmatrix}
0 & 1 & 2 \\
0 & 3 & 4 \\
1 & 0 & 0
\end{bmatrix}.$$
再將第一列與第三列互換,得到
$$
A'' = \begin{bmatrix}
1 & 0 & 0 \\
0 & 3 & 4 \\
0 & 1 & 2
\end{bmatrix}.$$
設
$$ M = \begin{bmatrix}
3 & 4 \\
1 & 2
\end{bmatrix},\det(M) = 2.
$$
將 $A''$ 視為區塊矩陣 $$ A'' = \begin{bmatrix}
I & O\trans \\
O & M
\end{bmatrix}.$$
且 $I$ 為 $1 \times 1$ 矩陣,$O$ 為一個 $2 \times 1$ 矩陣。
且因為行互換行列式值 $\times (-1),$
所以
$$\det(A) = \det(A') \times (-1),$$
而且因為列互換行列式值 $\times (-1),$
所以
$$\det(A'') = \det(A') \times (-1) = \det(M) \times \det(I),$$
$$\det(A')=(-2),\det(A)=2
.
$$
**[由汪駿佑同學提供]**
由於 $A_{2(d)}$ 是由 $A_{2(c)}$ 經由行運算 $\kappa_2 \leftrightarrow \kappa_1$ 而來,根據行列式值與行運算的關係,
$$
\det(A_{2(d)}) = -\det(A_{2(c)}) = 2.
$$
##### Exercise 3
計算以下矩陣的行列式值。
##### Exercise 3(a)
$$
A = \begin{bmatrix}
1 & 2 & 0 & 0 \\
3 & 4 & 0 & 0 \\
0 & 0 & 5 & 6 \\
0 & 0 & 7 & 8
\end{bmatrix}.
$$
:::warning
- [x] $det$ --> $\det$
- [x] 數學以外的標點用全型
:::
$Ans:$
首先設
$$
A =
\begin{bmatrix}
M & O \\
O & N
\end{bmatrix}.
$$
的區塊矩陣。
其中 $$
M =
\begin{bmatrix}
1 & 2 \\
3 & 4
\end{bmatrix},
$$
$$
N =
\begin{bmatrix}
5 & 6 \\
7 & 8
\end{bmatrix}.
$$
且經過計算得知
$\det(M)= 4 -6=-2,$
$\det(N)= 40 -42=-2.$
所以
$\det(A) = \det(M)\det(N) = (-2)(-2)=4.$
##### Exercise 3(b)
$$
A = \begin{bmatrix}
0 & 0 & 5 & 6 \\
0 & 0 & 7 & 8 \\
1 & 2 & 0 & 0 \\
3 & 4 & 0 & 0
\end{bmatrix}.
$$
$Ans:$
首先設
$$
A =
\begin{bmatrix}
O & N \\
M & O
\end{bmatrix}.
$$
的區塊矩陣。
其中$$
N =
\begin{bmatrix}
5 & 6 \\
7 & 8
\end{bmatrix},
$$
$$
M =
\begin{bmatrix}
1 & 2 \\
3 & 4
\end{bmatrix}.
$$
經過計算得知
$\det(N)= 40 -42=-2,$
$\det(M)= 4 -6=-2.$
且 $\det(A)$ 為上一題的兩列區塊矩陣互換,
所以
$\det(A) = \det(M)\times\det(N)\times(-1)^4 = (-2)\times(-2)\times1 = 4.$
##### Exercise 3(c)
$$
A = \begin{bmatrix}
1 & 0 & 2 & 0 \\
0 & 5 & 0 & 6 \\
3 & 0 & 4 & 0 \\
0 & 7 & 0 & 8
\end{bmatrix}.
$$
:::warning
- [x] 應該有辦法交換一些行和列變回前兩題的樣子
:::
首先設
$$
A =
\begin{bmatrix}
P & Q \\
R & S
\end{bmatrix}
$$
的區塊矩陣。
其中
$$
P=
\begin{bmatrix}
1 & 0 \\
0 & 5
\end{bmatrix}.
$$
$$
P^{-1} =
\begin{bmatrix}
1 & 0 \\
0 & \frac{1}{5}
\end{bmatrix}.
$$
$$
Q =
\begin{bmatrix}
2 & 0 \\
0 & 6
\end{bmatrix}.
$$
$$
R =
\begin{bmatrix}
3 & 0 \\
0 & 7
\end{bmatrix}.
$$
$$
S =
\begin{bmatrix}
4 & 0 \\
0 & 8
\end{bmatrix}.
$$
且經過計算得知
$\det(P)=5,$
$\det(S - RP^{-1}Q)=\det( \begin{bmatrix}
4 & 0 \\
0 & 8
\end{bmatrix}-\begin{bmatrix}
3 & 0 \\
0 & 7
\end{bmatrix}\begin{bmatrix}
1 & 0 \\
0 & \frac{1}{5}
\end{bmatrix}\begin{bmatrix}
2 & 0 \\
0 & 6
\end{bmatrix})=\det(\begin{bmatrix}
4 & 0 \\
0 & 8
\end{bmatrix}-\begin{bmatrix}
6 & 0 \\
0 & \frac{42}{5}
\end{bmatrix})=\det(\begin{bmatrix}
-2 & 0 \\
0 & \frac{-2}{5}
\end{bmatrix})=\frac{4}{5}$
所以
$\det(A) = \det(P)\det(S - RP^{-1}Q)=5\times\frac{4}{5}=4.$
**另解**
本題矩陣 $A$ 可經由 3(a) 中的矩陣 $A$ 做第 $2,3$ 行的行交換,及第 $2,3$ 列的列交換得到,故
$$\det(A) = (-1)^2 \times 4 = 4.
$$
##### Exercise 4
若矩陣 $A$ 可寫成
$$
A = \begin{bmatrix}
A_{11} & A_{12} & \cdots & A_{1n} \\
O & A_{22} & \ddots & \vdots \\
\vdots & \ddots & \ddots & A_{n-1,n} \\
O & \cdots & O & A_{nn}
\end{bmatrix}
$$
使得 $A_{11},\ldots,A_{nn}$ 皆是方陣
(可能不同大小),
說明 $\det(A) = \det(A_{11})\cdots \det(A_{nn})$。
$Ans:$
令
$$
\begin{cases}
A_1 = \begin{bmatrix}
A_{11}
\end{bmatrix},
A_2 = \begin{bmatrix}
A_{11} & A_{12} \\
O & A_{22}
\end{bmatrix},
A_3 = \begin{bmatrix}
A_{11} & A_{12} & A_{13} \\
O & A_{22} & A_{23} \\
O & O & A_{33}
\end{bmatrix},\cdots,
A_n = \begin{bmatrix}
A_{11} & A_{12} & \cdots & A_{1n} \\
O & A_{22} & \ddots & \vdots \\
\vdots & \ddots & \ddots & A_{n-1,n} \\
O & \cdots & O & A_{nn}
\end{bmatrix}.\\
B_2 = \begin{bmatrix}
A_{13} \\
A_{23}
\end{bmatrix},
B_3 = \begin{bmatrix}
A_{14} \\
A_{24} \\
A_{34}
\end{bmatrix},
B_4 = \begin{bmatrix}
A_{15} \\
A_{25} \\
A_{35} \\
A_{45} \\
\end{bmatrix},\cdots,
B_n = \begin{bmatrix}
A_{1,n+1} \\
A_{2,n+1} \\
\vdots \\
A_{n,n+1}
\end{bmatrix}.
\end{cases}
$$
根據假設,得到 $$\det(A_1)=\det(A_{11}).$$
$A,D$ 為可逆矩陣,令
$M = \begin{bmatrix}
A & B \\
O & D
\end{bmatrix},
則 \det(M) = \det(A)\det(D).$
如果 $A$ 或 $D$ 不可逆, 那麼 $M$ 也不可逆.
因此等式 $\det(M) = \det(A)\det(D)$ 依然成立.
而此時 $\det(M) = \det(A)\det(D) = 0.$
由此可以得出
$$
\begin{aligned}
\det(A_2) &= \det(\begin{bmatrix}
A_{11} & A_{12} \\
O & A_{22} \\
\end{bmatrix}) \\
&= \det(A_{11})\det(A_{22}).
\end{aligned}
$$
而
$$
\begin{aligned}
\det(A_3) &= \det(\begin{bmatrix}
A_{11} & A_{12} & A_{13} \\
O & A_{22} & A_{23} \\
O & O & A_{33}
\end{bmatrix}) \\
&= \det(\begin{bmatrix}
A_2 & B_2 \\
O & A_{33}
\end{bmatrix}) \\
&= \det(A_2)\det(A_{33}) \\
&= \det(A_{11})\det(A_{22})\det(A_{33}).
\end{aligned}$$
仿造求 $\det(A_3)$ 方式,可得出
$$
\begin{aligned}
\det(A) &= \det(A_n) \\
&= \det(A_{n-1})\det(A_{nn}) \\
&= \det(A_{n-2})\det(A_{n-1,n-1})\det(A_{nn}) \\
&= \cdots
= \det(A_{11})\cdots \det(A_{nn}).
\end{aligned}
$$
##### Exercise 5
若 $A$ 為 $m\times n$ 矩陣、
而 $B$ 為 $n\times m$ 矩陣,
證明
$$
\det\begin{bmatrix}
I_n & B \\
A & I_m
\end{bmatrix}
=
\det(I_m - AB)
=
\det(I_n - BA),
$$
:::warning
- [x] 數學式外用全型
- [x] 標點
- [x] 最後那串數學式是幹麻的要講一下
:::
$Ans:$
1. 因為 $I_n$ 可逆,因此 $\det\begin{bmatrix}
I_n & B \\
A & I_m
\end{bmatrix}
= \det(I_n)\det(I_m -A(I_n^{-1})B)
= \det(I_m - AB)$。
2. 令 $E_1 = \begin{bmatrix}
O & I_m \\
I_n & O
\end{bmatrix},
E_2 = \begin{bmatrix}
O & I_n \\
I_m & O
\end{bmatrix}.$
利用 $E_1$ 及 $E_2$,可將
$\begin{bmatrix}
I_n & B \\
A & I_m
\end{bmatrix}$
轉變成
$\begin{bmatrix}
I_m & A \\
B & I_n
\end{bmatrix}.$
$(E_1\begin{bmatrix} I_n & B \\ A & I_m \end{bmatrix}E_2
= \begin{bmatrix} A & I_m \\ I_n & B \end{bmatrix}E_2
= \begin{bmatrix} I_m & A \\ B & I_n \end{bmatrix})$
因為 $I_m$ 可逆,因此 $\det\begin{bmatrix}
I_m & A \\
B & I_n
\end{bmatrix}
= \det(I_m)\det(I_n-B(I_m^{-1})A)
= \det(I_n-BA)$
3. 由以上二點,得出以下等式
$$
\begin{aligned}
\det(I_n-BA) &= \det\begin{bmatrix}
I_m & A \\
B & I_n
\end{bmatrix} \\
&= \det(E_{1}\begin{bmatrix}
I_n & B \\
A & I_m
\end{bmatrix}E_{2}) \\
&= \det(E_1)\det(I_m-AB)\det(E_2) \\
&= (-1)^{2nm}\det(I_m-AB) \\
&= \det(I_m-AB).
\end{aligned}
$$
:::info
目前分數 = 5 ± 檢討 = 6.5
:::