Jephian Lin
    • Create new note
    • Create a note from template
      • Sharing URL Link copied
      • /edit
      • View mode
        • Edit mode
        • View mode
        • Book mode
        • Slide mode
        Edit mode View mode Book mode Slide mode
      • Customize slides
      • Note Permission
      • Read
        • Only me
        • Signed-in users
        • Everyone
        Only me Signed-in users Everyone
      • Write
        • Only me
        • Signed-in users
        • Everyone
        Only me Signed-in users Everyone
      • Engagement control Commenting, Suggest edit, Emoji Reply
    • Invite by email
      Invitee

      This note has no invitees

    • Publish Note

      Share your work with the world Congratulations! 🎉 Your note is out in the world Publish Note

      Your note will be visible on your profile and discoverable by anyone.
      Your note is now live.
      This note is visible on your profile and discoverable online.
      Everyone on the web can find and read all notes of this public team.
      See published notes
      Unpublish note
      Please check the box to agree to the Community Guidelines.
      View profile
    • Commenting
      Permission
      Disabled Forbidden Owners Signed-in users Everyone
    • Enable
    • Permission
      • Forbidden
      • Owners
      • Signed-in users
      • Everyone
    • Suggest edit
      Permission
      Disabled Forbidden Owners Signed-in users Everyone
    • Enable
    • Permission
      • Forbidden
      • Owners
      • Signed-in users
    • Emoji Reply
    • Enable
    • Versions and GitHub Sync
    • Note settings
    • Note Insights New
    • Engagement control
    • Transfer ownership
    • Delete this note
    • Save as template
    • Insert from template
    • Import from
      • Dropbox
      • Google Drive
      • Gist
      • Clipboard
    • Export to
      • Dropbox
      • Google Drive
      • Gist
    • Download
      • Markdown
      • HTML
      • Raw HTML
Menu Note settings Note Insights Versions and GitHub Sync Sharing URL Create Help
Create Create new note Create a note from template
Menu
Options
Engagement control Transfer ownership Delete this note
Import from
Dropbox Google Drive Gist Clipboard
Export to
Dropbox Google Drive Gist
Download
Markdown HTML Raw HTML
Back
Sharing URL Link copied
/edit
View mode
  • Edit mode
  • View mode
  • Book mode
  • Slide mode
Edit mode View mode Book mode Slide mode
Customize slides
Note Permission
Read
Only me
  • Only me
  • Signed-in users
  • Everyone
Only me Signed-in users Everyone
Write
Only me
  • Only me
  • Signed-in users
  • Everyone
Only me Signed-in users Everyone
Engagement control Commenting, Suggest edit, Emoji Reply
  • Invite by email
    Invitee

    This note has no invitees

  • Publish Note

    Share your work with the world Congratulations! 🎉 Your note is out in the world Publish Note

    Your note will be visible on your profile and discoverable by anyone.
    Your note is now live.
    This note is visible on your profile and discoverable online.
    Everyone on the web can find and read all notes of this public team.
    See published notes
    Unpublish note
    Please check the box to agree to the Community Guidelines.
    View profile
    Engagement control
    Commenting
    Permission
    Disabled Forbidden Owners Signed-in users Everyone
    Enable
    Permission
    • Forbidden
    • Owners
    • Signed-in users
    • Everyone
    Suggest edit
    Permission
    Disabled Forbidden Owners Signed-in users Everyone
    Enable
    Permission
    • Forbidden
    • Owners
    • Signed-in users
    Emoji Reply
    Enable
    Import from Dropbox Google Drive Gist Clipboard
       Owned this note    Owned this note      
    Published Linked with GitHub
    • Any changes
      Be notified of any changes
    • Mention me
      Be notified of mention me
    • Unsubscribe
    # 區塊矩陣 ![Creative Commons License](https://i.creativecommons.org/l/by/4.0/88x31.png) This work by Jephian Lin is licensed under a [Creative Commons Attribution 4.0 International License](http://creativecommons.org/licenses/by/4.0/). $\newcommand{\trans}{^\top} \newcommand{\adj}{^{\rm adj}} \newcommand{\cof}{^{\rm cof}} \newcommand{\inp}[2]{\left\langle#1,#2\right\rangle} \newcommand{\dunion}{\mathbin{\dot\cup}} \newcommand{\bzero}{\mathbf{0}} \newcommand{\bone}{\mathbf{1}} \newcommand{\ba}{\mathbf{a}} \newcommand{\bb}{\mathbf{b}} \newcommand{\bc}{\mathbf{c}} \newcommand{\bd}{\mathbf{d}} \newcommand{\be}{\mathbf{e}} \newcommand{\bh}{\mathbf{h}} \newcommand{\bp}{\mathbf{p}} \newcommand{\bq}{\mathbf{q}} \newcommand{\br}{\mathbf{r}} \newcommand{\bx}{\mathbf{x}} \newcommand{\by}{\mathbf{y}} \newcommand{\bz}{\mathbf{z}} \newcommand{\bu}{\mathbf{u}} \newcommand{\bv}{\mathbf{v}} \newcommand{\bw}{\mathbf{w}} \newcommand{\tr}{\operatorname{tr}} \newcommand{\nul}{\operatorname{null}} \newcommand{\rank}{\operatorname{rank}} %\newcommand{\ker}{\operatorname{ker}} \newcommand{\range}{\operatorname{range}} \newcommand{\Col}{\operatorname{Col}} \newcommand{\Row}{\operatorname{Row}} \newcommand{\spec}{\operatorname{spec}} \newcommand{\vspan}{\operatorname{span}} \newcommand{\Vol}{\operatorname{Vol}}$ ```python from lingeo import random_int_list ``` ## Main idea For different purposes, we often partition a matrix into several blocks. The dimensions of each block should be clear through the context. The multiplication of two block matrices can be just as expected. Let $$ A = \begin{bmatrix} A_{11} & \cdots & A_{1n} \\ \vdots & ~ & \vdots \\ A_{m1} & \cdots & A_{mn} \end{bmatrix} \text{ and } B = \begin{bmatrix} B_{11} & \cdots & B_{1\ell} \\ \vdots & ~ & \vdots \\ B_{n1} & \cdots & B_{n\ell} \end{bmatrix} $$ such that the width of $A_{1k}$ is the same as the height of $B_{k1}$ for $k = 1,\ldots, n$. Then $AB$ can be written as a block matrix such that its $ij$-block is $$ \sum_{k = 1}^n A_{ik} B_{kj}. $$ For block matrices, one may perform the **block row operations**. 1. swapping: swap the $i$-th and the $j$-th block rows. Its block elementary matrix $E$ has $\det(E) = (-1)^{m_im_j}$, where $m_i$ and $m_j$ are the number of rows in these two block rows, respectively. 2. rescaling: multiply the $i$-th block row by an invertible matrix $K$. Its block elementary matrix $E$ has $\det(E) = \det(K)$. 3. row combination: multiply the $j$-th block row by a matrix $K$ and add the result to the $i$-th block row. Its block elementary matrix $E$ has $\det(E) = 1$. Similar **block column operations** also apply. Consider the matrix $$ M = \begin{bmatrix} A & B \\ O & D \end{bmatrix}. $$ If both $A$ and $D$ are invertible (sqaure) matrice, one may rescale the first block row and the second block column and get $$ \begin{bmatrix} A & B \\ O & D \end{bmatrix} = \begin{bmatrix} A & O \\ O & I \end{bmatrix} \begin{bmatrix} I & A^{-1}BD^{-1} \\ O & I \end{bmatrix} \begin{bmatrix} I & O \\ O & D \end{bmatrix}. $$ Therefore, $$ \det(M) = \det(A)\det(D). $$ If $A$ or $D$ is not invertible, then M is also not invertible. Therefore, the same equality still holds. $$ \det(M) = \det(A)\det(D) = 0. $$ Consider the other matrix $$ M = \begin{bmatrix} A & B \\ C & D \end{bmatrix} $$ such that $A$ is invertible. One may take the first block row, pre-multiply by $-CA^{-1}$, and add it to the second block row. Thus, $$ \begin{bmatrix} A & B \\ C & D \end{bmatrix} = \begin{bmatrix} I & O \\ CA^{-1} & I \end{bmatrix} \begin{bmatrix} A & B \\ O & D - CA^{-1}B \end{bmatrix}. $$ Therefore, $$ \det(M) = \det(A)\det(D - CA^{-1}B). $$ The matrix $D - CA^{-1}B$ is called the **Schur complement** of $A$ in $M$, denoted as $M / A$. The notation is justified by $\det(M/A) = \det(M) / \det(A)$. ## Side stories - Schur complement ## Experiments ##### Exercise 1 執行以下程式碼。 ```python ### code set_random_seed(0) print_ans = False while True: A = matrix(2, random_int_list(4,2)) if A.det() != 0: break B = matrix(2, random_int_list(6,3)) C = matrix(3, random_int_list(6,3)) D = matrix(3, random_int_list(9,3)) M = block_matrix([ [A, B], [C, D] ]) op = choice([1,2,3]) if op == 1: E = block_matrix([[zero_matrix(3,2), identity_matrix(3)], [identity_matrix(2), zero_matrix(2,3)]]) if op == 2: E = block_matrix([[A.inverse(), zero_matrix(2,3)], [zero_matrix(3,2), identity_matrix(3)]]) if op == 3: E = block_matrix([[identity_matrix(2), zero_matrix(2,3)], [-C*A.inverse(), identity_matrix(3)]]) W = E * M if op == 1: W.subdivide(3,2) print("M =") pretty_print(M) print("W =") pretty_print(W) if print_ans: print("E =") pretty_print(E) print("det(E) =", E.det()) ``` ##### Exercise 1(a) 觀察如何從 $M$ 經過區塊列運算得到 $W$, 並寫出相對應的區塊基本矩陣 $E$。 $Ans:$ 藉由 `seed 0` 可以得到 $M=\begin{bmatrix} -2 & 2 & -1 & 3 & 1 \\ -2 & -2 & -2 & 1 & 2 \\ 1 & -3 & -1 & 3 & -2 \\ -2 & 0 & -2 & -2 & 3 \\ 1 & -3 & -3 & 3 & -2 \end{bmatrix}$, $W=\begin{bmatrix} 1 & 0 & -1 & \frac{3}{4} & -\frac{3}{4} \\ 0 & 1 & \frac{1}{4} & \frac{1}{2} & -\frac{1}{4} \\ 1 & -3 & -1 & 3 & -2 \\ -2 & 0 & -2 & -2 & 3 \\ 1 & -3 & -3 & 3 & -2 \end{bmatrix}$. 藉由列運算可以得到: $$E_3\cdot E_2\cdot E_1\cdot M=W. $$ 其中 $$E_1=\begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ -1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}, E_2=\begin{bmatrix} 1 & \frac{1}{2} & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}, E_3=\begin{bmatrix} -\frac{1}{2} & 0 & 0 & 0 & 0 \\ 0 & -\frac{1}{4} & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}.$$ 又 $$E=E_3\cdot E_2\cdot E_1 = E=\begin{bmatrix} -\frac{1}{4} & -\frac{1}{4} & 0 & 0 & 0 \\ \frac{1}{4} & -\frac{1}{4} & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}. $$ **[由汪駿佑同學提供]** 藉由 `seed 10` 可以得到 $$ M = \begin{bmatrix} 2 & 1 & 0 & -3 & -3 \\ 0 & 1 & 0 & -2 & 0 \\ -2 & 0 & 2 & -3 & 2 \\ 3 & 2 & -1 & 0 & -1 \\ -2 & 0 & 3 & 2 & 2 \end{bmatrix}, W = \begin{bmatrix} 2 & 1 & 0 & -3 & -3 \\ 0 & 1 & 0 & -2 & 0 \\ 0 & 0 & 2 & -4 & -1 \\ 0 & 0 & -1 & \frac{11}{2} & \frac{7}{2} \\ 0 & 0 & 3 & 1 & -1 \end{bmatrix}. $$ 觀察:$M$ 跟 $W$ 的上兩列是一樣的,表示列運算是對底下三列做的。 那麼我們將 $M$ 分成以下四個區塊: $$ M = \left[\begin{array}{rr|rrr} 2 & 1 & 0 & -3 & -3 \\ 0 & 1 & 0 & -2 & 0 \\ \hline -2 & 0 & 2 & -3 & 2 \\ 3 & 2 & -1 & 0 & -1 \\ -2 & 0 & 3 & 2 & 2 \end{array}\right] = \begin{bmatrix} A & B \\ C & D \end{bmatrix}. $$ 令 $C = FA$,其中 $F$ 為一個由執行區塊列運算所用到的係數矩陣。 那麼因為 $A$ 可逆,故我們可以求得 $$ F = CA^{-1} = \begin{bmatrix} -2 & 0 \\ 3 & 2 \\ -2 & 0 \end{bmatrix} \begin{bmatrix} \frac{1}{2} & \frac{-1}{2} \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} -1 & 1 \\ \frac{3}{2} & \frac{1}{2} \\ -1 & 1 \end{bmatrix}. $$ 因此,$C + (-1)FA = O$。 另外, $$ D + (-1)FB = \begin{bmatrix} 2 & -4 & -1 \\ -1 & \frac{11}{2} & \frac{7}{2} \\ 3 & 1 & -1 \end{bmatrix}. $$ 也符合我們要 $W$ 在那個區域的矩陣,故我們可以經由列運算 $\rho_2: + (-1)F \rho_1$ 得到 $W$。 而這個列運算的基本矩陣 $E$ 可以由以下區塊矩陣表達: $$ E = \begin{bmatrix} I_2 & O \\ -F & I_3 \end{bmatrix}. $$ 展開後得 $$ E = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 1 & -1 & 1 & 0 & 0 \\ \frac{-3}{2} & \frac{-1}{2} & 0 & 1 & 0 \\ 1 & -1 & 0 & 0 & 1 \end{bmatrix}. $$ ##### Exercise 1(b) 求 $\det(E)$。 :::warning - [x] $det$ --> $\det$ ::: $Ans:$ $$\det(E) = \det\begin{bmatrix} -\frac{1}{4} & -\frac{1}{4} & 0 & 0 & 0 \\ \frac{1}{4} & -\frac{1}{4} & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}=\frac{1}{8}. $$ ## Exercises ##### Exercise 2 計算以下矩陣的行列式值。 ##### Exercise 2(a) $$ A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 2 \\ 0 & 3 & 4 \end{bmatrix}. $$ **[由張書鳴同學提供]** 將 $A$ 視為區塊矩陣,即 $$ A= \begin{bmatrix} I & O\trans \\ O & M \end{bmatrix}. $$ 其中 $$ M = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix},\det(M) = (-2). $$ 且 $I$ 為 $1 \times 1$ 矩陣,$O$ 為一個 $2 \times 1$ 矩陣。 所以 $$ \det(A) = \det(M) \times \det(I) =(-2). $$ **[由汪駿佑同學提供]** 令 $$ A = \begin{bmatrix} I_1 & O\trans \\ O & M \end{bmatrix}. $$ 根據定義,我們可以求出 $$ \det(A) = \det(I_1) \times \det(M) = -2. $$ ##### Exercise 2(b) $$ A = \begin{bmatrix} 0 & 1 & 2 \\ 1 & 0 & 0 \\ 0 & 3 & 4 \end{bmatrix}. $$ **[由張書鳴同學提供]** 將$A$的第一列和第二列互換得到 $$ A'= \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 2 \\ 0 & 3 & 4 \end{bmatrix}. $$ 將 $A'$ 視為區塊矩陣 $$ A' = \begin{bmatrix} I & O\trans \\ O & M \end{bmatrix}. $$ 其中 $$ M = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix},\det(M)=(-2). $$ 且 $I$ 為 $1 \times 1$ 矩陣,$O$ 為一個 $2 \times 1$ 矩陣。 所以 $$\det(A')=\det(M) \times \det(I) =(-2),$$ 且因為列互換行列式值 $\times (-1),$ $$\det(A)=\det(A')\times (-1)=2. $$ **[由汪駿佑同學提供]** 由於 $A_{2(b)}$ 是由 $A_{2(a)}$ 經由列運算 $\rho_2 \leftrightarrow \rho_1$ 而來,根據行列式值與列運算的關係, $$ \det(A_{2(b)}) = -\det(A_{2(a)}) = 2. $$ ##### Exercise 2(c) $$ A = \begin{bmatrix} 0 & 1 & 2 \\ 0 & 3 & 4 \\ 1 & 0 & 0 \end{bmatrix}. $$ **[由張書鳴同學提供]** 將第一列與第三列互換,得到 $$ A' = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 3 & 4 \\ 0 & 1 & 2 \end{bmatrix}.$$ 將$A'$ 視為區塊矩陣 $$ A' = \begin{bmatrix} I & O\trans \\ O & M \end{bmatrix}.$$ 設 $$ M = \begin{bmatrix} 3 & 4 \\ 1 & 2 \end{bmatrix},\det(M) = 2. $$ 且 $I$ 為 $1 \times 1$ 矩陣,$O$ 為一個 $2 \times 1$ 矩陣。 所以 $$\det(A')=\det(M) \times \det(I) =2,$$ 且因為列互換行列式值 $\times (-1),$ $$\det(A)=\det(A')\times (-1)=(-2). $$ **[由汪駿佑同學提供]** 由於 $A_{2(c)}$ 是由 $A_{2(b)}$ 經由列運算 $\rho_3 \leftrightarrow \rho_2$ 而來,根據行列式值與列運算的關係, $$ \det(A_{2(c)}) = -\det(A_{2(b)}) = -2. $$ ##### Exercise 2(d) $$ A = \begin{bmatrix} 1 & 0 & 2 \\ 3 & 0 & 4 \\ 0 & 1 & 0 \end{bmatrix}. $$ **[由張書鳴同學提供]** 將$A$的第一行和第二行互換得到 $$ A'= \begin{bmatrix} 0 & 1 & 2 \\ 0 & 3 & 4 \\ 1 & 0 & 0 \end{bmatrix}.$$ 再將第一列與第三列互換,得到 $$ A'' = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 3 & 4 \\ 0 & 1 & 2 \end{bmatrix}.$$ 設 $$ M = \begin{bmatrix} 3 & 4 \\ 1 & 2 \end{bmatrix},\det(M) = 2. $$ 將 $A''$ 視為區塊矩陣 $$ A'' = \begin{bmatrix} I & O\trans \\ O & M \end{bmatrix}.$$ 且 $I$ 為 $1 \times 1$ 矩陣,$O$ 為一個 $2 \times 1$ 矩陣。 且因為行互換行列式值 $\times (-1),$ 所以 $$\det(A) = \det(A') \times (-1),$$ 而且因為列互換行列式值 $\times (-1),$ 所以 $$\det(A'') = \det(A') \times (-1) = \det(M) \times \det(I),$$ $$\det(A')=(-2),\det(A)=2 . $$ **[由汪駿佑同學提供]** 由於 $A_{2(d)}$ 是由 $A_{2(c)}$ 經由行運算 $\kappa_2 \leftrightarrow \kappa_1$ 而來,根據行列式值與行運算的關係, $$ \det(A_{2(d)}) = -\det(A_{2(c)}) = 2. $$ ##### Exercise 3 計算以下矩陣的行列式值。 ##### Exercise 3(a) $$ A = \begin{bmatrix} 1 & 2 & 0 & 0 \\ 3 & 4 & 0 & 0 \\ 0 & 0 & 5 & 6 \\ 0 & 0 & 7 & 8 \end{bmatrix}. $$ :::warning - [x] $det$ --> $\det$ - [x] 數學以外的標點用全型 ::: $Ans:$ 首先設 $$ A = \begin{bmatrix} M & O \\ O & N \end{bmatrix}. $$ 的區塊矩陣。 其中 $$ M = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}, $$ $$ N = \begin{bmatrix} 5 & 6 \\ 7 & 8 \end{bmatrix}. $$ 且經過計算得知 $\det(M)= 4 -6=-2,$ $\det(N)= 40 -42=-2.$ 所以 $\det(A) = \det(M)\det(N) = (-2)(-2)=4.$ ##### Exercise 3(b) $$ A = \begin{bmatrix} 0 & 0 & 5 & 6 \\ 0 & 0 & 7 & 8 \\ 1 & 2 & 0 & 0 \\ 3 & 4 & 0 & 0 \end{bmatrix}. $$ $Ans:$ 首先設 $$ A = \begin{bmatrix} O & N \\ M & O \end{bmatrix}. $$ 的區塊矩陣。 其中$$ N = \begin{bmatrix} 5 & 6 \\ 7 & 8 \end{bmatrix}, $$ $$ M = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}. $$ 經過計算得知 $\det(N)= 40 -42=-2,$ $\det(M)= 4 -6=-2.$ 且 $\det(A)$ 為上一題的兩列區塊矩陣互換, 所以 $\det(A) = \det(M)\times\det(N)\times(-1)^4 = (-2)\times(-2)\times1 = 4.$ ##### Exercise 3(c) $$ A = \begin{bmatrix} 1 & 0 & 2 & 0 \\ 0 & 5 & 0 & 6 \\ 3 & 0 & 4 & 0 \\ 0 & 7 & 0 & 8 \end{bmatrix}. $$ :::warning - [x] 應該有辦法交換一些行和列變回前兩題的樣子 ::: 首先設 $$ A = \begin{bmatrix} P & Q \\ R & S \end{bmatrix} $$ 的區塊矩陣。 其中 $$ P= \begin{bmatrix} 1 & 0 \\ 0 & 5 \end{bmatrix}. $$ $$ P^{-1} = \begin{bmatrix} 1 & 0 \\ 0 & \frac{1}{5} \end{bmatrix}. $$ $$ Q = \begin{bmatrix} 2 & 0 \\ 0 & 6 \end{bmatrix}. $$ $$ R = \begin{bmatrix} 3 & 0 \\ 0 & 7 \end{bmatrix}. $$ $$ S = \begin{bmatrix} 4 & 0 \\ 0 & 8 \end{bmatrix}. $$ 且經過計算得知 $\det(P)=5,$ $\det(S - RP^{-1}Q)=\det( \begin{bmatrix} 4 & 0 \\ 0 & 8 \end{bmatrix}-\begin{bmatrix} 3 & 0 \\ 0 & 7 \end{bmatrix}\begin{bmatrix} 1 & 0 \\ 0 & \frac{1}{5} \end{bmatrix}\begin{bmatrix} 2 & 0 \\ 0 & 6 \end{bmatrix})=\det(\begin{bmatrix} 4 & 0 \\ 0 & 8 \end{bmatrix}-\begin{bmatrix} 6 & 0 \\ 0 & \frac{42}{5} \end{bmatrix})=\det(\begin{bmatrix} -2 & 0 \\ 0 & \frac{-2}{5} \end{bmatrix})=\frac{4}{5}$ 所以 $\det(A) = \det(P)\det(S - RP^{-1}Q)=5\times\frac{4}{5}=4.$ **另解** 本題矩陣 $A$ 可經由 3(a) 中的矩陣 $A$ 做第 $2,3$ 行的行交換,及第 $2,3$ 列的列交換得到,故 $$\det(A) = (-1)^2 \times 4 = 4. $$ ##### Exercise 4 若矩陣 $A$ 可寫成 $$ A = \begin{bmatrix} A_{11} & A_{12} & \cdots & A_{1n} \\ O & A_{22} & \ddots & \vdots \\ \vdots & \ddots & \ddots & A_{n-1,n} \\ O & \cdots & O & A_{nn} \end{bmatrix} $$ 使得 $A_{11},\ldots,A_{nn}$ 皆是方陣 (可能不同大小), 說明 $\det(A) = \det(A_{11})\cdots \det(A_{nn})$。 $Ans:$ 令 $$ \begin{cases} A_1 = \begin{bmatrix} A_{11} \end{bmatrix}, A_2 = \begin{bmatrix} A_{11} & A_{12} \\ O & A_{22} \end{bmatrix}, A_3 = \begin{bmatrix} A_{11} & A_{12} & A_{13} \\ O & A_{22} & A_{23} \\ O & O & A_{33} \end{bmatrix},\cdots, A_n = \begin{bmatrix} A_{11} & A_{12} & \cdots & A_{1n} \\ O & A_{22} & \ddots & \vdots \\ \vdots & \ddots & \ddots & A_{n-1,n} \\ O & \cdots & O & A_{nn} \end{bmatrix}.\\ B_2 = \begin{bmatrix} A_{13} \\ A_{23} \end{bmatrix}, B_3 = \begin{bmatrix} A_{14} \\ A_{24} \\ A_{34} \end{bmatrix}, B_4 = \begin{bmatrix} A_{15} \\ A_{25} \\ A_{35} \\ A_{45} \\ \end{bmatrix},\cdots, B_n = \begin{bmatrix} A_{1,n+1} \\ A_{2,n+1} \\ \vdots \\ A_{n,n+1} \end{bmatrix}. \end{cases} $$ 根據假設,得到 $$\det(A_1)=\det(A_{11}).$$ $A,D$ 為可逆矩陣,令 $M = \begin{bmatrix} A & B \\ O & D \end{bmatrix}, 則 \det(M) = \det(A)\det(D).$ 如果 $A$ 或 $D$ 不可逆, 那麼 $M$ 也不可逆. 因此等式 $\det(M) = \det(A)\det(D)$ 依然成立. 而此時 $\det(M) = \det(A)\det(D) = 0.$ 由此可以得出 $$ \begin{aligned} \det(A_2) &= \det(\begin{bmatrix} A_{11} & A_{12} \\ O & A_{22} \\ \end{bmatrix}) \\ &= \det(A_{11})\det(A_{22}). \end{aligned} $$ 而 $$ \begin{aligned} \det(A_3) &= \det(\begin{bmatrix} A_{11} & A_{12} & A_{13} \\ O & A_{22} & A_{23} \\ O & O & A_{33} \end{bmatrix}) \\ &= \det(\begin{bmatrix} A_2 & B_2 \\ O & A_{33} \end{bmatrix}) \\ &= \det(A_2)\det(A_{33}) \\ &= \det(A_{11})\det(A_{22})\det(A_{33}). \end{aligned}$$ 仿造求 $\det(A_3)$ 方式,可得出 $$ \begin{aligned} \det(A) &= \det(A_n) \\ &= \det(A_{n-1})\det(A_{nn}) \\ &= \det(A_{n-2})\det(A_{n-1,n-1})\det(A_{nn}) \\ &= \cdots = \det(A_{11})\cdots \det(A_{nn}). \end{aligned} $$ ##### Exercise 5 若 $A$ 為 $m\times n$ 矩陣、 而 $B$ 為 $n\times m$ 矩陣, 證明 $$ \det\begin{bmatrix} I_n & B \\ A & I_m \end{bmatrix} = \det(I_m - AB) = \det(I_n - BA), $$ :::warning - [x] 數學式外用全型 - [x] 標點 - [x] 最後那串數學式是幹麻的要講一下 ::: $Ans:$ 1. 因為 $I_n$ 可逆,因此 $\det\begin{bmatrix} I_n & B \\ A & I_m \end{bmatrix} = \det(I_n)\det(I_m -A(I_n^{-1})B) = \det(I_m - AB)$。 2. 令 $E_1 = \begin{bmatrix} O & I_m \\ I_n & O \end{bmatrix}, E_2 = \begin{bmatrix} O & I_n \\ I_m & O \end{bmatrix}.$ 利用 $E_1$ 及 $E_2$,可將 $\begin{bmatrix} I_n & B \\ A & I_m \end{bmatrix}$ 轉變成 $\begin{bmatrix} I_m & A \\ B & I_n \end{bmatrix}.$ $(E_1\begin{bmatrix} I_n & B \\ A & I_m \end{bmatrix}E_2 = \begin{bmatrix} A & I_m \\ I_n & B \end{bmatrix}E_2 = \begin{bmatrix} I_m & A \\ B & I_n \end{bmatrix})$ 因為 $I_m$ 可逆,因此 $\det\begin{bmatrix} I_m & A \\ B & I_n \end{bmatrix} = \det(I_m)\det(I_n-B(I_m^{-1})A) = \det(I_n-BA)$ 3. 由以上二點,得出以下等式 $$ \begin{aligned} \det(I_n-BA) &= \det\begin{bmatrix} I_m & A \\ B & I_n \end{bmatrix} \\ &= \det(E_{1}\begin{bmatrix} I_n & B \\ A & I_m \end{bmatrix}E_{2}) \\ &= \det(E_1)\det(I_m-AB)\det(E_2) \\ &= (-1)^{2nm}\det(I_m-AB) \\ &= \det(I_m-AB). \end{aligned} $$ :::info 目前分數 = 5 ± 檢討 = 6.5 :::

    Import from clipboard

    Paste your markdown or webpage here...

    Advanced permission required

    Your current role can only read. Ask the system administrator to acquire write and comment permission.

    This team is disabled

    Sorry, this team is disabled. You can't edit this note.

    This note is locked

    Sorry, only owner can edit this note.

    Reach the limit

    Sorry, you've reached the max length this note can be.
    Please reduce the content or divide it to more notes, thank you!

    Import from Gist

    Import from Snippet

    or

    Export to Snippet

    Are you sure?

    Do you really want to delete this note?
    All users will lose their connection.

    Create a note from template

    Create a note from template

    Oops...
    This template has been removed or transferred.
    Upgrade
    All
    • All
    • Team
    No template.

    Create a template

    Upgrade

    Delete template

    Do you really want to delete this template?
    Turn this template into a regular note and keep its content, versions, and comments.

    This page need refresh

    You have an incompatible client version.
    Refresh to update.
    New version available!
    See releases notes here
    Refresh to enjoy new features.
    Your user state has changed.
    Refresh to load new user state.

    Sign in

    Forgot password

    or

    By clicking below, you agree to our terms of service.

    Sign in via Facebook Sign in via Twitter Sign in via GitHub Sign in via Dropbox Sign in with Wallet
    Wallet ( )
    Connect another wallet

    New to HackMD? Sign up

    Help

    • English
    • 中文
    • Français
    • Deutsch
    • 日本語
    • Español
    • Català
    • Ελληνικά
    • Português
    • italiano
    • Türkçe
    • Русский
    • Nederlands
    • hrvatski jezik
    • język polski
    • Українська
    • हिन्दी
    • svenska
    • Esperanto
    • dansk

    Documents

    Help & Tutorial

    How to use Book mode

    Slide Example

    API Docs

    Edit in VSCode

    Install browser extension

    Contacts

    Feedback

    Discord

    Send us email

    Resources

    Releases

    Pricing

    Blog

    Policy

    Terms

    Privacy

    Cheatsheet

    Syntax Example Reference
    # Header Header 基本排版
    - Unordered List
    • Unordered List
    1. Ordered List
    1. Ordered List
    - [ ] Todo List
    • Todo List
    > Blockquote
    Blockquote
    **Bold font** Bold font
    *Italics font* Italics font
    ~~Strikethrough~~ Strikethrough
    19^th^ 19th
    H~2~O H2O
    ++Inserted text++ Inserted text
    ==Marked text== Marked text
    [link text](https:// "title") Link
    ![image alt](https:// "title") Image
    `Code` Code 在筆記中貼入程式碼
    ```javascript
    var i = 0;
    ```
    var i = 0;
    :smile: :smile: Emoji list
    {%youtube youtube_id %} Externals
    $L^aT_eX$ LaTeX
    :::info
    This is a alert area.
    :::

    This is a alert area.

    Versions and GitHub Sync
    Get Full History Access

    • Edit version name
    • Delete

    revision author avatar     named on  

    More Less

    Note content is identical to the latest version.
    Compare
      Choose a version
      No search result
      Version not found
    Sign in to link this note to GitHub
    Learn more
    This note is not linked with GitHub
     

    Feedback

    Submission failed, please try again

    Thanks for your support.

    On a scale of 0-10, how likely is it that you would recommend HackMD to your friends, family or business associates?

    Please give us some advice and help us improve HackMD.

     

    Thanks for your feedback

    Remove version name

    Do you want to remove this version name and description?

    Transfer ownership

    Transfer to
      Warning: is a public team. If you transfer note to this team, everyone on the web can find and read this note.

        Link with GitHub

        Please authorize HackMD on GitHub
        • Please sign in to GitHub and install the HackMD app on your GitHub repo.
        • HackMD links with GitHub through a GitHub App. You can choose which repo to install our App.
        Learn more  Sign in to GitHub

        Push the note to GitHub Push to GitHub Pull a file from GitHub

          Authorize again
         

        Choose which file to push to

        Select repo
        Refresh Authorize more repos
        Select branch
        Select file
        Select branch
        Choose version(s) to push
        • Save a new version and push
        • Choose from existing versions
        Include title and tags
        Available push count

        Pull from GitHub

         
        File from GitHub
        File from HackMD

        GitHub Link Settings

        File linked

        Linked by
        File path
        Last synced branch
        Available push count

        Danger Zone

        Unlink
        You will no longer receive notification when GitHub file changes after unlink.

        Syncing

        Push failed

        Push successfully