Jephian Lin
    • Create new note
    • Create a note from template
      • Sharing URL Link copied
      • /edit
      • View mode
        • Edit mode
        • View mode
        • Book mode
        • Slide mode
        Edit mode View mode Book mode Slide mode
      • Customize slides
      • Note Permission
      • Read
        • Only me
        • Signed-in users
        • Everyone
        Only me Signed-in users Everyone
      • Write
        • Only me
        • Signed-in users
        • Everyone
        Only me Signed-in users Everyone
      • Engagement control Commenting, Suggest edit, Emoji Reply
    • Invite by email
      Invitee

      This note has no invitees

    • Publish Note

      Share your work with the world Congratulations! 🎉 Your note is out in the world Publish Note

      Your note will be visible on your profile and discoverable by anyone.
      Your note is now live.
      This note is visible on your profile and discoverable online.
      Everyone on the web can find and read all notes of this public team.
      See published notes
      Unpublish note
      Please check the box to agree to the Community Guidelines.
      View profile
    • Commenting
      Permission
      Disabled Forbidden Owners Signed-in users Everyone
    • Enable
    • Permission
      • Forbidden
      • Owners
      • Signed-in users
      • Everyone
    • Suggest edit
      Permission
      Disabled Forbidden Owners Signed-in users Everyone
    • Enable
    • Permission
      • Forbidden
      • Owners
      • Signed-in users
    • Emoji Reply
    • Enable
    • Versions and GitHub Sync
    • Note settings
    • Note Insights New
    • Engagement control
    • Transfer ownership
    • Delete this note
    • Save as template
    • Insert from template
    • Import from
      • Dropbox
      • Google Drive
      • Gist
      • Clipboard
    • Export to
      • Dropbox
      • Google Drive
      • Gist
    • Download
      • Markdown
      • HTML
      • Raw HTML
Menu Note settings Note Insights Versions and GitHub Sync Sharing URL Create Help
Create Create new note Create a note from template
Menu
Options
Engagement control Transfer ownership Delete this note
Import from
Dropbox Google Drive Gist Clipboard
Export to
Dropbox Google Drive Gist
Download
Markdown HTML Raw HTML
Back
Sharing URL Link copied
/edit
View mode
  • Edit mode
  • View mode
  • Book mode
  • Slide mode
Edit mode View mode Book mode Slide mode
Customize slides
Note Permission
Read
Only me
  • Only me
  • Signed-in users
  • Everyone
Only me Signed-in users Everyone
Write
Only me
  • Only me
  • Signed-in users
  • Everyone
Only me Signed-in users Everyone
Engagement control Commenting, Suggest edit, Emoji Reply
  • Invite by email
    Invitee

    This note has no invitees

  • Publish Note

    Share your work with the world Congratulations! 🎉 Your note is out in the world Publish Note

    Your note will be visible on your profile and discoverable by anyone.
    Your note is now live.
    This note is visible on your profile and discoverable online.
    Everyone on the web can find and read all notes of this public team.
    See published notes
    Unpublish note
    Please check the box to agree to the Community Guidelines.
    View profile
    Engagement control
    Commenting
    Permission
    Disabled Forbidden Owners Signed-in users Everyone
    Enable
    Permission
    • Forbidden
    • Owners
    • Signed-in users
    • Everyone
    Suggest edit
    Permission
    Disabled Forbidden Owners Signed-in users Everyone
    Enable
    Permission
    • Forbidden
    • Owners
    • Signed-in users
    Emoji Reply
    Enable
    Import from Dropbox Google Drive Gist Clipboard
       Owned this note    Owned this note      
    Published Linked with GitHub
    • Any changes
      Be notified of any changes
    • Mention me
      Be notified of mention me
    • Unsubscribe
    # 柯西交錯定理 ![Creative Commons License](https://i.creativecommons.org/l/by/4.0/88x31.png) This work by Jephian Lin is licensed under a [Creative Commons Attribution 4.0 International License](http://creativecommons.org/licenses/by/4.0/). $\newcommand{\trans}{^\top} \newcommand{\adj}{^{\rm adj}} \newcommand{\cof}{^{\rm cof}} \newcommand{\inp}[2]{\left\langle#1,#2\right\rangle} \newcommand{\dunion}{\mathbin{\dot\cup}} \newcommand{\bzero}{\mathbf{0}} \newcommand{\bone}{\mathbf{1}} \newcommand{\ba}{\mathbf{a}} \newcommand{\bb}{\mathbf{b}} \newcommand{\bc}{\mathbf{c}} \newcommand{\bd}{\mathbf{d}} \newcommand{\be}{\mathbf{e}} \newcommand{\bh}{\mathbf{h}} \newcommand{\bp}{\mathbf{p}} \newcommand{\bq}{\mathbf{q}} \newcommand{\br}{\mathbf{r}} \newcommand{\bx}{\mathbf{x}} \newcommand{\by}{\mathbf{y}} \newcommand{\bz}{\mathbf{z}} \newcommand{\bu}{\mathbf{u}} \newcommand{\bv}{\mathbf{v}} \newcommand{\bw}{\mathbf{w}} \newcommand{\tr}{\operatorname{tr}} \newcommand{\nul}{\operatorname{null}} \newcommand{\rank}{\operatorname{rank}} %\newcommand{\ker}{\operatorname{ker}} \newcommand{\range}{\operatorname{range}} \newcommand{\Col}{\operatorname{Col}} \newcommand{\Row}{\operatorname{Row}} \newcommand{\spec}{\operatorname{spec}} \newcommand{\vspan}{\operatorname{span}} \newcommand{\Vol}{\operatorname{Vol}} \newcommand{\sgn}{\operatorname{sgn}} \newcommand{\idmap}{\operatorname{id}} \newcommand{\am}{\operatorname{am}} \newcommand{\gm}{\operatorname{gm}} \newcommand{\mult}{\operatorname{mult}} \newcommand{\iner}{\operatorname{iner}}$ ```python from lingeo import random_int_list from sym import sym_from_list ``` ## Main idea ##### Cauchy interlacing theorem Let $A$ be an $n\times n$ real symmetric matrix with eigenvalues $\lambda_1 \leq \cdots \leq \lambda_n$. Let $B$ be an $(n-1)\times (n-1)$ principal submatrix of $A$ and $\mu_1 \leq \cdots \leq \mu_{n-1}$ its eigenvalues. Then $$ \lambda_1 \leq \mu_1 \leq \lambda_2 \leq \cdots \leq \lambda_n. $$ In general, if $B$ is an $k\times k$ principal submatrix of $A$ and $\mu_1 \leq \cdots \leq \mu_k$ its eigenvalues, then $$ \lambda_i \leq \mu_i \leq \lambda_{n - (k - i)} $$ for any $i = 1, \ldots, k$. If two sets of real numbers $\lambda_1 \leq \cdots \leq \lambda_n$ and $\mu_1 \leq \cdots \leq \mu_k$ satisfies $\lambda_i \leq \mu_i \leq \lambda_{n - (k - i)}$ for all $i = 1, \ldots, k$, then we say they have the **interlacing property**. ## Side stories - Poincaré separation theorem - eigenvector-eigenvalue identity revisited ## Experiments ##### Exercise 1 執行以下程式碼。 ```python ### code set_random_seed(0) print_ans = False n = 3 entries = random_int_list(binomial(n+1,2)) A = sym_from_list(n, entries) B = A[1:,1:] eigs_A = A.eigenvalues() eigs_A.sort() print("n =", n) pretty_print(LatexExpr("A ="), A) print("eigenvalues of A from small to large:", eigs_A) pretty_print(LatexExpr("B ="), B) if print_ans: eigs_B = B.eigenvalues() eigs_B.sort() print("eigenvalues of B from small to large:", eigs_B) ``` 藉由 `seed = 11` 得到 $$A=\begin{bmatrix} -5 & 3 & -2\\ 3 & -1 & 0\\ -2 & 0 & -2 \end{bmatrix}. $$ $$B=\begin{bmatrix} -1 & 0\\ 0 & -2 \end{bmatrix}. $$ ##### Exercise 1(a) 計算 $B$ 的特徵值 $\mu_1 \leq \cdots \leq \mu_{n-1}$。 :::warning - [x] 中英數之間空格 - [x] 計算 $B$ 的特徵多項式 $$ p_B(x) = (-1 - x) (-2 - x) $$ - [x] 標點 ::: $Ans:$ 計算 $B$ 的特徵多項式 $$p_B(x) = (-1 - x) (-2 - x) $$ 故 $B$ 的特徵值為 $\mu_1 = -2$ 與 $\mu_2 = -1$。 ##### Exercise 1(b) 驗證是否 $\lambda_1 \leq \mu_1 \leq \lambda_2 \leq \cdots \leq \lambda_n$。 :::warning - [x] 中英數之間空格 - [x] 計算 $A$ 的特徵多項式 $$ p_A(x) = -x^3 - 8x^2 -4x +12 $$ - [x] 標點 ::: $Ans:$ 計算 $A$ 的特徵多項式 $$p_A(x) = -x^3 - 8x^2 -4x +12 $$ 故 $A$ 的特徵值為 $\lambda_1 \simeq -7.2$ 、 $\lambda_2 \simeq -1.7$ 與 $\lambda_3 \simeq 0.95$。其滿足 $$ \begin{align} & \lambda_1 && \leq \mu_1 && \leq \lambda_2 && \leq \mu_2 && \leq \lambda_3 \\ & -7.2 && \leq -2 && \leq -1.7 && \leq -1 && \leq 0.95 \end{align} $$ ## Exercises ##### Exercise 2 令 $A$ 為一 $n\times n$ 實對稱矩陣、$B$ 為其一 $(n-1)\times(n-1)$ 主子矩陣。 若 $\lambda$ 為 $A$ 的一特徵向量。 利用柯西交錯定理說明 $|\mult_A(\lambda) - \mult_B(\lambda)| \leq 1$。 這裡 $\mult_A(\lambda)$ 指的是 $\lambda$ 為 $A$ 的特徵向量的重數。 :::warning - [x] 當 $\lambda$ 中有 $k$ 項為重根,則必有 $k-1$、$k$、或 $k+1$ 項 $\mu$ 亦為重根。 ::: $Ans:$ 設 $A$ 的特徵值為 $\lambda_1 \leq \cdots \leq \lambda_n$, 設 $B$ 的特徵值為 $\mu_1 \leq \cdots \leq \mu_{n-1}$。 根據柯西交錯定理可知 $$ \lambda_1 \leq \mu_1 \leq \lambda_2 \leq \cdots \leq \lambda_n. $$ 當 $\lambda$ 中有 $k$ 項為重根,則必有 $k-1$、$k$、或 $k+1$ 項 $\mu$ 亦為重根。 由此可知, $|\mult_A(\lambda) - \mult_B(\lambda)| \leq 1$。 ##### Exercise 3 令 $A$ 為一 $n\times n$ 實對稱矩陣。 令 $Q$ 為一 $n\times n$ 實垂直矩陣、而 $S$ 為由 $Q$ 的前 $k$ 行所構成的 $n\times k$ 矩陣。 證明 $A$ 和 $B = S\trans AS$ 的特徵值具有交錯性質。 這個定理稱作**龐加萊分割定理(Poincaré separation theorem)**。 :::warning - [ ] 標點 - [x] 中英數之間空格 - [x] $^T$ --> $\trans$ - [x] 所以 \begin{align} \det(Q Q^T) = \det(I) = 1 \end{align} 因為 \begin{align} \det(A - \lambda I) = \det(Q^T A Q - \lambda Q^T Q) \end{align} <-- 這段可以不用 ::: $Ans:$ 方法一: 令一矩陣 $$ P = \begin{bmatrix} I_{k,k} & O_{k,n-k} \\ O_{n-k,k}&O_{n-k,n-k} \end{bmatrix}. $$ 則 $$ QP= \begin{bmatrix} Q_{n,k}& Q_{n,n-k} \\ \end{bmatrix} \begin{bmatrix} I_{k,k} & O_{k,n-k} \\ O_{n-k,k} & O_{n-k,n-k} \end{bmatrix} = \begin{bmatrix} S_{n,k}& O_{n,n-k} \\ \end{bmatrix} $$ 且 $$ \begin{bmatrix} S_{n,k}\trans \\ O_{n-k,n} \\ \end{bmatrix} \begin{bmatrix} A_{k,k} & A_{k,n-k} \\ A_{n-k,k} & A_{n-k,n-k} \end{bmatrix} \begin{bmatrix} S_{n,k}& O_{n,n-k} \\ \end{bmatrix} \\ =\begin{bmatrix} (S\trans\ AS)_{k,k} & O_{k,n-k} \\ O_{n-k,k} & O_{n-k,n-k} \end{bmatrix} =P\trans\ Q\trans\ AQP $$ 即 $B$ 為 $Q\trans\ AQ$ 的子矩陣,且 $Q\trans\ AQ$ 和 $A$ 相似。 故 $Q\trans\ AQ$ 和 $A$ 相似有相同的特徵值。 所以 $B$ 和 $A$ 的特徵值有交錯性質。 方法二: 令 $Q = \left[ S_{n \times k} | ? \right]$,故 $\displaystyle Q\trans = \left[ \frac{S_{k \times n}}{?} \right]$。 因 \begin{align} Q\trans A Q = \left[ \begin{array}{c|c} S\trans A S & ? \\ \hline ? & ? \end{array} \right] \end{align} 故 $Q\trans A Q \simeq A$ 有相同的特徵值,因此 $B = S\trans A S$ 和 $A \simeq Q\trans A Q$ 有交錯性質。 ##### Exercise 4 令 $A = \begin{bmatrix} a_{ij} \end{bmatrix}$ 為一 $n\times n$ 實對稱矩陣,且其特徵值為 $\lambda_1 \leq \cdots \leq \lambda_n$。 證明對所有 $i = 1,\ldots,n$ 都有 $\lambda_1 \leq a_{ii} \leq \lambda_n$。 提示:對任意 $i$ 而言,$\begin{bmatrix} a_{ii} \end{bmatrix}$ 也是 $A$ 的一個 $1\times 1$ 主子矩陣。 :::warning - [x] 當小矩陣大小是 $k\times k$ 時,交錯定理不是 $\lambda_1 \leq \mu_1 \leq \lambda_2 \leq \cdots \leq \lambda_n$,而是 $\lambda_i \leq \mu_i \leq \lambda_{n - (k - i)}$ ::: $Ans:$ 對任意 $i$ 而言,$\begin{bmatrix} a_{ii} \end{bmatrix}$ 為 $A$ 的一個 $1\times 1$ 主子矩陣,且 $\begin{bmatrix} a_{ii} \end{bmatrix}$ 只有一個特徵值 $\mu_1 = a_{ii}$。 根據柯西交錯定理可知 $$ \lambda_1 \leq \mu_1 \leq \lambda_{n - (1 - 1)}. $$ 由此可知,對所有 $i = 1,\ldots,n$ 都有 $\lambda_1 \leq a_{ii} \leq \lambda_n$。 ##### Exercise 5 令 $A = \begin{bmatrix} a_{ij} \end{bmatrix}$ 為一 $n\times n$ 實對稱矩陣,且其特徵值為 $\lambda_1 \leq \cdots \leq \lambda_n$。 證明 $\lambda_1 \leq \frac{1}{n} \sum_{i=1}^n\sum_{j=1}^n a_{ij} \leq \lambda_n$。 提示:取 $S$ 為 $n\times 1$ 的矩陣且其第一行為 $\frac{1}{\sqrt{n}}\bone$。 :::warning - [ ] $S$ 不是方陣怎麼可以將 $A$ 對角化? - [ ] 這題要用 Exercise 3 ::: $Ans:$ 取 $S$ 為 $n\times 1$ 的矩陣且其每一行皆為 $\frac{1}{\sqrt{n}}\bone$ ,因為 $A$ 為對稱矩陣,所以我們可用可逆矩陣 $S$ 將 $A$ 矩陣對角化,得到由 $A$ 矩陣 $\frac{1}{n}$ 倍的特徵值所組成的矩陣 $D$。 $$ D = S\trans AS = \begin{bmatrix} \frac{1}{\sqrt{n}}\bone & \cdots & \frac{1}{\sqrt{n}}\bone \\ \end{bmatrix} \begin{bmatrix} a_{11} & \cdots & a_{1n} \\ \vdots \\ a_{n1} & \cdots & a_{nn} \\ \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{n}}\bone \\ \vdots \\ \frac{1}{\sqrt{n}}\bone \\ \end{bmatrix} = \frac{1}{n} \sum_{i=1}^n\sum_{j=1}^n a_{ij} $$ 我們有 $D = \frac{1}{n} \sum_{i=1}^n\sum_{j=1}^n a_{ij} = \frac{1}{n} (\lambda_1 + \cdots + \lambda_n)$ ,又有 $\lambda_1 \leq \cdots \leq \lambda_n$ , 因此可以推得 $\lambda_1 \leq \frac{1}{n} \sum_{i=1}^n\sum_{j=1}^n a_{ij} \leq \lambda_n$。 ##### Exercise 6 令 $A$ 為一 $n\times n$ 實對稱矩陣,且其特徵值為 $\lambda_1 \leq \cdots \leq \lambda_n$,而 $\bv_1,\ldots,\bv_n$ 為其對應的垂直標準特徵基底。 令 $B$ 為 $A$ 的一個 $k\times k$ 主子矩陣,而其特徵值為 $\mu_1 \leq \cdots \leq \mu_k$而 $\bu_1,\ldots,\bu_{k}$ 為其對應的垂直標準特徵基底。 我們可以假設 $B$ 取的是 $A$ 的最後 $k$ 個行和最後 $k$ 個列。 令 $$ P = \begin{bmatrix} O_{k,n-k} & I_k \end{bmatrix}. $$ 則 $B$ 也可以寫成 $B = PAP\trans$。 固定一個 $i$,依照以下步驟證明柯西交錯定理 $\lambda_i \leq \mu_i \leq \lambda_{n - (k - i)}$。 ##### Exercise 6(a) 令 $V = \vspan\{\bv_1, \ldots, \bv_{i-1}\} \subseteq \mathbb{R}^n$, 說明 $PV = \{P\bv: \bv\in V\}$ 的維度至多是 $i-1$。 因此 $(PV)^\perp$ 的維度至少是 $k - i + 1$。 :::warning 綜合你的論述,重點在於 $PV = \vspan\{P\bv_1,\ldots,P\bv_{i-1}\}$。因為這個空間可以被 $i-1$ 個向量生成,所以維度一定至多 $i-1$。 ::: Ans: 已知 $0 = a_1P\bv_1 + a_2P\bv_2 + \cdots + a_{i-1}P\bv_{i-1}$ 若 $\{P \bv_1, \ldots, P\bv_{i-1}\}$ 為線性獨立,則 $$ a_1=a_2=, \ldots,=a_{i-1}=0 $$ 此時 $PV = \vspan\{P\bv_1, \ldots, P\bv_{i-1}\}$ 維度為 $i-1$。 若 $\{P\bv_1, \ldots, P\bv_{i-1}\}$ 為線性相依。 則可以找到一個集合使 $\{P v_1, \ldots, Pv_{(i-1)-t}\}$ 為線性獨立 (把能被取代的向量從後面放)。 且 $PV = \vspan\{Pv_1, \ldots, \ Pv_{(i-1)-t} \}$ 則維度為 $i-1-t < i-1$。 因此 $(PV)^\perp$ 的維度至少是 $k - i + 1$。 ##### Exercise 6(b) 令 $W = \vspan\{\bu_1, \ldots, \bu_{i}\} \subseteq \mathbb{R}^k$。 說明 $W\cap (PV)^\perp$ 必存在非零向量。 :::warning - [x] $dim$ --> $\dim$ ::: $Ans:$若 $W\cap (PV)^\perp$ 只有零向量,則 $W$ 和 $(PV)^\perp$ 獨立。 且因為 $W \subseteq \mathbb{R}^k$ 和 $(PV)^\perp \subseteq \mathbb{R}^k$ 則有 $W + (PV)^\perp \subseteq \mathbb{R}^k$ 。 故 $$ \begin{aligned} \dim(W + (PV)^\perp) &= \dim(W)+\dim((PV)^\perp) \\ & \geq i + k -i + 1 \\ & =k+1 > k =\dim(\mathbb{R}^k). \end{aligned} $$ 矛盾。 即 $W\cap (PV)^\perp$ 必存在非零向量。 ##### Exercise 6(c) 任取一非零向量 $\bw\in W\cap (PV)^\perp$, 並令 $\bv$ 為在 $\bw$ 前面補 $n-k$ 個零的向量 (因此 $P\bv = \bw$)。 說明 :::warning - [x] 若 $A_{nn}=I$ --> 取 $A_{kk} = I$ 時,則有 ::: $$ \lambda_i \leq R_A(\bv) = \frac{\bw\trans B\bw}{\bw\trans\bw} \leq \mu_i. $$ (之後只要把 $A$ 取代成 $-A$ 就可以證明另一側的不等式 $\mu_i \leq \lambda_{n - (k - i)}$。) $Ans:$令$(\bx=a_1\bv_1+...+a_{i-1}\bv_{i-1})$ $$ \begin{align} \bw\trans\ P\bx & =0\ \\ &=(P\bv)\trans\ P\trans\ P\bx \\ &=\bv\trans\ P\trans\ P\bx \\ &=\bv\trans\bx \end{align} $$ 故 $\bv$ 為 $\{ \bv_i, \ldots, \bv_n\}$ 的線性組合。 則 $$ \lambda_i =\frac{\bv_i\trans A\bv_i}{\bv\trans\bv}\leq \frac{\bv\trans A\bv}{\bv\trans\bv} = \frac{\bw\trans B\bw}{\bw\trans\bw} \leq \frac{\bu_i\trans B\bu_i}{\bu_i\trans\bu_i} \ =\mu_i. $$ **Claim a**: 兩非零向量正交它們彼此一定獨立。 $proof:$ 設 $\bv$ 和 $\bu$ 正交。 若 $\bv$ 和 $\bu$ 線性相依,則 $\bv$ = $a\bu$。 $\bv\trans\bu=0=a\bu\trans\bu=a$ 矛盾。 故兩向量正交它們彼此一定獨立。 **Claim b**: $\bv\trans A\bv = \bw\trans B\bw$ $proof:$ $$ \bv = \begin{bmatrix} 0 \\ \vdots \\ 0 \\ w_{1} \\ \vdots \\ w_{i} \end{bmatrix} \text{ and } \bw = \begin{bmatrix} w_{1} \\ \vdots \\ w_{i} \end{bmatrix} $$ $$ \begin{align} \bv\trans\ A \bv & = \begin{bmatrix} 0& \cdots & 0 & w_{1} & \cdots & w_{i} \\ \end{bmatrix} \begin{bmatrix} A_{(n-k)(n-k)} & A_{(n-k)k} \\ A_{k(n-k)} & A_{kk} \end{bmatrix} \begin{bmatrix} 0 \\ \vdots \\ 0 \\ w_{1} \\ \vdots \\ w_{i} \end{bmatrix} \\ & = \begin{bmatrix} 0& \cdots & 0 & w_{1} & \cdots & w_{i} \\ \end{bmatrix} \begin{bmatrix} O_{(n-k)(n-k)} & A_{(n-k)k}\bw \\ O_{k(n-k)} & A_{kk}\bw \end{bmatrix}\\ &= \begin{bmatrix} O_{(n-k)(n-k)} & O_{(n-k)k} \\ O_{k(n-k)} & \bw\trans\ A_{kk}\bw \end{bmatrix}\\ &=\bw\trans\ A_{kk} \bw\\ &=\bw\trans\ B \bw \end{align} $$ 取 $A_{kk} = I$ 時,則有 $\bv\trans\bv=\bw\trans\bw$ 。 ##### Exercise 7 回顧 604-7 提到的特徵向量-特徵值等式。 ##### Eigenvector-eigenvalue identity 若 $A$ 為一 $n\times n$ 實對稱矩陣。 其特徵值為 $\lambda_1,\ldots,\lambda_n$ 且某一個 $\lambda_i$ 只出現一次沒有重覆。 令 $\bv_1,\ldots, \bv_n$ 為其相對應的特徵向量,且其形成一垂直標準基。 $$ (A - \lambda_i I)\adj = \left(\prod_{j\neq i}(\lambda_j - \lambda_i)\right)\bv_i\bv_i\trans. $$ 說明儘管在 $\mult_A(\lambda_i) \geq 2$ 的時候, 左式和右式都會等於零矩陣, 因此該等式仍然成立。 :::warning - [x] $N(A - \lambda_i I)\geq 2$ --> $\nul(A - \lambda_i I)\geq 2$ - [x] 說明為什麼 $\nul(A - \lambda_i I)\geq 2$ 可推得 $(A - \lambda_i I)\adj = O$ - [x] 標點 ::: $Ans:$ 左式: 由於 $\mult_A(\lambda_i)\geq 2$。 $\nul(A - \lambda_i I) \geq 2$。 設 $\bv_i$ 為 $(A - \lambda_i I)$ 的列向量。 由任意性假設 $\bv_{n-1}= b_1\bv_1+\cdots\ +\ b_{n-2}\bv_{n-2}$。 且$\bv_{n}= a_1\bv_1+\cdots\ +\ a_{n-2}\bv_{n-2}$。 再由任意性去掉 $\bv_{n-2}$ ,則可透過高斯消去使 $n-1$ 列為 $\ b_{n-2}\bv_{n-2}$。 再用高斯消去使 $n$ 列為零向量。 若是去掉 $\bv_n$ 則可直接用高斯消去使 $n-1$ 列為零向量。 由於每行彼此獨立,故去掉一行不影響最終會有一列為零向量的結果。 故 $(A - \lambda_i I)\adj = O$ 右式: 因為 $\mult_A(\lambda_i) \geq 2$ 故存在一個 $\lambda_k$ 使 $\lambda_i=\lambda_k$。 則 $$ \left(\prod_{j\neq i}(\lambda_j -\lambda_i)\right)\bv_i\bv_i\trans= \left(\prod_{j\neq i\\j\neq k}\ (\lambda_j -\lambda_i)\right)\ (\lambda_k -\lambda_i)\bv_i\bv_i\trans=O $$ :::info 分數 = 6.5 :::

    Import from clipboard

    Paste your markdown or webpage here...

    Advanced permission required

    Your current role can only read. Ask the system administrator to acquire write and comment permission.

    This team is disabled

    Sorry, this team is disabled. You can't edit this note.

    This note is locked

    Sorry, only owner can edit this note.

    Reach the limit

    Sorry, you've reached the max length this note can be.
    Please reduce the content or divide it to more notes, thank you!

    Import from Gist

    Import from Snippet

    or

    Export to Snippet

    Are you sure?

    Do you really want to delete this note?
    All users will lose their connection.

    Create a note from template

    Create a note from template

    Oops...
    This template has been removed or transferred.
    Upgrade
    All
    • All
    • Team
    No template.

    Create a template

    Upgrade

    Delete template

    Do you really want to delete this template?
    Turn this template into a regular note and keep its content, versions, and comments.

    This page need refresh

    You have an incompatible client version.
    Refresh to update.
    New version available!
    See releases notes here
    Refresh to enjoy new features.
    Your user state has changed.
    Refresh to load new user state.

    Sign in

    Forgot password

    or

    By clicking below, you agree to our terms of service.

    Sign in via Facebook Sign in via Twitter Sign in via GitHub Sign in via Dropbox Sign in with Wallet
    Wallet ( )
    Connect another wallet

    New to HackMD? Sign up

    Help

    • English
    • 中文
    • Français
    • Deutsch
    • 日本語
    • Español
    • Català
    • Ελληνικά
    • Português
    • italiano
    • Türkçe
    • Русский
    • Nederlands
    • hrvatski jezik
    • język polski
    • Українська
    • हिन्दी
    • svenska
    • Esperanto
    • dansk

    Documents

    Help & Tutorial

    How to use Book mode

    Slide Example

    API Docs

    Edit in VSCode

    Install browser extension

    Contacts

    Feedback

    Discord

    Send us email

    Resources

    Releases

    Pricing

    Blog

    Policy

    Terms

    Privacy

    Cheatsheet

    Syntax Example Reference
    # Header Header 基本排版
    - Unordered List
    • Unordered List
    1. Ordered List
    1. Ordered List
    - [ ] Todo List
    • Todo List
    > Blockquote
    Blockquote
    **Bold font** Bold font
    *Italics font* Italics font
    ~~Strikethrough~~ Strikethrough
    19^th^ 19th
    H~2~O H2O
    ++Inserted text++ Inserted text
    ==Marked text== Marked text
    [link text](https:// "title") Link
    ![image alt](https:// "title") Image
    `Code` Code 在筆記中貼入程式碼
    ```javascript
    var i = 0;
    ```
    var i = 0;
    :smile: :smile: Emoji list
    {%youtube youtube_id %} Externals
    $L^aT_eX$ LaTeX
    :::info
    This is a alert area.
    :::

    This is a alert area.

    Versions and GitHub Sync
    Get Full History Access

    • Edit version name
    • Delete

    revision author avatar     named on  

    More Less

    Note content is identical to the latest version.
    Compare
      Choose a version
      No search result
      Version not found
    Sign in to link this note to GitHub
    Learn more
    This note is not linked with GitHub
     

    Feedback

    Submission failed, please try again

    Thanks for your support.

    On a scale of 0-10, how likely is it that you would recommend HackMD to your friends, family or business associates?

    Please give us some advice and help us improve HackMD.

     

    Thanks for your feedback

    Remove version name

    Do you want to remove this version name and description?

    Transfer ownership

    Transfer to
      Warning: is a public team. If you transfer note to this team, everyone on the web can find and read this note.

        Link with GitHub

        Please authorize HackMD on GitHub
        • Please sign in to GitHub and install the HackMD app on your GitHub repo.
        • HackMD links with GitHub through a GitHub App. You can choose which repo to install our App.
        Learn more  Sign in to GitHub

        Push the note to GitHub Push to GitHub Pull a file from GitHub

          Authorize again
         

        Choose which file to push to

        Select repo
        Refresh Authorize more repos
        Select branch
        Select file
        Select branch
        Choose version(s) to push
        • Save a new version and push
        • Choose from existing versions
        Include title and tags
        Available push count

        Pull from GitHub

         
        File from GitHub
        File from HackMD

        GitHub Link Settings

        File linked

        Linked by
        File path
        Last synced branch
        Available push count

        Danger Zone

        Unlink
        You will no longer receive notification when GitHub file changes after unlink.

        Syncing

        Push failed

        Push successfully